updated the pipe
Browse files- lightrag/lightrag.py +74 -50
lightrag/lightrag.py
CHANGED
@@ -4,7 +4,7 @@ from tqdm.asyncio import tqdm as tqdm_async
|
|
4 |
from dataclasses import asdict, dataclass, field
|
5 |
from datetime import datetime
|
6 |
from functools import partial
|
7 |
-
from typing import Any, Callable, Optional, Type, Union, cast
|
8 |
import traceback
|
9 |
from .operate import (
|
10 |
chunking_by_token_size,
|
@@ -561,72 +561,96 @@ class LightRAG:
|
|
561 |
]
|
562 |
for i, el in enumerate(batch_docs_list):
|
563 |
items = ((k, v) for d in el for k, v in d.items())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
for doc_id, doc in tqdm_async(
|
565 |
items,
|
566 |
desc=f"Level 1 - Spliting doc in batch {i // len(batch_docs_list) + 1}",
|
567 |
):
|
568 |
-
doc_status
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
"updated_at": datetime.now().isoformat(),
|
574 |
-
}
|
575 |
-
try:
|
576 |
-
await self.doc_status.upsert({doc_id: doc_status})
|
577 |
-
|
578 |
-
# Generate chunks from document
|
579 |
-
chunks: dict[str, Any] = {
|
580 |
-
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
581 |
-
**dp,
|
582 |
-
"full_doc_id": doc_id,
|
583 |
-
}
|
584 |
-
for dp in self.chunking_func(
|
585 |
-
doc["content"],
|
586 |
-
split_by_character,
|
587 |
-
split_by_character_only,
|
588 |
-
self.chunk_overlap_token_size,
|
589 |
-
self.chunk_token_size,
|
590 |
-
self.tiktoken_model_name,
|
591 |
-
)
|
592 |
}
|
593 |
-
|
594 |
-
|
595 |
-
# Update status with chunks information
|
596 |
-
await self._process_entity_relation_graph(chunks)
|
597 |
-
|
598 |
-
if doc_id not in full_docs_new_docs_ids:
|
599 |
-
await self.full_docs.upsert(
|
600 |
-
{doc_id: {"content": doc["content"]}}
|
601 |
-
)
|
602 |
|
603 |
-
|
604 |
-
await self.text_chunks.upsert(chunks)
|
605 |
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
)
|
613 |
-
|
614 |
-
|
615 |
-
|
|
|
|
|
|
|
|
|
616 |
except Exception as e:
|
617 |
-
# Update status with failed information
|
618 |
doc_status.update(
|
619 |
{
|
620 |
-
"status": DocStatus.
|
621 |
"error": str(e),
|
622 |
"updated_at": datetime.now().isoformat(),
|
623 |
}
|
624 |
)
|
625 |
await self.doc_status.upsert({doc_id: doc_status})
|
626 |
-
|
627 |
-
|
|
|
|
|
628 |
)
|
629 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
|
631 |
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
|
632 |
try:
|
|
|
4 |
from dataclasses import asdict, dataclass, field
|
5 |
from datetime import datetime
|
6 |
from functools import partial
|
7 |
+
from typing import Any, Callable, Coroutine, Optional, Type, Union, cast
|
8 |
import traceback
|
9 |
from .operate import (
|
10 |
chunking_by_token_size,
|
|
|
561 |
]
|
562 |
for i, el in enumerate(batch_docs_list):
|
563 |
items = ((k, v) for d in el for k, v in d.items())
|
564 |
+
|
565 |
+
tasks: dict[str, list[Coroutine[Any, Any, None]]] = {}
|
566 |
+
|
567 |
+
doc_status: dict[str, Any] = {
|
568 |
+
"status": DocStatus.PROCESSING,
|
569 |
+
"updated_at": datetime.now().isoformat(),
|
570 |
+
}
|
571 |
+
|
572 |
for doc_id, doc in tqdm_async(
|
573 |
items,
|
574 |
desc=f"Level 1 - Spliting doc in batch {i // len(batch_docs_list) + 1}",
|
575 |
):
|
576 |
+
doc_status.update(
|
577 |
+
{
|
578 |
+
"content_summary": doc["content_summary"],
|
579 |
+
"content_length": doc["content_length"],
|
580 |
+
"created_at": doc["created_at"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
}
|
582 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
|
584 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
|
|
585 |
|
586 |
+
# Generate chunks from document
|
587 |
+
chunks: dict[str, Any] = {
|
588 |
+
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
589 |
+
**dp,
|
590 |
+
"full_doc_id": doc_id,
|
591 |
+
}
|
592 |
+
for dp in self.chunking_func(
|
593 |
+
doc["content"],
|
594 |
+
split_by_character,
|
595 |
+
split_by_character_only,
|
596 |
+
self.chunk_overlap_token_size,
|
597 |
+
self.chunk_token_size,
|
598 |
+
self.tiktoken_model_name,
|
599 |
)
|
600 |
+
}
|
601 |
+
try:
|
602 |
+
# If fails it's failed on full doc and text chunks upset
|
603 |
+
if doc["status"] != DocStatus.FAILED:
|
604 |
+
# Ensure chunk insertion and graph processing happen sequentially
|
605 |
+
await self._process_entity_relation_graph(chunks)
|
606 |
+
await self.chunks_vdb.upsert(chunks)
|
607 |
except Exception as e:
|
|
|
608 |
doc_status.update(
|
609 |
{
|
610 |
+
"status": DocStatus.PENDING,
|
611 |
"error": str(e),
|
612 |
"updated_at": datetime.now().isoformat(),
|
613 |
}
|
614 |
)
|
615 |
await self.doc_status.upsert({doc_id: doc_status})
|
616 |
+
|
617 |
+
if doc_id not in full_docs_new_docs_ids:
|
618 |
+
tasks[doc_id].append(
|
619 |
+
self.full_docs.upsert({doc_id: {"content": doc["content"]}})
|
620 |
)
|
621 |
+
|
622 |
+
if doc_id not in text_chunks_new_docs_ids:
|
623 |
+
tasks[doc_id].append(self.text_chunks.upsert(chunks))
|
624 |
+
|
625 |
+
for doc_id, task in tasks.items():
|
626 |
+
try:
|
627 |
+
await asyncio.gather(*task)
|
628 |
+
|
629 |
+
# Update document status
|
630 |
+
doc_status.update(
|
631 |
+
{
|
632 |
+
"status": DocStatus.PROCESSED,
|
633 |
+
"chunks_count": len(chunks),
|
634 |
+
"updated_at": datetime.now().isoformat(),
|
635 |
+
}
|
636 |
+
)
|
637 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
638 |
+
await self._insert_done()
|
639 |
+
|
640 |
+
except Exception as e:
|
641 |
+
# Update status with failed information
|
642 |
+
doc_status.update(
|
643 |
+
{
|
644 |
+
"status": DocStatus.FAILED,
|
645 |
+
"error": str(e),
|
646 |
+
"updated_at": datetime.now().isoformat(),
|
647 |
+
}
|
648 |
+
)
|
649 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
650 |
+
logger.error(
|
651 |
+
f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
652 |
+
)
|
653 |
+
continue
|
654 |
|
655 |
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
|
656 |
try:
|