pre-commit
Browse files
examples/lightrag_lmdeploy_demo.py
CHANGED
@@ -10,10 +10,11 @@ WORKING_DIR = "./dickens"
|
|
10 |
if not os.path.exists(WORKING_DIR):
|
11 |
os.mkdir(WORKING_DIR)
|
12 |
|
|
|
13 |
async def lmdeploy_model_complete(
|
14 |
prompt=None, system_prompt=None, history_messages=[], **kwargs
|
15 |
) -> str:
|
16 |
-
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
17 |
return await lmdeploy_model_if_cache(
|
18 |
model_name,
|
19 |
prompt,
|
@@ -23,7 +24,7 @@ async def lmdeploy_model_complete(
|
|
23 |
## or model_name is a pytorch model on huggingface.co,
|
24 |
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
|
25 |
## for a list of chat_template available in lmdeploy.
|
26 |
-
chat_template
|
27 |
# model_format ='awq', # if you are using awq quantization model.
|
28 |
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
|
29 |
**kwargs,
|
@@ -33,7 +34,7 @@ async def lmdeploy_model_complete(
|
|
33 |
rag = LightRAG(
|
34 |
working_dir=WORKING_DIR,
|
35 |
llm_model_func=lmdeploy_model_complete,
|
36 |
-
llm_model_name="meta-llama/Llama-3.1-8B-Instruct",
|
37 |
embedding_func=EmbeddingFunc(
|
38 |
embedding_dim=384,
|
39 |
max_token_size=5000,
|
|
|
10 |
if not os.path.exists(WORKING_DIR):
|
11 |
os.mkdir(WORKING_DIR)
|
12 |
|
13 |
+
|
14 |
async def lmdeploy_model_complete(
|
15 |
prompt=None, system_prompt=None, history_messages=[], **kwargs
|
16 |
) -> str:
|
17 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
18 |
return await lmdeploy_model_if_cache(
|
19 |
model_name,
|
20 |
prompt,
|
|
|
24 |
## or model_name is a pytorch model on huggingface.co,
|
25 |
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
|
26 |
## for a list of chat_template available in lmdeploy.
|
27 |
+
chat_template="llama3",
|
28 |
# model_format ='awq', # if you are using awq quantization model.
|
29 |
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
|
30 |
**kwargs,
|
|
|
34 |
rag = LightRAG(
|
35 |
working_dir=WORKING_DIR,
|
36 |
llm_model_func=lmdeploy_model_complete,
|
37 |
+
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
|
38 |
embedding_func=EmbeddingFunc(
|
39 |
embedding_dim=384,
|
40 |
max_token_size=5000,
|