Pankaj Kaushal commited on
Commit
531302d
Β·
1 Parent(s): f1449cf

Moved back to llm dir as per

Browse files

https://github.com/HKUDS/LightRAG/pull/864#issuecomment-2669705946

- Created two new example scripts demonstrating LightRAG integration with LlamaIndex:
- `lightrag_llamaindex_direct_demo.py`: Direct OpenAI integration
- `lightrag_llamaindex_litellm_demo.py`: LiteLLM proxy integration
- Both examples showcase different search modes (naive, local, global, hybrid)
- Includes configuration for working directory, models, and API settings
- Demonstrates text insertion and querying using LightRAG with LlamaIndex
- removed wrapper directory and references to it

examples/{lightrag_api_llamaindex_direct_demo_simplified.py β†’ lightrag_llamaindex_direct_demo.py} RENAMED
@@ -1,6 +1,6 @@
1
  import os
2
  from lightrag import LightRAG, QueryParam
3
- from lightrag.wrapper.llama_index_impl import (
4
  llama_index_complete_if_cache,
5
  llama_index_embed,
6
  )
@@ -10,14 +10,13 @@ from llama_index.embeddings.openai import OpenAIEmbedding
10
  import asyncio
11
 
12
  # Configure working directory
13
- DEFAULT_RAG_DIR = "index_default"
14
- WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
15
  print(f"WORKING_DIR: {WORKING_DIR}")
16
 
17
  # Model configuration
18
  LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
19
  print(f"LLM_MODEL: {LLM_MODEL}")
20
- EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
21
  print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
22
  EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
23
  print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
@@ -26,6 +25,7 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
26
  OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "your-api-key-here")
27
 
28
  if not os.path.exists(WORKING_DIR):
 
29
  os.mkdir(WORKING_DIR)
30
 
31
 
 
1
  import os
2
  from lightrag import LightRAG, QueryParam
3
+ from lightrag.llm.llama_index_impl import (
4
  llama_index_complete_if_cache,
5
  llama_index_embed,
6
  )
 
10
  import asyncio
11
 
12
  # Configure working directory
13
+ WORKING_DIR = "./index_default"
 
14
  print(f"WORKING_DIR: {WORKING_DIR}")
15
 
16
  # Model configuration
17
  LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
18
  print(f"LLM_MODEL: {LLM_MODEL}")
19
+ EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
20
  print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
21
  EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
22
  print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
 
25
  OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "your-api-key-here")
26
 
27
  if not os.path.exists(WORKING_DIR):
28
+ print(f"Creating working directory: {WORKING_DIR}")
29
  os.mkdir(WORKING_DIR)
30
 
31
 
examples/{lightrag_api_llamaindex_litellm_demo_simplified.py β†’ lightrag_llamaindex_litellm_demo.py} RENAMED
@@ -1,6 +1,6 @@
1
  import os
2
  from lightrag import LightRAG, QueryParam
3
- from lightrag.wrapper.llama_index_impl import (
4
  llama_index_complete_if_cache,
5
  llama_index_embed,
6
  )
@@ -10,14 +10,13 @@ from llama_index.embeddings.litellm import LiteLLMEmbedding
10
  import asyncio
11
 
12
  # Configure working directory
13
- DEFAULT_RAG_DIR = "index_default"
14
- WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
15
  print(f"WORKING_DIR: {WORKING_DIR}")
16
 
17
  # Model configuration
18
- LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o")
19
  print(f"LLM_MODEL: {LLM_MODEL}")
20
- EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "embedding-model")
21
  print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
22
  EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
23
  print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
 
1
  import os
2
  from lightrag import LightRAG, QueryParam
3
+ from lightrag.llm.llama_index_impl import (
4
  llama_index_complete_if_cache,
5
  llama_index_embed,
6
  )
 
10
  import asyncio
11
 
12
  # Configure working directory
13
+ WORKING_DIR = "./index_default"
 
14
  print(f"WORKING_DIR: {WORKING_DIR}")
15
 
16
  # Model configuration
17
+ LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
18
  print(f"LLM_MODEL: {LLM_MODEL}")
19
+ EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
20
  print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
21
  EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
22
  print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
lightrag/{wrapper β†’ llm}/Readme.md RENAMED
File without changes
lightrag/{wrapper β†’ llm}/llama_index_impl.py RENAMED
File without changes
lightrag/wrapper/__init__.py DELETED
File without changes