童石渊
commited on
Commit
·
6ef0fd5
1
Parent(s):
85f512e
chunk split retry
Browse files- lightrag/lightrag.py +18 -16
- lightrag/operate.py +128 -119
- test.ipynb +740 -0
lightrag/lightrag.py
CHANGED
@@ -268,7 +268,7 @@ class LightRAG:
|
|
268 |
self.llm_model_func,
|
269 |
hashing_kv=self.llm_response_cache
|
270 |
if self.llm_response_cache
|
271 |
-
|
272 |
else self.key_string_value_json_storage_cls(
|
273 |
namespace="llm_response_cache",
|
274 |
global_config=asdict(self),
|
@@ -316,7 +316,9 @@ class LightRAG:
|
|
316 |
|
317 |
def insert(self, string_or_strings, split_by_character=None):
|
318 |
loop = always_get_an_event_loop()
|
319 |
-
return loop.run_until_complete(
|
|
|
|
|
320 |
|
321 |
async def ainsert(self, string_or_strings, split_by_character):
|
322 |
"""Insert documents with checkpoint support
|
@@ -357,10 +359,10 @@ class LightRAG:
|
|
357 |
# Process documents in batches
|
358 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
359 |
for i in range(0, len(new_docs), batch_size):
|
360 |
-
batch_docs = dict(list(new_docs.items())[i: i + batch_size])
|
361 |
|
362 |
for doc_id, doc in tqdm_async(
|
363 |
-
|
364 |
):
|
365 |
try:
|
366 |
# Update status to processing
|
@@ -548,7 +550,7 @@ class LightRAG:
|
|
548 |
# Check if nodes exist in the knowledge graph
|
549 |
for need_insert_id in [src_id, tgt_id]:
|
550 |
if not (
|
551 |
-
|
552 |
):
|
553 |
await self.chunk_entity_relation_graph.upsert_node(
|
554 |
need_insert_id,
|
@@ -597,9 +599,9 @@ class LightRAG:
|
|
597 |
"src_id": dp["src_id"],
|
598 |
"tgt_id": dp["tgt_id"],
|
599 |
"content": dp["keywords"]
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
}
|
604 |
for dp in all_relationships_data
|
605 |
}
|
@@ -624,7 +626,7 @@ class LightRAG:
|
|
624 |
asdict(self),
|
625 |
hashing_kv=self.llm_response_cache
|
626 |
if self.llm_response_cache
|
627 |
-
|
628 |
else self.key_string_value_json_storage_cls(
|
629 |
namespace="llm_response_cache",
|
630 |
global_config=asdict(self),
|
@@ -640,7 +642,7 @@ class LightRAG:
|
|
640 |
asdict(self),
|
641 |
hashing_kv=self.llm_response_cache
|
642 |
if self.llm_response_cache
|
643 |
-
|
644 |
else self.key_string_value_json_storage_cls(
|
645 |
namespace="llm_response_cache",
|
646 |
global_config=asdict(self),
|
@@ -659,7 +661,7 @@ class LightRAG:
|
|
659 |
asdict(self),
|
660 |
hashing_kv=self.llm_response_cache
|
661 |
if self.llm_response_cache
|
662 |
-
|
663 |
else self.key_string_value_json_storage_cls(
|
664 |
namespace="llm_response_cache",
|
665 |
global_config=asdict(self),
|
@@ -900,7 +902,7 @@ class LightRAG:
|
|
900 |
dp
|
901 |
for dp in self.entities_vdb.client_storage["data"]
|
902 |
if chunk_id
|
903 |
-
|
904 |
]
|
905 |
if entities_with_chunk:
|
906 |
logger.error(
|
@@ -912,7 +914,7 @@ class LightRAG:
|
|
912 |
dp
|
913 |
for dp in self.relationships_vdb.client_storage["data"]
|
914 |
if chunk_id
|
915 |
-
|
916 |
]
|
917 |
if relations_with_chunk:
|
918 |
logger.error(
|
@@ -929,7 +931,7 @@ class LightRAG:
|
|
929 |
return asyncio.run(self.adelete_by_doc_id(doc_id))
|
930 |
|
931 |
async def get_entity_info(
|
932 |
-
|
933 |
):
|
934 |
"""Get detailed information of an entity
|
935 |
|
@@ -980,7 +982,7 @@ class LightRAG:
|
|
980 |
tracemalloc.stop()
|
981 |
|
982 |
async def get_relation_info(
|
983 |
-
|
984 |
):
|
985 |
"""Get detailed information of a relationship
|
986 |
|
@@ -1022,7 +1024,7 @@ class LightRAG:
|
|
1022 |
return result
|
1023 |
|
1024 |
def get_relation_info_sync(
|
1025 |
-
|
1026 |
):
|
1027 |
"""Synchronous version of getting relationship information
|
1028 |
|
|
|
268 |
self.llm_model_func,
|
269 |
hashing_kv=self.llm_response_cache
|
270 |
if self.llm_response_cache
|
271 |
+
and hasattr(self.llm_response_cache, "global_config")
|
272 |
else self.key_string_value_json_storage_cls(
|
273 |
namespace="llm_response_cache",
|
274 |
global_config=asdict(self),
|
|
|
316 |
|
317 |
def insert(self, string_or_strings, split_by_character=None):
|
318 |
loop = always_get_an_event_loop()
|
319 |
+
return loop.run_until_complete(
|
320 |
+
self.ainsert(string_or_strings, split_by_character)
|
321 |
+
)
|
322 |
|
323 |
async def ainsert(self, string_or_strings, split_by_character):
|
324 |
"""Insert documents with checkpoint support
|
|
|
359 |
# Process documents in batches
|
360 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
361 |
for i in range(0, len(new_docs), batch_size):
|
362 |
+
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
363 |
|
364 |
for doc_id, doc in tqdm_async(
|
365 |
+
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
366 |
):
|
367 |
try:
|
368 |
# Update status to processing
|
|
|
550 |
# Check if nodes exist in the knowledge graph
|
551 |
for need_insert_id in [src_id, tgt_id]:
|
552 |
if not (
|
553 |
+
await self.chunk_entity_relation_graph.has_node(need_insert_id)
|
554 |
):
|
555 |
await self.chunk_entity_relation_graph.upsert_node(
|
556 |
need_insert_id,
|
|
|
599 |
"src_id": dp["src_id"],
|
600 |
"tgt_id": dp["tgt_id"],
|
601 |
"content": dp["keywords"]
|
602 |
+
+ dp["src_id"]
|
603 |
+
+ dp["tgt_id"]
|
604 |
+
+ dp["description"],
|
605 |
}
|
606 |
for dp in all_relationships_data
|
607 |
}
|
|
|
626 |
asdict(self),
|
627 |
hashing_kv=self.llm_response_cache
|
628 |
if self.llm_response_cache
|
629 |
+
and hasattr(self.llm_response_cache, "global_config")
|
630 |
else self.key_string_value_json_storage_cls(
|
631 |
namespace="llm_response_cache",
|
632 |
global_config=asdict(self),
|
|
|
642 |
asdict(self),
|
643 |
hashing_kv=self.llm_response_cache
|
644 |
if self.llm_response_cache
|
645 |
+
and hasattr(self.llm_response_cache, "global_config")
|
646 |
else self.key_string_value_json_storage_cls(
|
647 |
namespace="llm_response_cache",
|
648 |
global_config=asdict(self),
|
|
|
661 |
asdict(self),
|
662 |
hashing_kv=self.llm_response_cache
|
663 |
if self.llm_response_cache
|
664 |
+
and hasattr(self.llm_response_cache, "global_config")
|
665 |
else self.key_string_value_json_storage_cls(
|
666 |
namespace="llm_response_cache",
|
667 |
global_config=asdict(self),
|
|
|
902 |
dp
|
903 |
for dp in self.entities_vdb.client_storage["data"]
|
904 |
if chunk_id
|
905 |
+
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
|
906 |
]
|
907 |
if entities_with_chunk:
|
908 |
logger.error(
|
|
|
914 |
dp
|
915 |
for dp in self.relationships_vdb.client_storage["data"]
|
916 |
if chunk_id
|
917 |
+
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
|
918 |
]
|
919 |
if relations_with_chunk:
|
920 |
logger.error(
|
|
|
931 |
return asyncio.run(self.adelete_by_doc_id(doc_id))
|
932 |
|
933 |
async def get_entity_info(
|
934 |
+
self, entity_name: str, include_vector_data: bool = False
|
935 |
):
|
936 |
"""Get detailed information of an entity
|
937 |
|
|
|
982 |
tracemalloc.stop()
|
983 |
|
984 |
async def get_relation_info(
|
985 |
+
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
|
986 |
):
|
987 |
"""Get detailed information of a relationship
|
988 |
|
|
|
1024 |
return result
|
1025 |
|
1026 |
def get_relation_info_sync(
|
1027 |
+
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
|
1028 |
):
|
1029 |
"""Synchronous version of getting relationship information
|
1030 |
|
lightrag/operate.py
CHANGED
@@ -34,7 +34,11 @@ import time
|
|
34 |
|
35 |
|
36 |
def chunking_by_token_size(
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
):
|
39 |
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
|
40 |
results = []
|
@@ -44,11 +48,16 @@ def chunking_by_token_size(
|
|
44 |
for chunk in raw_chunks:
|
45 |
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
46 |
if len(_tokens) > max_token_size:
|
47 |
-
for start in range(
|
|
|
|
|
48 |
chunk_content = decode_tokens_by_tiktoken(
|
49 |
-
_tokens[start: start + max_token_size],
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
-
new_chunks.append((min(max_token_size, len(_tokens) - start), chunk_content))
|
52 |
else:
|
53 |
new_chunks.append((len(_tokens), chunk))
|
54 |
for index, (_len, chunk) in enumerate(new_chunks):
|
@@ -61,10 +70,10 @@ def chunking_by_token_size(
|
|
61 |
)
|
62 |
else:
|
63 |
for index, start in enumerate(
|
64 |
-
|
65 |
):
|
66 |
chunk_content = decode_tokens_by_tiktoken(
|
67 |
-
tokens[start: start + max_token_size], model_name=tiktoken_model
|
68 |
)
|
69 |
results.append(
|
70 |
{
|
@@ -77,9 +86,9 @@ def chunking_by_token_size(
|
|
77 |
|
78 |
|
79 |
async def _handle_entity_relation_summary(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
) -> str:
|
84 |
use_llm_func: callable = global_config["llm_model_func"]
|
85 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
@@ -108,8 +117,8 @@ async def _handle_entity_relation_summary(
|
|
108 |
|
109 |
|
110 |
async def _handle_single_entity_extraction(
|
111 |
-
|
112 |
-
|
113 |
):
|
114 |
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
|
115 |
return None
|
@@ -129,8 +138,8 @@ async def _handle_single_entity_extraction(
|
|
129 |
|
130 |
|
131 |
async def _handle_single_relationship_extraction(
|
132 |
-
|
133 |
-
|
134 |
):
|
135 |
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
|
136 |
return None
|
@@ -156,10 +165,10 @@ async def _handle_single_relationship_extraction(
|
|
156 |
|
157 |
|
158 |
async def _merge_nodes_then_upsert(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
):
|
164 |
already_entity_types = []
|
165 |
already_source_ids = []
|
@@ -203,11 +212,11 @@ async def _merge_nodes_then_upsert(
|
|
203 |
|
204 |
|
205 |
async def _merge_edges_then_upsert(
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
):
|
212 |
already_weights = []
|
213 |
already_source_ids = []
|
@@ -270,12 +279,12 @@ async def _merge_edges_then_upsert(
|
|
270 |
|
271 |
|
272 |
async def extract_entities(
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
) -> Union[BaseGraphStorage, None]:
|
280 |
use_llm_func: callable = global_config["llm_model_func"]
|
281 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
@@ -327,13 +336,13 @@ async def extract_entities(
|
|
327 |
already_relations = 0
|
328 |
|
329 |
async def _user_llm_func_with_cache(
|
330 |
-
|
331 |
) -> str:
|
332 |
if enable_llm_cache_for_entity_extract and llm_response_cache:
|
333 |
need_to_restore = False
|
334 |
if (
|
335 |
-
|
336 |
-
|
337 |
):
|
338 |
new_config = global_config.copy()
|
339 |
new_config["embedding_cache_config"] = None
|
@@ -435,7 +444,7 @@ async def extract_entities(
|
|
435 |
already_relations += len(maybe_edges)
|
436 |
now_ticks = PROMPTS["process_tickers"][
|
437 |
already_processed % len(PROMPTS["process_tickers"])
|
438 |
-
|
439 |
print(
|
440 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
441 |
end="",
|
@@ -445,10 +454,10 @@ async def extract_entities(
|
|
445 |
|
446 |
results = []
|
447 |
for result in tqdm_async(
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
):
|
453 |
results.append(await result)
|
454 |
|
@@ -462,32 +471,32 @@ async def extract_entities(
|
|
462 |
logger.info("Inserting entities into storage...")
|
463 |
all_entities_data = []
|
464 |
for result in tqdm_async(
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
):
|
475 |
all_entities_data.append(await result)
|
476 |
|
477 |
logger.info("Inserting relationships into storage...")
|
478 |
all_relationships_data = []
|
479 |
for result in tqdm_async(
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
):
|
492 |
all_relationships_data.append(await result)
|
493 |
|
@@ -518,9 +527,9 @@ async def extract_entities(
|
|
518 |
"src_id": dp["src_id"],
|
519 |
"tgt_id": dp["tgt_id"],
|
520 |
"content": dp["keywords"]
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
"metadata": {
|
525 |
"created_at": dp.get("metadata", {}).get("created_at", time.time())
|
526 |
},
|
@@ -533,14 +542,14 @@ async def extract_entities(
|
|
533 |
|
534 |
|
535 |
async def kg_query(
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
) -> str:
|
545 |
# Handle cache
|
546 |
use_model_func = global_config["llm_model_func"]
|
@@ -660,12 +669,12 @@ async def kg_query(
|
|
660 |
|
661 |
|
662 |
async def _build_query_context(
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
):
|
670 |
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
|
671 |
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
|
@@ -718,9 +727,9 @@ async def _build_query_context(
|
|
718 |
query_param,
|
719 |
)
|
720 |
if (
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
):
|
725 |
logger.warn("No high level context found. Switching to local mode.")
|
726 |
query_param.mode = "local"
|
@@ -759,11 +768,11 @@ async def _build_query_context(
|
|
759 |
|
760 |
|
761 |
async def _get_node_data(
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
):
|
768 |
# get similar entities
|
769 |
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
@@ -850,10 +859,10 @@ async def _get_node_data(
|
|
850 |
|
851 |
|
852 |
async def _find_most_related_text_unit_from_entities(
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
):
|
858 |
text_units = [
|
859 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
@@ -893,8 +902,8 @@ async def _find_most_related_text_unit_from_entities(
|
|
893 |
if this_edges:
|
894 |
for e in this_edges:
|
895 |
if (
|
896 |
-
|
897 |
-
|
898 |
):
|
899 |
all_text_units_lookup[c_id]["relation_counts"] += 1
|
900 |
|
@@ -924,9 +933,9 @@ async def _find_most_related_text_unit_from_entities(
|
|
924 |
|
925 |
|
926 |
async def _find_most_related_edges_from_entities(
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
):
|
931 |
all_related_edges = await asyncio.gather(
|
932 |
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
|
@@ -964,11 +973,11 @@ async def _find_most_related_edges_from_entities(
|
|
964 |
|
965 |
|
966 |
async def _get_edge_data(
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
):
|
973 |
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
974 |
|
@@ -1066,9 +1075,9 @@ async def _get_edge_data(
|
|
1066 |
|
1067 |
|
1068 |
async def _find_most_related_entities_from_relationships(
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
):
|
1073 |
entity_names = []
|
1074 |
seen = set()
|
@@ -1103,10 +1112,10 @@ async def _find_most_related_entities_from_relationships(
|
|
1103 |
|
1104 |
|
1105 |
async def _find_related_text_unit_from_relationships(
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
):
|
1111 |
text_units = [
|
1112 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
@@ -1172,12 +1181,12 @@ def combine_contexts(entities, relationships, sources):
|
|
1172 |
|
1173 |
|
1174 |
async def naive_query(
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
|
1181 |
):
|
1182 |
# Handle cache
|
1183 |
use_model_func = global_config["llm_model_func"]
|
@@ -1235,7 +1244,7 @@ async def naive_query(
|
|
1235 |
|
1236 |
if len(response) > len(sys_prompt):
|
1237 |
response = (
|
1238 |
-
response[len(sys_prompt):]
|
1239 |
.replace(sys_prompt, "")
|
1240 |
.replace("user", "")
|
1241 |
.replace("model", "")
|
@@ -1263,15 +1272,15 @@ async def naive_query(
|
|
1263 |
|
1264 |
|
1265 |
async def mix_kg_vector_query(
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
) -> str:
|
1276 |
"""
|
1277 |
Hybrid retrieval implementation combining knowledge graph and vector search.
|
@@ -1296,7 +1305,7 @@ async def mix_kg_vector_query(
|
|
1296 |
# Reuse keyword extraction logic from kg_query
|
1297 |
example_number = global_config["addon_params"].get("example_number", None)
|
1298 |
if example_number and example_number < len(
|
1299 |
-
|
1300 |
):
|
1301 |
examples = "\n".join(
|
1302 |
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
|
|
34 |
|
35 |
|
36 |
def chunking_by_token_size(
|
37 |
+
content: str,
|
38 |
+
split_by_character=None,
|
39 |
+
overlap_token_size=128,
|
40 |
+
max_token_size=1024,
|
41 |
+
tiktoken_model="gpt-4o",
|
42 |
):
|
43 |
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
|
44 |
results = []
|
|
|
48 |
for chunk in raw_chunks:
|
49 |
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
50 |
if len(_tokens) > max_token_size:
|
51 |
+
for start in range(
|
52 |
+
0, len(_tokens), max_token_size - overlap_token_size
|
53 |
+
):
|
54 |
chunk_content = decode_tokens_by_tiktoken(
|
55 |
+
_tokens[start : start + max_token_size],
|
56 |
+
model_name=tiktoken_model,
|
57 |
+
)
|
58 |
+
new_chunks.append(
|
59 |
+
(min(max_token_size, len(_tokens) - start), chunk_content)
|
60 |
)
|
|
|
61 |
else:
|
62 |
new_chunks.append((len(_tokens), chunk))
|
63 |
for index, (_len, chunk) in enumerate(new_chunks):
|
|
|
70 |
)
|
71 |
else:
|
72 |
for index, start in enumerate(
|
73 |
+
range(0, len(tokens), max_token_size - overlap_token_size)
|
74 |
):
|
75 |
chunk_content = decode_tokens_by_tiktoken(
|
76 |
+
tokens[start : start + max_token_size], model_name=tiktoken_model
|
77 |
)
|
78 |
results.append(
|
79 |
{
|
|
|
86 |
|
87 |
|
88 |
async def _handle_entity_relation_summary(
|
89 |
+
entity_or_relation_name: str,
|
90 |
+
description: str,
|
91 |
+
global_config: dict,
|
92 |
) -> str:
|
93 |
use_llm_func: callable = global_config["llm_model_func"]
|
94 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
|
|
117 |
|
118 |
|
119 |
async def _handle_single_entity_extraction(
|
120 |
+
record_attributes: list[str],
|
121 |
+
chunk_key: str,
|
122 |
):
|
123 |
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
|
124 |
return None
|
|
|
138 |
|
139 |
|
140 |
async def _handle_single_relationship_extraction(
|
141 |
+
record_attributes: list[str],
|
142 |
+
chunk_key: str,
|
143 |
):
|
144 |
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
|
145 |
return None
|
|
|
165 |
|
166 |
|
167 |
async def _merge_nodes_then_upsert(
|
168 |
+
entity_name: str,
|
169 |
+
nodes_data: list[dict],
|
170 |
+
knowledge_graph_inst: BaseGraphStorage,
|
171 |
+
global_config: dict,
|
172 |
):
|
173 |
already_entity_types = []
|
174 |
already_source_ids = []
|
|
|
212 |
|
213 |
|
214 |
async def _merge_edges_then_upsert(
|
215 |
+
src_id: str,
|
216 |
+
tgt_id: str,
|
217 |
+
edges_data: list[dict],
|
218 |
+
knowledge_graph_inst: BaseGraphStorage,
|
219 |
+
global_config: dict,
|
220 |
):
|
221 |
already_weights = []
|
222 |
already_source_ids = []
|
|
|
279 |
|
280 |
|
281 |
async def extract_entities(
|
282 |
+
chunks: dict[str, TextChunkSchema],
|
283 |
+
knowledge_graph_inst: BaseGraphStorage,
|
284 |
+
entity_vdb: BaseVectorStorage,
|
285 |
+
relationships_vdb: BaseVectorStorage,
|
286 |
+
global_config: dict,
|
287 |
+
llm_response_cache: BaseKVStorage = None,
|
288 |
) -> Union[BaseGraphStorage, None]:
|
289 |
use_llm_func: callable = global_config["llm_model_func"]
|
290 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
|
|
336 |
already_relations = 0
|
337 |
|
338 |
async def _user_llm_func_with_cache(
|
339 |
+
input_text: str, history_messages: list[dict[str, str]] = None
|
340 |
) -> str:
|
341 |
if enable_llm_cache_for_entity_extract and llm_response_cache:
|
342 |
need_to_restore = False
|
343 |
if (
|
344 |
+
global_config["embedding_cache_config"]
|
345 |
+
and global_config["embedding_cache_config"]["enabled"]
|
346 |
):
|
347 |
new_config = global_config.copy()
|
348 |
new_config["embedding_cache_config"] = None
|
|
|
444 |
already_relations += len(maybe_edges)
|
445 |
now_ticks = PROMPTS["process_tickers"][
|
446 |
already_processed % len(PROMPTS["process_tickers"])
|
447 |
+
]
|
448 |
print(
|
449 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
450 |
end="",
|
|
|
454 |
|
455 |
results = []
|
456 |
for result in tqdm_async(
|
457 |
+
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
458 |
+
total=len(ordered_chunks),
|
459 |
+
desc="Extracting entities from chunks",
|
460 |
+
unit="chunk",
|
461 |
):
|
462 |
results.append(await result)
|
463 |
|
|
|
471 |
logger.info("Inserting entities into storage...")
|
472 |
all_entities_data = []
|
473 |
for result in tqdm_async(
|
474 |
+
asyncio.as_completed(
|
475 |
+
[
|
476 |
+
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
|
477 |
+
for k, v in maybe_nodes.items()
|
478 |
+
]
|
479 |
+
),
|
480 |
+
total=len(maybe_nodes),
|
481 |
+
desc="Inserting entities",
|
482 |
+
unit="entity",
|
483 |
):
|
484 |
all_entities_data.append(await result)
|
485 |
|
486 |
logger.info("Inserting relationships into storage...")
|
487 |
all_relationships_data = []
|
488 |
for result in tqdm_async(
|
489 |
+
asyncio.as_completed(
|
490 |
+
[
|
491 |
+
_merge_edges_then_upsert(
|
492 |
+
k[0], k[1], v, knowledge_graph_inst, global_config
|
493 |
+
)
|
494 |
+
for k, v in maybe_edges.items()
|
495 |
+
]
|
496 |
+
),
|
497 |
+
total=len(maybe_edges),
|
498 |
+
desc="Inserting relationships",
|
499 |
+
unit="relationship",
|
500 |
):
|
501 |
all_relationships_data.append(await result)
|
502 |
|
|
|
527 |
"src_id": dp["src_id"],
|
528 |
"tgt_id": dp["tgt_id"],
|
529 |
"content": dp["keywords"]
|
530 |
+
+ dp["src_id"]
|
531 |
+
+ dp["tgt_id"]
|
532 |
+
+ dp["description"],
|
533 |
"metadata": {
|
534 |
"created_at": dp.get("metadata", {}).get("created_at", time.time())
|
535 |
},
|
|
|
542 |
|
543 |
|
544 |
async def kg_query(
|
545 |
+
query,
|
546 |
+
knowledge_graph_inst: BaseGraphStorage,
|
547 |
+
entities_vdb: BaseVectorStorage,
|
548 |
+
relationships_vdb: BaseVectorStorage,
|
549 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
550 |
+
query_param: QueryParam,
|
551 |
+
global_config: dict,
|
552 |
+
hashing_kv: BaseKVStorage = None,
|
553 |
) -> str:
|
554 |
# Handle cache
|
555 |
use_model_func = global_config["llm_model_func"]
|
|
|
669 |
|
670 |
|
671 |
async def _build_query_context(
|
672 |
+
query: list,
|
673 |
+
knowledge_graph_inst: BaseGraphStorage,
|
674 |
+
entities_vdb: BaseVectorStorage,
|
675 |
+
relationships_vdb: BaseVectorStorage,
|
676 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
677 |
+
query_param: QueryParam,
|
678 |
):
|
679 |
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
|
680 |
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
|
|
|
727 |
query_param,
|
728 |
)
|
729 |
if (
|
730 |
+
hl_entities_context == ""
|
731 |
+
and hl_relations_context == ""
|
732 |
+
and hl_text_units_context == ""
|
733 |
):
|
734 |
logger.warn("No high level context found. Switching to local mode.")
|
735 |
query_param.mode = "local"
|
|
|
768 |
|
769 |
|
770 |
async def _get_node_data(
|
771 |
+
query,
|
772 |
+
knowledge_graph_inst: BaseGraphStorage,
|
773 |
+
entities_vdb: BaseVectorStorage,
|
774 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
775 |
+
query_param: QueryParam,
|
776 |
):
|
777 |
# get similar entities
|
778 |
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
|
|
859 |
|
860 |
|
861 |
async def _find_most_related_text_unit_from_entities(
|
862 |
+
node_datas: list[dict],
|
863 |
+
query_param: QueryParam,
|
864 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
865 |
+
knowledge_graph_inst: BaseGraphStorage,
|
866 |
):
|
867 |
text_units = [
|
868 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
|
|
902 |
if this_edges:
|
903 |
for e in this_edges:
|
904 |
if (
|
905 |
+
e[1] in all_one_hop_text_units_lookup
|
906 |
+
and c_id in all_one_hop_text_units_lookup[e[1]]
|
907 |
):
|
908 |
all_text_units_lookup[c_id]["relation_counts"] += 1
|
909 |
|
|
|
933 |
|
934 |
|
935 |
async def _find_most_related_edges_from_entities(
|
936 |
+
node_datas: list[dict],
|
937 |
+
query_param: QueryParam,
|
938 |
+
knowledge_graph_inst: BaseGraphStorage,
|
939 |
):
|
940 |
all_related_edges = await asyncio.gather(
|
941 |
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
|
|
|
973 |
|
974 |
|
975 |
async def _get_edge_data(
|
976 |
+
keywords,
|
977 |
+
knowledge_graph_inst: BaseGraphStorage,
|
978 |
+
relationships_vdb: BaseVectorStorage,
|
979 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
980 |
+
query_param: QueryParam,
|
981 |
):
|
982 |
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
983 |
|
|
|
1075 |
|
1076 |
|
1077 |
async def _find_most_related_entities_from_relationships(
|
1078 |
+
edge_datas: list[dict],
|
1079 |
+
query_param: QueryParam,
|
1080 |
+
knowledge_graph_inst: BaseGraphStorage,
|
1081 |
):
|
1082 |
entity_names = []
|
1083 |
seen = set()
|
|
|
1112 |
|
1113 |
|
1114 |
async def _find_related_text_unit_from_relationships(
|
1115 |
+
edge_datas: list[dict],
|
1116 |
+
query_param: QueryParam,
|
1117 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
1118 |
+
knowledge_graph_inst: BaseGraphStorage,
|
1119 |
):
|
1120 |
text_units = [
|
1121 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
|
|
1181 |
|
1182 |
|
1183 |
async def naive_query(
|
1184 |
+
query,
|
1185 |
+
chunks_vdb: BaseVectorStorage,
|
1186 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
1187 |
+
query_param: QueryParam,
|
1188 |
+
global_config: dict,
|
1189 |
+
hashing_kv: BaseKVStorage = None,
|
1190 |
):
|
1191 |
# Handle cache
|
1192 |
use_model_func = global_config["llm_model_func"]
|
|
|
1244 |
|
1245 |
if len(response) > len(sys_prompt):
|
1246 |
response = (
|
1247 |
+
response[len(sys_prompt) :]
|
1248 |
.replace(sys_prompt, "")
|
1249 |
.replace("user", "")
|
1250 |
.replace("model", "")
|
|
|
1272 |
|
1273 |
|
1274 |
async def mix_kg_vector_query(
|
1275 |
+
query,
|
1276 |
+
knowledge_graph_inst: BaseGraphStorage,
|
1277 |
+
entities_vdb: BaseVectorStorage,
|
1278 |
+
relationships_vdb: BaseVectorStorage,
|
1279 |
+
chunks_vdb: BaseVectorStorage,
|
1280 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
1281 |
+
query_param: QueryParam,
|
1282 |
+
global_config: dict,
|
1283 |
+
hashing_kv: BaseKVStorage = None,
|
1284 |
) -> str:
|
1285 |
"""
|
1286 |
Hybrid retrieval implementation combining knowledge graph and vector search.
|
|
|
1305 |
# Reuse keyword extraction logic from kg_query
|
1306 |
example_number = global_config["addon_params"].get("example_number", None)
|
1307 |
if example_number and example_number < len(
|
1308 |
+
PROMPTS["keywords_extraction_examples"]
|
1309 |
):
|
1310 |
examples = "\n".join(
|
1311 |
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
test.ipynb
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "4b5690db12e34685",
|
7 |
+
"metadata": {
|
8 |
+
"ExecuteTime": {
|
9 |
+
"end_time": "2025-01-07T05:38:34.174205Z",
|
10 |
+
"start_time": "2025-01-07T05:38:29.978194Z"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"outputs": [],
|
14 |
+
"source": [
|
15 |
+
"import os\n",
|
16 |
+
"import logging\n",
|
17 |
+
"import numpy as np\n",
|
18 |
+
"from lightrag import LightRAG, QueryParam\n",
|
19 |
+
"from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
|
20 |
+
"from lightrag.utils import EmbeddingFunc\n",
|
21 |
+
"import nest_asyncio"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 2,
|
27 |
+
"id": "8c8ee7c061bf9159",
|
28 |
+
"metadata": {
|
29 |
+
"ExecuteTime": {
|
30 |
+
"end_time": "2025-01-07T05:38:37.440083Z",
|
31 |
+
"start_time": "2025-01-07T05:38:37.437666Z"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"nest_asyncio.apply()\n",
|
37 |
+
"WORKING_DIR = \"../llm_rag/paper_db/R000088_test2\"\n",
|
38 |
+
"logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
|
39 |
+
"if not os.path.exists(WORKING_DIR):\n",
|
40 |
+
" os.mkdir(WORKING_DIR)\n",
|
41 |
+
"os.environ[\"doubao_api\"] = \"6b890250-0cf6-4eb1-aa82-9c9d711398a7\""
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 3,
|
47 |
+
"id": "a5009d16e0851dca",
|
48 |
+
"metadata": {
|
49 |
+
"ExecuteTime": {
|
50 |
+
"end_time": "2025-01-07T05:38:42.594315Z",
|
51 |
+
"start_time": "2025-01-07T05:38:42.590800Z"
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"async def llm_model_func(\n",
|
57 |
+
" prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
|
58 |
+
") -> str:\n",
|
59 |
+
" return await openai_complete_if_cache(\n",
|
60 |
+
" \"ep-20241218114828-2tlww\",\n",
|
61 |
+
" prompt,\n",
|
62 |
+
" system_prompt=system_prompt,\n",
|
63 |
+
" history_messages=history_messages,\n",
|
64 |
+
" api_key=os.getenv(\"doubao_api\"),\n",
|
65 |
+
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
66 |
+
" **kwargs,\n",
|
67 |
+
" )\n",
|
68 |
+
"\n",
|
69 |
+
"\n",
|
70 |
+
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
71 |
+
" return await openai_embedding(\n",
|
72 |
+
" texts,\n",
|
73 |
+
" model=\"ep-20241231173413-pgjmk\",\n",
|
74 |
+
" api_key=os.getenv(\"doubao_api\"),\n",
|
75 |
+
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
76 |
+
" )"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 4,
|
82 |
+
"id": "397fcad24ce4d0ed",
|
83 |
+
"metadata": {
|
84 |
+
"ExecuteTime": {
|
85 |
+
"end_time": "2025-01-07T05:38:44.016901Z",
|
86 |
+
"start_time": "2025-01-07T05:38:44.006291Z"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"name": "stderr",
|
92 |
+
"output_type": "stream",
|
93 |
+
"text": [
|
94 |
+
"INFO:lightrag:Logger initialized for working directory: ../llm_rag/paper_db/R000088_test2\n",
|
95 |
+
"INFO:lightrag:Load KV llm_response_cache with 0 data\n",
|
96 |
+
"INFO:lightrag:Load KV full_docs with 0 data\n",
|
97 |
+
"INFO:lightrag:Load KV text_chunks with 0 data\n",
|
98 |
+
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
|
99 |
+
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
|
100 |
+
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
|
101 |
+
"INFO:lightrag:Loaded document status storage with 0 records\n"
|
102 |
+
]
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"rag = LightRAG(\n",
|
107 |
+
" working_dir=WORKING_DIR,\n",
|
108 |
+
" llm_model_func=llm_model_func,\n",
|
109 |
+
" embedding_func=EmbeddingFunc(\n",
|
110 |
+
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
111 |
+
" ),\n",
|
112 |
+
")"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 5,
|
118 |
+
"id": "1dc3603677f7484d",
|
119 |
+
"metadata": {
|
120 |
+
"ExecuteTime": {
|
121 |
+
"end_time": "2025-01-07T05:38:47.509111Z",
|
122 |
+
"start_time": "2025-01-07T05:38:47.501997Z"
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"with open(\n",
|
128 |
+
" \"../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
|
129 |
+
") as f:\n",
|
130 |
+
" content = f.read()\n",
|
131 |
+
"\n",
|
132 |
+
"\n",
|
133 |
+
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
134 |
+
" return await openai_embedding(\n",
|
135 |
+
" texts,\n",
|
136 |
+
" model=\"ep-20241231173413-pgjmk\",\n",
|
137 |
+
" api_key=os.getenv(\"doubao_api\"),\n",
|
138 |
+
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
139 |
+
" )\n",
|
140 |
+
"\n",
|
141 |
+
"\n",
|
142 |
+
"async def get_embedding_dim():\n",
|
143 |
+
" test_text = [\"This is a test sentence.\"]\n",
|
144 |
+
" embedding = await embedding_func(test_text)\n",
|
145 |
+
" embedding_dim = embedding.shape[1]\n",
|
146 |
+
" return embedding_dim"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 6,
|
152 |
+
"id": "6844202606acfbe5",
|
153 |
+
"metadata": {
|
154 |
+
"ExecuteTime": {
|
155 |
+
"end_time": "2025-01-07T05:38:50.666764Z",
|
156 |
+
"start_time": "2025-01-07T05:38:50.247712Z"
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"outputs": [
|
160 |
+
{
|
161 |
+
"name": "stderr",
|
162 |
+
"output_type": "stream",
|
163 |
+
"text": [
|
164 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
|
165 |
+
]
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"source": [
|
169 |
+
"embedding_dimension = await get_embedding_dim()"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 7,
|
175 |
+
"id": "d6273839d9681403",
|
176 |
+
"metadata": {
|
177 |
+
"ExecuteTime": {
|
178 |
+
"end_time": "2025-01-07T05:42:33.085507Z",
|
179 |
+
"start_time": "2025-01-07T05:38:56.789348Z"
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stderr",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"INFO:lightrag:Processing 1 new unique documents\n",
|
188 |
+
"Processing batch 1: 0%| | 0/1 [00:00<?, ?it/s]INFO:lightrag:Inserting 22 vectors to chunks\n",
|
189 |
+
"\n",
|
190 |
+
"Generating embeddings: 0%| | 0/1 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
191 |
+
"\n",
|
192 |
+
"Generating embeddings: 100%|██████████| 1/1 [00:03<00:00, 3.85s/batch]\u001b[A\n",
|
193 |
+
"\n",
|
194 |
+
"Extracting entities from chunks: 0%| | 0/22 [00:00<?, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
195 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
196 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
197 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
198 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
199 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
200 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
201 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
202 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "stdout",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"⠙ Processed 1 chunks, 7 entities(duplicated), 6 relations(duplicated)\r"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"name": "stderr",
|
214 |
+
"output_type": "stream",
|
215 |
+
"text": [
|
216 |
+
"\n",
|
217 |
+
"Extracting entities from chunks: 5%|▍ | 1/22 [00:23<08:21, 23.90s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
218 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"name": "stdout",
|
223 |
+
"output_type": "stream",
|
224 |
+
"text": [
|
225 |
+
"⠹ Processed 2 chunks, 12 entities(duplicated), 15 relations(duplicated)\r"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"name": "stderr",
|
230 |
+
"output_type": "stream",
|
231 |
+
"text": [
|
232 |
+
"\n",
|
233 |
+
"Extracting entities from chunks: 9%|▉ | 2/22 [00:26<03:50, 11.51s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
234 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "stdout",
|
239 |
+
"output_type": "stream",
|
240 |
+
"text": [
|
241 |
+
"⠸ Processed 3 chunks, 20 entities(duplicated), 22 relations(duplicated)\r"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"name": "stderr",
|
246 |
+
"output_type": "stream",
|
247 |
+
"text": [
|
248 |
+
"\n",
|
249 |
+
"Extracting entities from chunks: 14%|█▎ | 3/22 [00:34<03:08, 9.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
250 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"name": "stdout",
|
255 |
+
"output_type": "stream",
|
256 |
+
"text": [
|
257 |
+
"⠼ Processed 4 chunks, 30 entities(duplicated), 30 relations(duplicated)\r"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"name": "stderr",
|
262 |
+
"output_type": "stream",
|
263 |
+
"text": [
|
264 |
+
"\n",
|
265 |
+
"Extracting entities from chunks: 18%|█▊ | 4/22 [00:37<02:09, 7.21s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"name": "stdout",
|
270 |
+
"output_type": "stream",
|
271 |
+
"text": [
|
272 |
+
"⠴ Processed 5 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"name": "stderr",
|
277 |
+
"output_type": "stream",
|
278 |
+
"text": [
|
279 |
+
"\n",
|
280 |
+
"Extracting entities from chunks: 23%|██▎ | 5/22 [00:38<01:19, 4.70s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"name": "stdout",
|
285 |
+
"output_type": "stream",
|
286 |
+
"text": [
|
287 |
+
"⠦ Processed 6 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"name": "stderr",
|
292 |
+
"output_type": "stream",
|
293 |
+
"text": [
|
294 |
+
"\n",
|
295 |
+
"Extracting entities from chunks: 27%|██▋ | 6/22 [00:38<00:53, 3.32s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"name": "stdout",
|
300 |
+
"output_type": "stream",
|
301 |
+
"text": [
|
302 |
+
"⠧ Processed 7 chunks, 47 entities(duplicated), 50 relations(duplicated)\r"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"\n",
|
310 |
+
"Extracting entities from chunks: 32%|███▏ | 7/22 [00:39<00:39, 2.65s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
311 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"name": "stdout",
|
316 |
+
"output_type": "stream",
|
317 |
+
"text": [
|
318 |
+
"⠇ Processed 8 chunks, 56 entities(duplicated), 58 relations(duplicated)\r"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"name": "stderr",
|
323 |
+
"output_type": "stream",
|
324 |
+
"text": [
|
325 |
+
"\n",
|
326 |
+
"Extracting entities from chunks: 36%|███▋ | 8/22 [00:40<00:29, 2.13s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
327 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
328 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"name": "stdout",
|
333 |
+
"output_type": "stream",
|
334 |
+
"text": [
|
335 |
+
"⠏ Processed 9 chunks, 63 entities(duplicated), 69 relations(duplicated)\r"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"name": "stderr",
|
340 |
+
"output_type": "stream",
|
341 |
+
"text": [
|
342 |
+
"\n",
|
343 |
+
"Extracting entities from chunks: 41%|████ | 9/22 [00:47<00:43, 3.38s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"name": "stdout",
|
348 |
+
"output_type": "stream",
|
349 |
+
"text": [
|
350 |
+
"⠋ Processed 10 chunks, 81 entities(duplicated), 81 relations(duplicated)\r"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"name": "stderr",
|
355 |
+
"output_type": "stream",
|
356 |
+
"text": [
|
357 |
+
"\n",
|
358 |
+
"Extracting entities from chunks: 45%|████▌ | 10/22 [00:48<00:32, 2.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
359 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
360 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
361 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
362 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"name": "stdout",
|
367 |
+
"output_type": "stream",
|
368 |
+
"text": [
|
369 |
+
"⠙ Processed 11 chunks, 92 entities(duplicated), 89 relations(duplicated)\r"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"name": "stderr",
|
374 |
+
"output_type": "stream",
|
375 |
+
"text": [
|
376 |
+
"\n",
|
377 |
+
"Extracting entities from chunks: 50%|█████ | 11/22 [01:01<01:05, 5.99s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"name": "stdout",
|
382 |
+
"output_type": "stream",
|
383 |
+
"text": [
|
384 |
+
"⠹ Processed 12 chunks, 107 entities(duplicated), 107 relations(duplicated)\r"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"name": "stderr",
|
389 |
+
"output_type": "stream",
|
390 |
+
"text": [
|
391 |
+
"\n",
|
392 |
+
"Extracting entities from chunks: 55%|█████▍ | 12/22 [01:10<01:09, 6.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
393 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"name": "stdout",
|
398 |
+
"output_type": "stream",
|
399 |
+
"text": [
|
400 |
+
"⠸ Processed 13 chunks, 127 entities(duplicated), 126 relations(duplicated)\r"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"name": "stderr",
|
405 |
+
"output_type": "stream",
|
406 |
+
"text": [
|
407 |
+
"\n",
|
408 |
+
"Extracting entities from chunks: 59%|█████▉ | 13/22 [01:16<00:59, 6.59s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"name": "stdout",
|
413 |
+
"output_type": "stream",
|
414 |
+
"text": [
|
415 |
+
"⠼ Processed 14 chunks, 151 entities(duplicated), 137 relations(duplicated)\r"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"name": "stderr",
|
420 |
+
"output_type": "stream",
|
421 |
+
"text": [
|
422 |
+
"\n",
|
423 |
+
"Extracting entities from chunks: 64%|██████▎ | 14/22 [01:16<00:37, 4.68s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"name": "stdout",
|
428 |
+
"output_type": "stream",
|
429 |
+
"text": [
|
430 |
+
"⠴ Processed 15 chunks, 161 entities(duplicated), 144 relations(duplicated)\r"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"name": "stderr",
|
435 |
+
"output_type": "stream",
|
436 |
+
"text": [
|
437 |
+
"\n",
|
438 |
+
"Extracting entities from chunks: 68%|██████▊ | 15/22 [01:17<00:23, 3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"name": "stdout",
|
443 |
+
"output_type": "stream",
|
444 |
+
"text": [
|
445 |
+
"⠦ Processed 16 chunks, 176 entities(duplicated), 154 relations(duplicated)\r"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"name": "stderr",
|
450 |
+
"output_type": "stream",
|
451 |
+
"text": [
|
452 |
+
"\n",
|
453 |
+
"Extracting entities from chunks: 73%|███████▎ | 16/22 [01:19<00:18, 3.04s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"name": "stdout",
|
458 |
+
"output_type": "stream",
|
459 |
+
"text": [
|
460 |
+
"⠧ Processed 17 chunks, 189 entities(duplicated), 162 relations(duplicated)\r"
|
461 |
+
]
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"name": "stderr",
|
465 |
+
"output_type": "stream",
|
466 |
+
"text": [
|
467 |
+
"\n",
|
468 |
+
"Extracting entities from chunks: 77%|███████▋ | 17/22 [01:21<00:13, 2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
469 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"name": "stdout",
|
474 |
+
"output_type": "stream",
|
475 |
+
"text": [
|
476 |
+
"⠇ Processed 18 chunks, 207 entities(duplicated), 186 relations(duplicated)\r"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"name": "stderr",
|
481 |
+
"output_type": "stream",
|
482 |
+
"text": [
|
483 |
+
"\n",
|
484 |
+
"Extracting entities from chunks: 82%|████████▏ | 18/22 [01:38<00:28, 7.06s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
485 |
+
]
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"name": "stdout",
|
489 |
+
"output_type": "stream",
|
490 |
+
"text": [
|
491 |
+
"⠏ Processed 19 chunks, 222 entities(duplicated), 200 relations(duplicated)\r"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"name": "stderr",
|
496 |
+
"output_type": "stream",
|
497 |
+
"text": [
|
498 |
+
"\n",
|
499 |
+
"Extracting entities from chunks: 86%|████████▋ | 19/22 [01:44<00:19, 6.61s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
500 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"name": "stdout",
|
505 |
+
"output_type": "stream",
|
506 |
+
"text": [
|
507 |
+
"⠋ Processed 20 chunks, 310 entities(duplicated), 219 relations(duplicated)\r"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"name": "stderr",
|
512 |
+
"output_type": "stream",
|
513 |
+
"text": [
|
514 |
+
"\n",
|
515 |
+
"Extracting entities from chunks: 91%|█████████ | 20/22 [02:12<00:26, 13.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
516 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
517 |
+
]
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"name": "stdout",
|
521 |
+
"output_type": "stream",
|
522 |
+
"text": [
|
523 |
+
"⠙ Processed 21 chunks, 345 entities(duplicated), 263 relations(duplicated)\r"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"name": "stderr",
|
528 |
+
"output_type": "stream",
|
529 |
+
"text": [
|
530 |
+
"\n",
|
531 |
+
"Extracting entities from chunks: 95%|█████████▌| 21/22 [02:32<00:15, 15.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"name": "stdout",
|
536 |
+
"output_type": "stream",
|
537 |
+
"text": [
|
538 |
+
"⠹ Processed 22 chunks, 417 entities(duplicated), 285 relations(duplicated)\r"
|
539 |
+
]
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"name": "stderr",
|
543 |
+
"output_type": "stream",
|
544 |
+
"text": [
|
545 |
+
"\n",
|
546 |
+
"Extracting entities from chunks: 100%|██████████| 22/22 [03:21<00:00, 9.18s/chunk]\u001b[A\n",
|
547 |
+
"INFO:lightrag:Inserting entities into storage...\n",
|
548 |
+
"\n",
|
549 |
+
"Inserting entities: 100%|██████████| 327/327 [00:00<00:00, 13446.31entity/s]\n",
|
550 |
+
"INFO:lightrag:Inserting relationships into storage...\n",
|
551 |
+
"\n",
|
552 |
+
"Inserting relationships: 100%|██████████| 272/272 [00:00<00:00, 16740.29relationship/s]\n",
|
553 |
+
"INFO:lightrag:Inserting 327 vectors to entities\n",
|
554 |
+
"\n",
|
555 |
+
"Generating embeddings: 0%| | 0/11 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
556 |
+
"\n",
|
557 |
+
"Generating embeddings: 9%|▉ | 1/11 [00:00<00:09, 1.02batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
558 |
+
"\n",
|
559 |
+
"Generating embeddings: 18%|█▊ | 2/11 [00:02<00:09, 1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
560 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
561 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
562 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
563 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
564 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
565 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
566 |
+
"\n",
|
567 |
+
"Generating embeddings: 27%|██▋ | 3/11 [00:02<00:06, 1.33batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
568 |
+
"\n",
|
569 |
+
"Generating embeddings: 36%|███▋ | 4/11 [00:02<00:04, 1.67batch/s]\u001b[A\n",
|
570 |
+
"Generating embeddings: 45%|████▌ | 5/11 [00:03<00:03, 1.93batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
571 |
+
"\n",
|
572 |
+
"Generating embeddings: 55%|█████▍ | 6/11 [00:03<00:02, 2.15batch/s]\u001b[A\n",
|
573 |
+
"Generating embeddings: 64%|██████▎ | 7/11 [00:03<00:01, 2.33batch/s]\u001b[A\n",
|
574 |
+
"Generating embeddings: 73%|███████▎ | 8/11 [00:04<00:01, 2.46batch/s]\u001b[A\n",
|
575 |
+
"Generating embeddings: 82%|████████▏ | 9/11 [00:04<00:00, 2.55batch/s]\u001b[A\n",
|
576 |
+
"Generating embeddings: 91%|█████████ | 10/11 [00:05<00:00, 2.64batch/s]\u001b[A\n",
|
577 |
+
"Generating embeddings: 100%|██████████| 11/11 [00:05<00:00, 2.04batch/s]\u001b[A\n",
|
578 |
+
"INFO:lightrag:Inserting 272 vectors to relationships\n",
|
579 |
+
"\n",
|
580 |
+
"Generating embeddings: 0%| | 0/9 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
581 |
+
"\n",
|
582 |
+
"Generating embeddings: 11%|█ | 1/9 [00:01<00:11, 1.39s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
583 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
584 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
585 |
+
"\n",
|
586 |
+
"Generating embeddings: 22%|██▏ | 2/9 [00:02<00:07, 1.01s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
587 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
588 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
589 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
590 |
+
"\n",
|
591 |
+
"Generating embeddings: 33%|███▎ | 3/9 [00:02<00:04, 1.40batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
592 |
+
"\n",
|
593 |
+
"Generating embeddings: 44%|████▍ | 4/9 [00:02<00:02, 1.74batch/s]\u001b[A\n",
|
594 |
+
"Generating embeddings: 56%|█████▌ | 5/9 [00:03<00:01, 2.01batch/s]\u001b[A\n",
|
595 |
+
"Generating embeddings: 67%|██████▋ | 6/9 [00:03<00:01, 2.23batch/s]\u001b[A\n",
|
596 |
+
"Generating embeddings: 78%|███████▊ | 7/9 [00:03<00:00, 2.39batch/s]\u001b[A\n",
|
597 |
+
"Generating embeddings: 89%|████████▉ | 8/9 [00:04<00:00, 2.52batch/s]\u001b[A\n",
|
598 |
+
"Generating embeddings: 100%|██████████| 9/9 [00:04<00:00, 1.93batch/s]\u001b[A\n",
|
599 |
+
"INFO:lightrag:Writing graph with 331 nodes, 272 edges\n",
|
600 |
+
"Processing batch 1: 100%|██████████| 1/1 [03:36<00:00, 216.27s/it]\n"
|
601 |
+
]
|
602 |
+
}
|
603 |
+
],
|
604 |
+
"source": [
|
605 |
+
"# rag.insert(content)\n",
|
606 |
+
"rag.insert(content, split_by_character=\"\\n#\")"
|
607 |
+
]
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"cell_type": "code",
|
611 |
+
"execution_count": 8,
|
612 |
+
"id": "c4f9ae517151a01d",
|
613 |
+
"metadata": {
|
614 |
+
"ExecuteTime": {
|
615 |
+
"end_time": "2025-01-07T05:42:50.044809Z",
|
616 |
+
"start_time": "2025-01-07T05:42:50.041256Z"
|
617 |
+
}
|
618 |
+
},
|
619 |
+
"outputs": [],
|
620 |
+
"source": [
|
621 |
+
"prompt1 = \"\"\"\n",
|
622 |
+
"你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
|
623 |
+
"\n",
|
624 |
+
"请按照以下步骤进行分析:\n",
|
625 |
+
"1. 对于论文的分析对象相关问题:\n",
|
626 |
+
" - 仔细查找论文中的研究队列相关信息,确定分析对象来自哪些研究队列。\n",
|
627 |
+
" - 查看如果来自多个队列,文中是单独分析还是联合分析。\n",
|
628 |
+
" - 找出这些队列的名称。\n",
|
629 |
+
" - 确定这些队列开展的国家有哪些(注意:“澳门”记为“中国澳门”,“香港”记为“中国香港”,“台湾”记为“中国台湾”,其余采用国家回答)。\n",
|
630 |
+
" - 明确队列研究对象的性别分布(“男性”、“女性”或“全体”)。\n",
|
631 |
+
" - 查找队列收集结束时,研究对象年龄分布(平均值/中位值、标准差或范围),若信息缺失则根据年龄推理规则进行推理:当论文只提供了队列开展时对象的年龄,应根据队列结束时间推算最终年龄范围。例如:1989建立队列时年龄为25 - 42岁,随访至2011年结束,则推算年龄范围为47 - 64岁。\n",
|
632 |
+
" - 确定队列研究时间线,即哪一年开始收集信息/建立队列,哪一年结束,若信息缺失则根据队列时间线推理规则进行推理:如论文只提供了建立队列时间为1995,进行了10年的随访,则推算队列结束时间为2005年。\n",
|
633 |
+
" - 找出队列结束时实际参与研究人数是多少。\n",
|
634 |
+
"首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"cell_type": "code",
|
639 |
+
"execution_count": 9,
|
640 |
+
"id": "7a6491385b050095",
|
641 |
+
"metadata": {
|
642 |
+
"ExecuteTime": {
|
643 |
+
"end_time": "2025-01-07T05:43:24.751628Z",
|
644 |
+
"start_time": "2025-01-07T05:42:50.865679Z"
|
645 |
+
}
|
646 |
+
},
|
647 |
+
"outputs": [
|
648 |
+
{
|
649 |
+
"name": "stderr",
|
650 |
+
"output_type": "stream",
|
651 |
+
"text": [
|
652 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
653 |
+
"INFO:lightrag:kw_prompt result:\n"
|
654 |
+
]
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"name": "stdout",
|
658 |
+
"output_type": "stream",
|
659 |
+
"text": [
|
660 |
+
"{\n",
|
661 |
+
" \"high_level_keywords\": [\"英文学术研究论文分析\", \"关键信息提取\", \"深入分析\"],\n",
|
662 |
+
" \"low_level_keywords\": [\"研究队列\", \"队列名称\", \"队列开展国家\", \"性别分布\", \"年龄分布\", \"队列研究时间线\", \"实际参与研究人数\"]\n",
|
663 |
+
"}\n"
|
664 |
+
]
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"name": "stderr",
|
668 |
+
"output_type": "stream",
|
669 |
+
"text": [
|
670 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
671 |
+
"INFO:lightrag:Local query uses 60 entites, 38 relations, 6 text units\n",
|
672 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
673 |
+
"INFO:lightrag:Global query uses 72 entites, 60 relations, 4 text units\n",
|
674 |
+
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"name": "stdout",
|
679 |
+
"output_type": "stream",
|
680 |
+
"text": [
|
681 |
+
"<分析>\n",
|
682 |
+
"- **分析对象来自哪些研究队列及是单独分析还是联合分析**:\n",
|
683 |
+
" 通过查找论文内容,发现文中提到“This is a combined analysis of data from 2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16)”,明确是对两个队列的数据进行联合分析,队列名称分别为“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”。\n",
|
684 |
+
"- **队列开展的国家**:\n",
|
685 |
+
" 文中多次提及研究在挪威进行,如“combined analyses and extended follow-up of 2 vitamin B intervention trials among patients with ischemic heart disease in Norway”,所以确定研究开展的国家是挪威。\n",
|
686 |
+
"- **队列研究对象的性别分布**:\n",
|
687 |
+
" 从“Mean (SD) age was 62.3 (11.0) years and 23.5% of participants were women”可知,研究对象包含男性和女性,即全体。\n",
|
688 |
+
"- **队列收集结束时研究对象年龄分布**:\n",
|
689 |
+
" 已知“Mean (SD) age was 62.3 (11.0) years”是基线时年龄信息,“Median (interquartile range) duration of extended follow-up through December 31, 2007, was 78 (61 - 90) months”,由于随访的中位时间是78个月(约6.5年),所以可推算队列收集结束时研究对象年龄均值约为62.3 + 6.5 = 68.8岁(标准差仍为11.0年)。\n",
|
690 |
+
"- **队列研究时间线**:\n",
|
691 |
+
" 根据“2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16) conducted between 1998 and 2005, and an observational posttrial follow-up through December 31, 2007”可知,队列开始收集信息时间为1998年,结束时间为2007年12月31日。\n",
|
692 |
+
"- **队列结束时实际参与研究人数**:\n",
|
693 |
+
" 由“A total of 6837 individuals were included in the combined analyses, of whom 6261 (91.6%) participated in posttrial follow-up”可知,队列结束时实际参与研究人数为6261人。\n",
|
694 |
+
"</分析>\n",
|
695 |
+
"\n",
|
696 |
+
"<回答>\n",
|
697 |
+
"- 分析对象来自“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”两个研究队列,文中是对这两个队列的数据进行联合分析。\n",
|
698 |
+
"- 队列开展的国家是挪威。\n",
|
699 |
+
"- 队列研究对象的性别分布为全体。\n",
|
700 |
+
"- 队列收集结束时,研究对象年龄分布均值约为68.8岁,标准差为11.0年。\n",
|
701 |
+
"- 队列研究时间线为1998年开始收集信息/建立队列,2007年12月31日结束。\n",
|
702 |
+
"- 队列结束时实际参与研究人数是6261人。\n"
|
703 |
+
]
|
704 |
+
}
|
705 |
+
],
|
706 |
+
"source": [
|
707 |
+
"print(rag.query(prompt1, param=QueryParam(mode=\"hybrid\")))"
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "code",
|
712 |
+
"execution_count": null,
|
713 |
+
"id": "fef9d06983da47af",
|
714 |
+
"metadata": {},
|
715 |
+
"outputs": [],
|
716 |
+
"source": []
|
717 |
+
}
|
718 |
+
],
|
719 |
+
"metadata": {
|
720 |
+
"kernelspec": {
|
721 |
+
"display_name": "Python 3",
|
722 |
+
"language": "python",
|
723 |
+
"name": "python3"
|
724 |
+
},
|
725 |
+
"language_info": {
|
726 |
+
"codemirror_mode": {
|
727 |
+
"name": "ipython",
|
728 |
+
"version": 2
|
729 |
+
},
|
730 |
+
"file_extension": ".py",
|
731 |
+
"mimetype": "text/x-python",
|
732 |
+
"name": "python",
|
733 |
+
"nbconvert_exporter": "python",
|
734 |
+
"pygments_lexer": "ipython2",
|
735 |
+
"version": "2.7.6"
|
736 |
+
}
|
737 |
+
},
|
738 |
+
"nbformat": 4,
|
739 |
+
"nbformat_minor": 5
|
740 |
+
}
|