João Galego
commited on
Commit
·
51d8af2
1
Parent(s):
ee795f8
Fixed retry strategy, message history and inference params; Cleaned up Bedrock example
Browse files- examples/lightrag_bedrock_demo.py +16 -23
- lightrag/llm.py +39 -9
examples/lightrag_bedrock_demo.py
CHANGED
|
@@ -3,46 +3,39 @@ LightRAG meets Amazon Bedrock ⛰️
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
|
|
|
| 6 |
|
| 7 |
from lightrag import LightRAG, QueryParam
|
| 8 |
from lightrag.llm import bedrock_complete, bedrock_embedding
|
| 9 |
from lightrag.utils import EmbeddingFunc
|
| 10 |
|
| 11 |
-
|
| 12 |
|
|
|
|
| 13 |
if not os.path.exists(WORKING_DIR):
|
| 14 |
os.mkdir(WORKING_DIR)
|
| 15 |
|
| 16 |
rag = LightRAG(
|
| 17 |
working_dir=WORKING_DIR,
|
| 18 |
llm_model_func=bedrock_complete,
|
| 19 |
-
llm_model_name="
|
| 20 |
-
node2vec_params = {
|
| 21 |
-
'dimensions': 1024,
|
| 22 |
-
'num_walks': 10,
|
| 23 |
-
'walk_length': 40,
|
| 24 |
-
'window_size': 2,
|
| 25 |
-
'iterations': 3,
|
| 26 |
-
'random_seed': 3
|
| 27 |
-
},
|
| 28 |
embedding_func=EmbeddingFunc(
|
| 29 |
embedding_dim=1024,
|
| 30 |
max_token_size=8192,
|
| 31 |
-
func=
|
| 32 |
)
|
| 33 |
)
|
| 34 |
|
| 35 |
-
with open("./book.txt") as f:
|
| 36 |
rag.insert(f.read())
|
| 37 |
|
| 38 |
-
|
| 39 |
-
print(
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
print(
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
| 6 |
+
import logging
|
| 7 |
|
| 8 |
from lightrag import LightRAG, QueryParam
|
| 9 |
from lightrag.llm import bedrock_complete, bedrock_embedding
|
| 10 |
from lightrag.utils import EmbeddingFunc
|
| 11 |
|
| 12 |
+
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
| 13 |
|
| 14 |
+
WORKING_DIR = "./dickens"
|
| 15 |
if not os.path.exists(WORKING_DIR):
|
| 16 |
os.mkdir(WORKING_DIR)
|
| 17 |
|
| 18 |
rag = LightRAG(
|
| 19 |
working_dir=WORKING_DIR,
|
| 20 |
llm_model_func=bedrock_complete,
|
| 21 |
+
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
embedding_func=EmbeddingFunc(
|
| 23 |
embedding_dim=1024,
|
| 24 |
max_token_size=8192,
|
| 25 |
+
func=bedrock_embedding
|
| 26 |
)
|
| 27 |
)
|
| 28 |
|
| 29 |
+
with open("./book.txt", 'r', encoding='utf-8') as f:
|
| 30 |
rag.insert(f.read())
|
| 31 |
|
| 32 |
+
for mode in ["naive", "local", "global", "hybrid"]:
|
| 33 |
+
print("\n+-" + "-" * len(mode) + "-+")
|
| 34 |
+
print(f"| {mode.capitalize()} |")
|
| 35 |
+
print("+-" + "-" * len(mode) + "-+\n")
|
| 36 |
+
print(
|
| 37 |
+
rag.query(
|
| 38 |
+
"What are the top themes in this story?",
|
| 39 |
+
param=QueryParam(mode=mode)
|
| 40 |
+
)
|
| 41 |
+
)
|
|
|
lightrag/llm.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import json
|
|
|
|
| 3 |
import aioboto3
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import ollama
|
| 6 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
@@ -50,43 +53,70 @@ async def openai_complete_if_cache(
|
|
| 50 |
)
|
| 51 |
return response.choices[0].message.content
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
@retry(
|
| 54 |
-
stop=stop_after_attempt(
|
| 55 |
-
wait=wait_exponential(multiplier=1,
|
| 56 |
-
retry=retry_if_exception_type((
|
| 57 |
)
|
| 58 |
async def bedrock_complete_if_cache(
|
| 59 |
-
model, prompt, system_prompt=None, history_messages=[],
|
| 60 |
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
| 61 |
) -> str:
|
| 62 |
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 63 |
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 64 |
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
messages = []
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
| 71 |
|
|
|
|
| 72 |
args = {
|
| 73 |
'modelId': model,
|
| 74 |
'messages': messages
|
| 75 |
}
|
| 76 |
|
|
|
|
| 77 |
if system_prompt:
|
| 78 |
args['system'] = [{'text': system_prompt}]
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if hashing_kv is not None:
|
| 81 |
args_hash = compute_args_hash(model, messages)
|
| 82 |
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
| 83 |
if if_cache_return is not None:
|
| 84 |
return if_cache_return["return"]
|
| 85 |
|
|
|
|
| 86 |
session = aioboto3.Session()
|
| 87 |
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
if hashing_kv is not None:
|
| 92 |
await hashing_kv.upsert({
|
|
@@ -200,7 +230,7 @@ async def bedrock_complete(
|
|
| 200 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 201 |
) -> str:
|
| 202 |
return await bedrock_complete_if_cache(
|
| 203 |
-
"anthropic.claude-3-
|
| 204 |
prompt,
|
| 205 |
system_prompt=system_prompt,
|
| 206 |
history_messages=history_messages,
|
|
|
|
| 1 |
import os
|
| 2 |
+
import copy
|
| 3 |
import json
|
| 4 |
+
import botocore
|
| 5 |
import aioboto3
|
| 6 |
+
import botocore.errorfactory
|
| 7 |
import numpy as np
|
| 8 |
import ollama
|
| 9 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
|
|
| 53 |
)
|
| 54 |
return response.choices[0].message.content
|
| 55 |
|
| 56 |
+
|
| 57 |
+
class BedrockError(Exception):
|
| 58 |
+
"""Generic error for issues related to Amazon Bedrock"""
|
| 59 |
+
|
| 60 |
+
|
| 61 |
@retry(
|
| 62 |
+
stop=stop_after_attempt(5),
|
| 63 |
+
wait=wait_exponential(multiplier=1, max=60),
|
| 64 |
+
retry=retry_if_exception_type((BedrockError)),
|
| 65 |
)
|
| 66 |
async def bedrock_complete_if_cache(
|
| 67 |
+
model, prompt, system_prompt=None, history_messages=[],
|
| 68 |
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
| 69 |
) -> str:
|
| 70 |
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 71 |
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 72 |
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 73 |
|
| 74 |
+
# Fix message history format
|
|
|
|
| 75 |
messages = []
|
| 76 |
+
for history_message in history_messages:
|
| 77 |
+
message = copy.copy(history_message)
|
| 78 |
+
message['content'] = [{'text': message['content']}]
|
| 79 |
+
messages.append(message)
|
| 80 |
+
|
| 81 |
+
# Add user prompt
|
| 82 |
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
| 83 |
|
| 84 |
+
# Initialize Converse API arguments
|
| 85 |
args = {
|
| 86 |
'modelId': model,
|
| 87 |
'messages': messages
|
| 88 |
}
|
| 89 |
|
| 90 |
+
# Define system prompt
|
| 91 |
if system_prompt:
|
| 92 |
args['system'] = [{'text': system_prompt}]
|
| 93 |
|
| 94 |
+
# Map and set up inference parameters
|
| 95 |
+
inference_params_map = {
|
| 96 |
+
'max_tokens': "maxTokens",
|
| 97 |
+
'top_p': "topP",
|
| 98 |
+
'stop_sequences': "stopSequences"
|
| 99 |
+
}
|
| 100 |
+
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
| 101 |
+
args['inferenceConfig'] = {}
|
| 102 |
+
for param in inference_params:
|
| 103 |
+
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
| 104 |
+
|
| 105 |
+
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 106 |
if hashing_kv is not None:
|
| 107 |
args_hash = compute_args_hash(model, messages)
|
| 108 |
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
| 109 |
if if_cache_return is not None:
|
| 110 |
return if_cache_return["return"]
|
| 111 |
|
| 112 |
+
# Call model via Converse API
|
| 113 |
session = aioboto3.Session()
|
| 114 |
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 115 |
|
| 116 |
+
try:
|
| 117 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
| 118 |
+
except Exception as e:
|
| 119 |
+
raise BedrockError(e)
|
| 120 |
|
| 121 |
if hashing_kv is not None:
|
| 122 |
await hashing_kv.upsert({
|
|
|
|
| 230 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 231 |
) -> str:
|
| 232 |
return await bedrock_complete_if_cache(
|
| 233 |
+
"anthropic.claude-3-haiku-20240307-v1:0",
|
| 234 |
prompt,
|
| 235 |
system_prompt=system_prompt,
|
| 236 |
history_messages=history_messages,
|