Merge pull request #1334 from danielaskdd/main
Browse filesRefactoring entity and edge merging and add env FORCE_LLM_SUMMARY_ON_MERGE
- env.example +6 -2
- lightrag/api/__init__.py +1 -1
- lightrag/api/utils_api.py +5 -1
- lightrag/api/webui/assets/{index-Cicy56pP.js → index-BPm_J2w3.js} +0 -0
- lightrag/api/webui/index.html +0 -0
- lightrag/lightrag.py +4 -2
- lightrag/operate.py +148 -112
- lightrag/utils.py +1 -1
- lightrag_webui/src/components/documents/PipelineStatusDialog.tsx +2 -2
env.example
CHANGED
@@ -43,11 +43,15 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
|
43 |
SUMMARY_LANGUAGE=English
|
44 |
# CHUNK_SIZE=1200
|
45 |
# CHUNK_OVERLAP_SIZE=100
|
46 |
-
|
47 |
-
# MAX_TOKEN_SUMMARY=500
|
48 |
### Number of parallel processing documents in one patch
|
49 |
# MAX_PARALLEL_INSERT=2
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
### Num of chunks send to Embedding in single request
|
52 |
# EMBEDDING_BATCH_NUM=32
|
53 |
### Max concurrency requests for Embedding
|
|
|
43 |
SUMMARY_LANGUAGE=English
|
44 |
# CHUNK_SIZE=1200
|
45 |
# CHUNK_OVERLAP_SIZE=100
|
46 |
+
|
|
|
47 |
### Number of parallel processing documents in one patch
|
48 |
# MAX_PARALLEL_INSERT=2
|
49 |
|
50 |
+
### Max tokens for entity/relations description after merge
|
51 |
+
# MAX_TOKEN_SUMMARY=500
|
52 |
+
### Number of entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
53 |
+
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
54 |
+
|
55 |
### Num of chunks send to Embedding in single request
|
56 |
# EMBEDDING_BATCH_NUM=32
|
57 |
### Max concurrency requests for Embedding
|
lightrag/api/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
__api_version__ = "
|
|
|
1 |
+
__api_version__ = "0145"
|
lightrag/api/utils_api.py
CHANGED
@@ -261,8 +261,12 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
|
261 |
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
262 |
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
263 |
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
264 |
-
ASCIIColors.white("
|
265 |
ASCIIColors.yellow(f"{args.top_k}")
|
|
|
|
|
|
|
|
|
266 |
|
267 |
# System Configuration
|
268 |
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
|
|
261 |
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
262 |
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
263 |
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
264 |
+
ASCIIColors.white(" ├─ Top-K: ", end="")
|
265 |
ASCIIColors.yellow(f"{args.top_k}")
|
266 |
+
ASCIIColors.white(" ├─ Max Token Summary: ", end="")
|
267 |
+
ASCIIColors.yellow(f"{int(os.getenv('MAX_TOKEN_SUMMARY', 500))}")
|
268 |
+
ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="")
|
269 |
+
ASCIIColors.yellow(f"{int(os.getenv('FORCE_LLM_SUMMARY_ON_MERGE', 6))}")
|
270 |
|
271 |
# System Configuration
|
272 |
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
lightrag/api/webui/assets/{index-Cicy56pP.js → index-BPm_J2w3.js}
RENAMED
Binary files a/lightrag/api/webui/assets/index-Cicy56pP.js and b/lightrag/api/webui/assets/index-BPm_J2w3.js differ
|
|
lightrag/api/webui/index.html
CHANGED
Binary files a/lightrag/api/webui/index.html and b/lightrag/api/webui/index.html differ
|
|
lightrag/lightrag.py
CHANGED
@@ -103,8 +103,10 @@ class LightRAG:
|
|
103 |
entity_extract_max_gleaning: int = field(default=1)
|
104 |
"""Maximum number of entity extraction attempts for ambiguous content."""
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
)
|
109 |
|
110 |
# Text chunking
|
|
|
103 |
entity_extract_max_gleaning: int = field(default=1)
|
104 |
"""Maximum number of entity extraction attempts for ambiguous content."""
|
105 |
|
106 |
+
summary_to_max_tokens: int = field(default=int(os.getenv("MAX_TOKEN_SUMMARY", 500)))
|
107 |
+
|
108 |
+
force_llm_summary_on_merge: int = field(
|
109 |
+
default=int(os.getenv("FORCE_LLM_SUMMARY_ON_MERGE", 6))
|
110 |
)
|
111 |
|
112 |
# Text chunking
|
lightrag/operate.py
CHANGED
@@ -117,15 +117,13 @@ async def _handle_entity_relation_summary(
|
|
117 |
use_llm_func: callable = global_config["llm_model_func"]
|
118 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
119 |
tiktoken_model_name = global_config["tiktoken_model_name"]
|
120 |
-
summary_max_tokens = global_config["
|
|
|
121 |
language = global_config["addon_params"].get(
|
122 |
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
123 |
)
|
124 |
|
125 |
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
126 |
-
if len(tokens) < summary_max_tokens: # No need for summary
|
127 |
-
return description
|
128 |
-
|
129 |
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
130 |
use_description = decode_tokens_by_tiktoken(
|
131 |
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
@@ -138,14 +136,6 @@ async def _handle_entity_relation_summary(
|
|
138 |
use_prompt = prompt_template.format(**context_base)
|
139 |
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
140 |
|
141 |
-
# Update pipeline status when LLM summary is needed
|
142 |
-
status_message = "Use LLM to re-summary description..."
|
143 |
-
logger.info(status_message)
|
144 |
-
if pipeline_status is not None and pipeline_status_lock is not None:
|
145 |
-
async with pipeline_status_lock:
|
146 |
-
pipeline_status["latest_message"] = status_message
|
147 |
-
pipeline_status["history_messages"].append(status_message)
|
148 |
-
|
149 |
# Use LLM function with cache
|
150 |
summary = await use_llm_func_with_cache(
|
151 |
use_prompt,
|
@@ -244,14 +234,6 @@ async def _merge_nodes_then_upsert(
|
|
244 |
|
245 |
already_node = await knowledge_graph_inst.get_node(entity_name)
|
246 |
if already_node is not None:
|
247 |
-
# Update pipeline status when a node that needs merging is found
|
248 |
-
status_message = f"Merging entity: {entity_name}"
|
249 |
-
logger.info(status_message)
|
250 |
-
if pipeline_status is not None and pipeline_status_lock is not None:
|
251 |
-
async with pipeline_status_lock:
|
252 |
-
pipeline_status["latest_message"] = status_message
|
253 |
-
pipeline_status["history_messages"].append(status_message)
|
254 |
-
|
255 |
already_entity_types.append(already_node["entity_type"])
|
256 |
already_source_ids.extend(
|
257 |
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
@@ -278,15 +260,35 @@ async def _merge_nodes_then_upsert(
|
|
278 |
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
|
279 |
)
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
node_data = dict(
|
291 |
entity_id=entity_name,
|
292 |
entity_type=entity_type,
|
@@ -319,14 +321,6 @@ async def _merge_edges_then_upsert(
|
|
319 |
already_file_paths = []
|
320 |
|
321 |
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
322 |
-
# Update pipeline status when an edge that needs merging is found
|
323 |
-
status_message = f"Merging edge::: {src_id} - {tgt_id}"
|
324 |
-
logger.info(status_message)
|
325 |
-
if pipeline_status is not None and pipeline_status_lock is not None:
|
326 |
-
async with pipeline_status_lock:
|
327 |
-
pipeline_status["latest_message"] = status_message
|
328 |
-
pipeline_status["history_messages"].append(status_message)
|
329 |
-
|
330 |
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
331 |
# Handle the case where get_edge returns None or missing fields
|
332 |
if already_edge:
|
@@ -404,14 +398,38 @@ async def _merge_edges_then_upsert(
|
|
404 |
"file_path": file_path,
|
405 |
},
|
406 |
)
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
await knowledge_graph_inst.upsert_edge(
|
416 |
src_id,
|
417 |
tgt_id,
|
@@ -550,8 +568,10 @@ async def extract_entities(
|
|
550 |
Args:
|
551 |
chunk_key_dp (tuple[str, TextChunkSchema]):
|
552 |
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
|
|
|
|
553 |
"""
|
554 |
-
nonlocal processed_chunks
|
555 |
chunk_key = chunk_key_dp[0]
|
556 |
chunk_dp = chunk_key_dp[1]
|
557 |
content = chunk_dp["content"]
|
@@ -623,75 +643,91 @@ async def extract_entities(
|
|
623 |
pipeline_status["latest_message"] = log_message
|
624 |
pipeline_status["history_messages"].append(log_message)
|
625 |
|
626 |
-
#
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
671 |
}
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
}
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
total_entities_count += len(chunk_entities_data)
|
690 |
-
total_relations_count += len(chunk_relationships_data)
|
691 |
|
692 |
-
#
|
693 |
-
|
694 |
-
|
695 |
|
696 |
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
|
697 |
logger.info(log_message)
|
|
|
117 |
use_llm_func: callable = global_config["llm_model_func"]
|
118 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
119 |
tiktoken_model_name = global_config["tiktoken_model_name"]
|
120 |
+
summary_max_tokens = global_config["summary_to_max_tokens"]
|
121 |
+
|
122 |
language = global_config["addon_params"].get(
|
123 |
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
124 |
)
|
125 |
|
126 |
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
|
|
|
|
|
|
127 |
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
128 |
use_description = decode_tokens_by_tiktoken(
|
129 |
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
|
|
136 |
use_prompt = prompt_template.format(**context_base)
|
137 |
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Use LLM function with cache
|
140 |
summary = await use_llm_func_with_cache(
|
141 |
use_prompt,
|
|
|
234 |
|
235 |
already_node = await knowledge_graph_inst.get_node(entity_name)
|
236 |
if already_node is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
already_entity_types.append(already_node["entity_type"])
|
238 |
already_source_ids.extend(
|
239 |
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
|
|
260 |
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
|
261 |
)
|
262 |
|
263 |
+
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
264 |
+
|
265 |
+
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
266 |
+
num_new_fragment = len(set([dp["description"] for dp in nodes_data]))
|
267 |
+
|
268 |
+
if num_fragment > 1:
|
269 |
+
if num_fragment >= force_llm_summary_on_merge:
|
270 |
+
status_message = f"LLM merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
271 |
+
logger.info(status_message)
|
272 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
273 |
+
async with pipeline_status_lock:
|
274 |
+
pipeline_status["latest_message"] = status_message
|
275 |
+
pipeline_status["history_messages"].append(status_message)
|
276 |
+
description = await _handle_entity_relation_summary(
|
277 |
+
entity_name,
|
278 |
+
description,
|
279 |
+
global_config,
|
280 |
+
pipeline_status,
|
281 |
+
pipeline_status_lock,
|
282 |
+
llm_response_cache,
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
status_message = f"Merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
286 |
+
logger.info(status_message)
|
287 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
288 |
+
async with pipeline_status_lock:
|
289 |
+
pipeline_status["latest_message"] = status_message
|
290 |
+
pipeline_status["history_messages"].append(status_message)
|
291 |
+
|
292 |
node_data = dict(
|
293 |
entity_id=entity_name,
|
294 |
entity_type=entity_type,
|
|
|
321 |
already_file_paths = []
|
322 |
|
323 |
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
325 |
# Handle the case where get_edge returns None or missing fields
|
326 |
if already_edge:
|
|
|
398 |
"file_path": file_path,
|
399 |
},
|
400 |
)
|
401 |
+
|
402 |
+
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
403 |
+
|
404 |
+
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
405 |
+
num_new_fragment = len(
|
406 |
+
set([dp["description"] for dp in edges_data if dp.get("description")])
|
407 |
+
)
|
408 |
+
|
409 |
+
if num_fragment > 1:
|
410 |
+
if num_fragment >= force_llm_summary_on_merge:
|
411 |
+
status_message = f"LLM merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
412 |
+
logger.info(status_message)
|
413 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
414 |
+
async with pipeline_status_lock:
|
415 |
+
pipeline_status["latest_message"] = status_message
|
416 |
+
pipeline_status["history_messages"].append(status_message)
|
417 |
+
description = await _handle_entity_relation_summary(
|
418 |
+
f"({src_id}, {tgt_id})",
|
419 |
+
description,
|
420 |
+
global_config,
|
421 |
+
pipeline_status,
|
422 |
+
pipeline_status_lock,
|
423 |
+
llm_response_cache,
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
status_message = f"Merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
427 |
+
logger.info(status_message)
|
428 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
429 |
+
async with pipeline_status_lock:
|
430 |
+
pipeline_status["latest_message"] = status_message
|
431 |
+
pipeline_status["history_messages"].append(status_message)
|
432 |
+
|
433 |
await knowledge_graph_inst.upsert_edge(
|
434 |
src_id,
|
435 |
tgt_id,
|
|
|
568 |
Args:
|
569 |
chunk_key_dp (tuple[str, TextChunkSchema]):
|
570 |
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
571 |
+
Returns:
|
572 |
+
tuple: (maybe_nodes, maybe_edges) containing extracted entities and relationships
|
573 |
"""
|
574 |
+
nonlocal processed_chunks
|
575 |
chunk_key = chunk_key_dp[0]
|
576 |
chunk_dp = chunk_key_dp[1]
|
577 |
content = chunk_dp["content"]
|
|
|
643 |
pipeline_status["latest_message"] = log_message
|
644 |
pipeline_status["history_messages"].append(log_message)
|
645 |
|
646 |
+
# Return the extracted nodes and edges for centralized processing
|
647 |
+
return maybe_nodes, maybe_edges
|
648 |
+
|
649 |
+
# Handle all chunks in parallel and collect results
|
650 |
+
tasks = [_process_single_content(c) for c in ordered_chunks]
|
651 |
+
chunk_results = await asyncio.gather(*tasks)
|
652 |
+
|
653 |
+
# Collect all nodes and edges from all chunks
|
654 |
+
all_nodes = defaultdict(list)
|
655 |
+
all_edges = defaultdict(list)
|
656 |
+
|
657 |
+
for maybe_nodes, maybe_edges in chunk_results:
|
658 |
+
# Collect nodes
|
659 |
+
for entity_name, entities in maybe_nodes.items():
|
660 |
+
all_nodes[entity_name].extend(entities)
|
661 |
+
|
662 |
+
# Collect edges with sorted keys for undirected graph
|
663 |
+
for edge_key, edges in maybe_edges.items():
|
664 |
+
sorted_edge_key = tuple(sorted(edge_key))
|
665 |
+
all_edges[sorted_edge_key].extend(edges)
|
666 |
+
|
667 |
+
# Centralized processing of all nodes and edges
|
668 |
+
entities_data = []
|
669 |
+
relationships_data = []
|
670 |
+
|
671 |
+
# Use graph database lock to ensure atomic merges and updates
|
672 |
+
async with graph_db_lock:
|
673 |
+
# Process and update all entities at once
|
674 |
+
for entity_name, entities in all_nodes.items():
|
675 |
+
entity_data = await _merge_nodes_then_upsert(
|
676 |
+
entity_name,
|
677 |
+
entities,
|
678 |
+
knowledge_graph_inst,
|
679 |
+
global_config,
|
680 |
+
pipeline_status,
|
681 |
+
pipeline_status_lock,
|
682 |
+
llm_response_cache,
|
683 |
+
)
|
684 |
+
entities_data.append(entity_data)
|
685 |
+
|
686 |
+
# Process and update all relationships at once
|
687 |
+
for edge_key, edges in all_edges.items():
|
688 |
+
edge_data = await _merge_edges_then_upsert(
|
689 |
+
edge_key[0],
|
690 |
+
edge_key[1],
|
691 |
+
edges,
|
692 |
+
knowledge_graph_inst,
|
693 |
+
global_config,
|
694 |
+
pipeline_status,
|
695 |
+
pipeline_status_lock,
|
696 |
+
llm_response_cache,
|
697 |
+
)
|
698 |
+
relationships_data.append(edge_data)
|
699 |
+
|
700 |
+
# Update vector databases with all collected data
|
701 |
+
if entity_vdb is not None and entities_data:
|
702 |
+
data_for_vdb = {
|
703 |
+
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
704 |
+
"entity_name": dp["entity_name"],
|
705 |
+
"entity_type": dp["entity_type"],
|
706 |
+
"content": f"{dp['entity_name']}\n{dp['description']}",
|
707 |
+
"source_id": dp["source_id"],
|
708 |
+
"file_path": dp.get("file_path", "unknown_source"),
|
709 |
}
|
710 |
+
for dp in entities_data
|
711 |
+
}
|
712 |
+
await entity_vdb.upsert(data_for_vdb)
|
713 |
+
|
714 |
+
if relationships_vdb is not None and relationships_data:
|
715 |
+
data_for_vdb = {
|
716 |
+
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
717 |
+
"src_id": dp["src_id"],
|
718 |
+
"tgt_id": dp["tgt_id"],
|
719 |
+
"keywords": dp["keywords"],
|
720 |
+
"content": f"{dp['src_id']}\t{dp['tgt_id']}\n{dp['keywords']}\n{dp['description']}",
|
721 |
+
"source_id": dp["source_id"],
|
722 |
+
"file_path": dp.get("file_path", "unknown_source"),
|
723 |
}
|
724 |
+
for dp in relationships_data
|
725 |
+
}
|
726 |
+
await relationships_vdb.upsert(data_for_vdb)
|
|
|
|
|
727 |
|
728 |
+
# Update total counts
|
729 |
+
total_entities_count = len(entities_data)
|
730 |
+
total_relations_count = len(relationships_data)
|
731 |
|
732 |
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
|
733 |
logger.info(log_message)
|
lightrag/utils.py
CHANGED
@@ -967,7 +967,7 @@ async def use_llm_func_with_cache(
|
|
967 |
res: str = await use_llm_func(input_text, **kwargs)
|
968 |
|
969 |
# Save to cache
|
970 |
-
logger.info(f"
|
971 |
await save_to_cache(
|
972 |
llm_response_cache,
|
973 |
CacheData(
|
|
|
967 |
res: str = await use_llm_func(input_text, **kwargs)
|
968 |
|
969 |
# Save to cache
|
970 |
+
logger.info(f" == LLM cache == saving {arg_hash}")
|
971 |
await save_to_cache(
|
972 |
llm_response_cache,
|
973 |
CacheData(
|
lightrag_webui/src/components/documents/PipelineStatusDialog.tsx
CHANGED
@@ -166,7 +166,7 @@ export default function PipelineStatusDialog({
|
|
166 |
{/* Latest Message */}
|
167 |
<div className="space-y-2">
|
168 |
<div className="text-sm font-medium">{t('documentPanel.pipelineStatus.latestMessage')}:</div>
|
169 |
-
<div className="font-mono text-
|
170 |
{status?.latest_message || '-'}
|
171 |
</div>
|
172 |
</div>
|
@@ -177,7 +177,7 @@ export default function PipelineStatusDialog({
|
|
177 |
<div
|
178 |
ref={historyRef}
|
179 |
onScroll={handleScroll}
|
180 |
-
className="font-mono text-
|
181 |
>
|
182 |
{status?.history_messages?.length ? (
|
183 |
status.history_messages.map((msg, idx) => (
|
|
|
166 |
{/* Latest Message */}
|
167 |
<div className="space-y-2">
|
168 |
<div className="text-sm font-medium">{t('documentPanel.pipelineStatus.latestMessage')}:</div>
|
169 |
+
<div className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3">
|
170 |
{status?.latest_message || '-'}
|
171 |
</div>
|
172 |
</div>
|
|
|
177 |
<div
|
178 |
ref={historyRef}
|
179 |
onScroll={handleScroll}
|
180 |
+
className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3 overflow-y-auto min-h-[7.5em] max-h-[40vh]"
|
181 |
>
|
182 |
{status?.history_messages?.length ? (
|
183 |
status.history_messages.map((msg, idx) => (
|