Merge pull request #1060 from ArindamRoy23/main
Browse files- lightrag/kg/chroma_impl.py +3 -1
- lightrag/kg/faiss_impl.py +3 -1
- lightrag/kg/milvus_impl.py +3 -1
- lightrag/kg/mongo_impl.py +3 -1
- lightrag/kg/nano_vector_db_impl.py +3 -1
- lightrag/kg/oracle_impl.py +3 -1
- lightrag/kg/qdrant_impl.py +3 -1
- lightrag/kg/tidb_impl.py +3 -1
lightrag/kg/chroma_impl.py
CHANGED
@@ -156,7 +156,9 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
|
156 |
logger.error(f"Error during ChromaDB upsert: {str(e)}")
|
157 |
raise
|
158 |
|
159 |
-
async def query(
|
|
|
|
|
160 |
try:
|
161 |
embedding = await self.embedding_func([query])
|
162 |
|
|
|
156 |
logger.error(f"Error during ChromaDB upsert: {str(e)}")
|
157 |
raise
|
158 |
|
159 |
+
async def query(
|
160 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
161 |
+
) -> list[dict[str, Any]]:
|
162 |
try:
|
163 |
embedding = await self.embedding_func([query])
|
164 |
|
lightrag/kg/faiss_impl.py
CHANGED
@@ -171,7 +171,9 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
|
171 |
logger.info(f"Upserted {len(list_data)} vectors into Faiss index.")
|
172 |
return [m["__id__"] for m in list_data]
|
173 |
|
174 |
-
async def query(
|
|
|
|
|
175 |
"""
|
176 |
Search by a textual query; returns top_k results with their metadata + similarity distance.
|
177 |
"""
|
|
|
171 |
logger.info(f"Upserted {len(list_data)} vectors into Faiss index.")
|
172 |
return [m["__id__"] for m in list_data]
|
173 |
|
174 |
+
async def query(
|
175 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
176 |
+
) -> list[dict[str, Any]]:
|
177 |
"""
|
178 |
Search by a textual query; returns top_k results with their metadata + similarity distance.
|
179 |
"""
|
lightrag/kg/milvus_impl.py
CHANGED
@@ -101,7 +101,9 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
101 |
results = self._client.upsert(collection_name=self.namespace, data=list_data)
|
102 |
return results
|
103 |
|
104 |
-
async def query(
|
|
|
|
|
105 |
embedding = await self.embedding_func([query])
|
106 |
results = self._client.search(
|
107 |
collection_name=self.namespace,
|
|
|
101 |
results = self._client.upsert(collection_name=self.namespace, data=list_data)
|
102 |
return results
|
103 |
|
104 |
+
async def query(
|
105 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
106 |
+
) -> list[dict[str, Any]]:
|
107 |
embedding = await self.embedding_func([query])
|
108 |
results = self._client.search(
|
109 |
collection_name=self.namespace,
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -938,7 +938,9 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
938 |
|
939 |
return list_data
|
940 |
|
941 |
-
async def query(
|
|
|
|
|
942 |
"""Queries the vector database using Atlas Vector Search."""
|
943 |
# Generate the embedding
|
944 |
embedding = await self.embedding_func([query])
|
|
|
938 |
|
939 |
return list_data
|
940 |
|
941 |
+
async def query(
|
942 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
943 |
+
) -> list[dict[str, Any]]:
|
944 |
"""Queries the vector database using Atlas Vector Search."""
|
945 |
# Generate the embedding
|
946 |
embedding = await self.embedding_func([query])
|
lightrag/kg/nano_vector_db_impl.py
CHANGED
@@ -120,7 +120,9 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
|
120 |
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
|
121 |
)
|
122 |
|
123 |
-
async def query(
|
|
|
|
|
124 |
# Execute embedding outside of lock to avoid long lock times
|
125 |
embedding = await self.embedding_func([query])
|
126 |
embedding = embedding[0]
|
|
|
120 |
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
|
121 |
)
|
122 |
|
123 |
+
async def query(
|
124 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
125 |
+
) -> list[dict[str, Any]]:
|
126 |
# Execute embedding outside of lock to avoid long lock times
|
127 |
embedding = await self.embedding_func([query])
|
128 |
embedding = embedding[0]
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -417,7 +417,9 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
|
417 |
self.db = None
|
418 |
|
419 |
#################### query method ###############
|
420 |
-
async def query(
|
|
|
|
|
421 |
embeddings = await self.embedding_func([query])
|
422 |
embedding = embeddings[0]
|
423 |
# 转换精度
|
|
|
417 |
self.db = None
|
418 |
|
419 |
#################### query method ###############
|
420 |
+
async def query(
|
421 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
422 |
+
) -> list[dict[str, Any]]:
|
423 |
embeddings = await self.embedding_func([query])
|
424 |
embedding = embeddings[0]
|
425 |
# 转换精度
|
lightrag/kg/qdrant_impl.py
CHANGED
@@ -123,7 +123,9 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|
123 |
)
|
124 |
return results
|
125 |
|
126 |
-
async def query(
|
|
|
|
|
127 |
embedding = await self.embedding_func([query])
|
128 |
results = self._client.search(
|
129 |
collection_name=self.namespace,
|
|
|
123 |
)
|
124 |
return results
|
125 |
|
126 |
+
async def query(
|
127 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
128 |
+
) -> list[dict[str, Any]]:
|
129 |
embedding = await self.embedding_func([query])
|
130 |
results = self._client.search(
|
131 |
collection_name=self.namespace,
|
lightrag/kg/tidb_impl.py
CHANGED
@@ -306,7 +306,9 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
306 |
await ClientManager.release_client(self.db)
|
307 |
self.db = None
|
308 |
|
309 |
-
async def query(
|
|
|
|
|
310 |
"""Search from tidb vector"""
|
311 |
embeddings = await self.embedding_func([query])
|
312 |
embedding = embeddings[0]
|
|
|
306 |
await ClientManager.release_client(self.db)
|
307 |
self.db = None
|
308 |
|
309 |
+
async def query(
|
310 |
+
self, query: str, top_k: int, ids: list[str] | None = None
|
311 |
+
) -> list[dict[str, Any]]:
|
312 |
"""Search from tidb vector"""
|
313 |
embeddings = await self.embedding_func([query])
|
314 |
embedding = embeddings[0]
|