Magic_yuan commited on
Commit
58c112a
·
1 Parent(s): 5570390

Update lightrag_azure_openai_demo.py

Browse files
examples/lightrag_azure_openai_demo.py CHANGED
@@ -31,13 +31,12 @@ os.mkdir(WORKING_DIR)
31
 
32
 
33
  async def llm_model_func(
34
- prompt, system_prompt=None, history_messages=[], **kwargs
35
  ) -> str:
36
-
37
  client = AzureOpenAI(
38
- api_key=AZURE_OPENAI_API_KEY,
39
- api_version=AZURE_OPENAI_API_VERSION,
40
- azure_endpoint=AZURE_OPENAI_ENDPOINT
41
  )
42
 
43
  messages = []
@@ -48,7 +47,7 @@ async def llm_model_func(
48
  messages.append({"role": "user", "content": prompt})
49
 
50
  chat_completion = client.chat.completions.create(
51
- model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
52
  messages=messages,
53
  temperature=kwargs.get("temperature", 0),
54
  top_p=kwargs.get("top_p", 1),
@@ -58,7 +57,6 @@ async def llm_model_func(
58
 
59
 
60
  async def embedding_func(texts: list[str]) -> np.ndarray:
61
-
62
  client = AzureOpenAI(
63
  api_key=AZURE_OPENAI_API_KEY,
64
  api_version=AZURE_EMBEDDING_API_VERSION,
@@ -68,7 +66,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
68
  model=AZURE_EMBEDDING_DEPLOYMENT,
69
  input=texts
70
  )
71
-
72
  embeddings = [item.embedding for item in embedding.data]
73
  return np.array(embeddings)
74
 
 
31
 
32
 
33
  async def llm_model_func(
34
+ prompt, system_prompt=None, history_messages=[], **kwargs
35
  ) -> str:
 
36
  client = AzureOpenAI(
37
+ api_key=LLM_AZURE_OPENAI_KEY,
38
+ api_version=LLM_AZURE_OPENAI_VERSION,
39
+ azure_endpoint=LLM_AZURE_OPENAI_API
40
  )
41
 
42
  messages = []
 
47
  messages.append({"role": "user", "content": prompt})
48
 
49
  chat_completion = client.chat.completions.create(
50
+ model=LLM_AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
51
  messages=messages,
52
  temperature=kwargs.get("temperature", 0),
53
  top_p=kwargs.get("top_p", 1),
 
57
 
58
 
59
  async def embedding_func(texts: list[str]) -> np.ndarray:
 
60
  client = AzureOpenAI(
61
  api_key=AZURE_OPENAI_API_KEY,
62
  api_version=AZURE_EMBEDDING_API_VERSION,
 
66
  model=AZURE_EMBEDDING_DEPLOYMENT,
67
  input=texts
68
  )
69
+
70
  embeddings = [item.embedding for item in embedding.data]
71
  return np.array(embeddings)
72