Ken Wiltshire
commited on
Commit
·
836c74a
1
Parent(s):
6448286
edge degree next almost done
Browse files- .DS_Store +0 -0
- lightrag/kg/neo4j.py +245 -129
- lightrag/lightrag.py +1 -1
- lightrag/llm.py +1 -1
- neo4jWorkDir/kv_store_full_docs.json +0 -0
- neo4jWorkDir/kv_store_llm_response_cache.json +0 -0
- neo4jWorkDir/kv_store_text_chunks.json +0 -0
- neo4jWorkDir/lightrag.log +0 -0
- neo4jWorkDir/vdb_chunks.json +0 -0
- neo4jWorkDir/vdb_entities.json +0 -0
- neo4jWorkDir/vdb_relationships.json +0 -0
- testkg.py +36 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
lightrag/kg/neo4j.py
CHANGED
@@ -5,6 +5,8 @@ from dataclasses import dataclass
|
|
5 |
from typing import Any, Union, cast
|
6 |
import numpy as np
|
7 |
from nano_vectordb import NanoVectorDB
|
|
|
|
|
8 |
|
9 |
|
10 |
|
@@ -26,14 +28,12 @@ PASSWORD = "your_password"
|
|
26 |
@dataclass
|
27 |
class GraphStorage(BaseGraphStorage):
|
28 |
@staticmethod
|
29 |
-
|
30 |
-
|
31 |
-
# return nx.read_graphml(file_name)
|
32 |
-
# return None
|
33 |
|
34 |
def __post_init__(self):
|
35 |
# self._graph = preloaded_graph or nx.Graph()
|
36 |
-
self._driver = GraphDatabase.driver(
|
37 |
self._node_embed_algorithms = {
|
38 |
"node2vec": self._node2vec_embed,
|
39 |
}
|
@@ -41,79 +41,111 @@ class GraphStorage(BaseGraphStorage):
|
|
41 |
async def index_done_callback(self):
|
42 |
print ("KG successfully indexed.")
|
43 |
async def has_node(self, node_id: str) -> bool:
|
44 |
-
entity_name_label = node_id
|
45 |
-
with self._driver.session() as session:
|
46 |
-
return session.read_transaction(self._check_node_exists, entity_name_label)
|
47 |
|
48 |
-
@staticmethod
|
49 |
def _check_node_exists(tx, label):
|
50 |
-
query = f"MATCH (n
|
51 |
result = tx.run(query)
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
55 |
-
entity_name_label_source = source_node_id
|
56 |
-
entity_name_label_target = target_node_id
|
57 |
-
#hard code relaitionship type
|
58 |
with self._driver.session() as session:
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
@staticmethod
|
63 |
def _check_edge_existence(tx, label1, label2):
|
64 |
query = (
|
65 |
-
f"MATCH (a
|
66 |
"RETURN COUNT(r) > 0 AS edgeExists"
|
67 |
)
|
68 |
result = tx.run(query)
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def close(self):
|
71 |
-
self._driver.close()
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
|
75 |
async def get_node(self, node_id: str) -> Union[dict, None]:
|
76 |
-
entity_name_label = node_id
|
77 |
with self._driver.session() as session:
|
78 |
-
|
|
|
79 |
for record in result:
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
|
84 |
async def node_degree(self, node_id: str) -> int:
|
85 |
-
entity_name_label = node_id
|
86 |
-
|
87 |
-
degree = self._find_node_degree(session, entity_name_label)
|
88 |
-
return degree
|
89 |
|
90 |
-
@staticmethod
|
91 |
def _find_node_degree(session, label):
|
92 |
with session.begin_transaction() as tx:
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
record = result.single()
|
95 |
-
if record:
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
else:
|
98 |
return None
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
# degree = session.read_transaction(get_edge_degree, 1, 2)
|
102 |
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
103 |
-
entity_name__label_source = src_id
|
104 |
-
entity_name_label_target = tgt_id
|
105 |
with self._driver.session() as session:
|
106 |
-
|
107 |
-
"""
|
108 |
-
|
109 |
-
|
110 |
-
)
|
111 |
-
record = result.single()
|
|
|
|
|
|
|
112 |
return record["degree"]
|
113 |
|
114 |
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
115 |
-
entity_name__label_source = source_node_id
|
116 |
-
entity_name_label_target = target_node_id
|
117 |
"""
|
118 |
Find all edges between nodes of two given labels
|
119 |
|
@@ -126,17 +158,109 @@ class GraphStorage(BaseGraphStorage):
|
|
126 |
"""
|
127 |
with self._driver.session() as session:
|
128 |
query = f"""
|
129 |
-
MATCH (source
|
130 |
RETURN r
|
131 |
"""
|
132 |
|
133 |
result = session.run(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return [record["r"] for record in result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
|
|
|
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
139 |
-
label = node_id
|
140 |
properties = node_data
|
141 |
"""
|
142 |
Upsert a node with the given label and properties within a transaction.
|
@@ -152,21 +276,9 @@ class GraphStorage(BaseGraphStorage):
|
|
152 |
Returns:
|
153 |
Dictionary containing the node's properties after upsert, or None if operation fails
|
154 |
"""
|
155 |
-
|
156 |
-
# Execute the upsert within a transaction
|
157 |
-
result = session.execute_write(
|
158 |
-
self._do_upsert,
|
159 |
-
label,
|
160 |
-
properties
|
161 |
-
)
|
162 |
-
return result
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
def _do_upsert(tx: Transaction, label: str, properties: Dict[str, Any]):
|
167 |
-
"""
|
168 |
-
Static method to perform the actual upsert operation within a transaction
|
169 |
-
|
170 |
Args:
|
171 |
tx: Neo4j transaction object
|
172 |
label: The node label to search for and apply
|
@@ -175,44 +287,39 @@ class GraphStorage(BaseGraphStorage):
|
|
175 |
Returns:
|
176 |
Dictionary containing the node's properties after upsert, or None if operation fails
|
177 |
"""
|
178 |
-
|
179 |
-
property_string = ", ".join([
|
180 |
-
f"n.{key} = ${key}"
|
181 |
-
for key in properties.keys()
|
182 |
-
])
|
183 |
-
|
184 |
-
# Cypher query that either matches existing node or creates new one
|
185 |
query = f"""
|
186 |
-
|
187 |
-
|
188 |
-
CALL {{
|
189 |
-
WITH n
|
190 |
-
WHERE n IS NOT NULL
|
191 |
-
SET {property_string}
|
192 |
-
RETURN n
|
193 |
-
UNION
|
194 |
-
WITH n
|
195 |
-
WHERE n IS NULL
|
196 |
-
CREATE (n:{label})
|
197 |
-
SET {property_string}
|
198 |
-
RETURN n
|
199 |
-
}}
|
200 |
RETURN n
|
201 |
"""
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]) -> None:
|
214 |
-
source_node_label = source_node_id
|
215 |
-
target_node_label = target_node_id
|
|
|
216 |
"""
|
217 |
Upsert an edge and its properties between two nodes identified by their labels.
|
218 |
|
@@ -221,16 +328,10 @@ class GraphStorage(BaseGraphStorage):
|
|
221 |
target_node_label (str): Label of the target node (used as identifier)
|
222 |
edge_properties (dict): Dictionary of properties to set on the edge
|
223 |
"""
|
224 |
-
|
225 |
-
session.execute_write(
|
226 |
-
self._do_upsert_edge,
|
227 |
-
source_node_label,
|
228 |
-
target_node_label,
|
229 |
-
edge_data
|
230 |
-
)
|
231 |
|
232 |
-
|
233 |
-
def _do_upsert_edge(tx, source_node_label: str, target_node_label: str, edge_properties:
|
234 |
"""
|
235 |
Static method to perform the edge upsert within a transaction.
|
236 |
|
@@ -240,43 +341,58 @@ class GraphStorage(BaseGraphStorage):
|
|
240 |
3. Set all properties on the relationship, updating existing ones and adding new ones
|
241 |
"""
|
242 |
# Convert edge properties to Cypher parameter string
|
243 |
-
props_string = ", ".join(f"r.{key} = ${key}" for key in edge_properties.keys())
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
MERGE (source)-[r:DIRECTED]->(target)
|
251 |
-
SET
|
252 |
-
|
253 |
-
|
254 |
-
# Prepare parameters dictionary
|
255 |
-
params = {
|
256 |
-
"source_node_label": source_node_label,
|
257 |
-
"target_node_label": target_node_label,
|
258 |
-
**edge_properties
|
259 |
-
}
|
260 |
-
|
261 |
-
# Execute the query
|
262 |
-
tx.run(query, params)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
async def _node2vec_embed(self):
|
266 |
# async def _node2vec_embed(self):
|
267 |
with self._driver.session() as session:
|
268 |
#Define the Cypher query
|
269 |
options = self.global_config["node2vec_params"]
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# Run the query and process the results
|
274 |
results = session.run(query)
|
|
|
|
|
275 |
for record in results:
|
276 |
-
node_id = record["
|
277 |
-
embedding = record["
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
282 |
|
|
|
5 |
from typing import Any, Union, cast
|
6 |
import numpy as np
|
7 |
from nano_vectordb import NanoVectorDB
|
8 |
+
import inspect
|
9 |
+
|
10 |
|
11 |
|
12 |
|
|
|
28 |
@dataclass
|
29 |
class GraphStorage(BaseGraphStorage):
|
30 |
@staticmethod
|
31 |
+
def load_nx_graph(file_name):
|
32 |
+
print ("no preloading of graph with neo4j in production")
|
|
|
|
|
33 |
|
34 |
def __post_init__(self):
|
35 |
# self._graph = preloaded_graph or nx.Graph()
|
36 |
+
self._driver = GraphDatabase.driver("neo4j+s://91fbae6c.databases.neo4j.io", auth=("neo4j", "KWKPXfXcClDbUlmDdGgIQhU5mL1N4E_2CJp2BDFbEbw"))
|
37 |
self._node_embed_algorithms = {
|
38 |
"node2vec": self._node2vec_embed,
|
39 |
}
|
|
|
41 |
async def index_done_callback(self):
|
42 |
print ("KG successfully indexed.")
|
43 |
async def has_node(self, node_id: str) -> bool:
|
44 |
+
entity_name_label = node_id.strip('\"')
|
|
|
|
|
45 |
|
|
|
46 |
def _check_node_exists(tx, label):
|
47 |
+
query = f"MATCH (n:`{label}`) RETURN count(n) > 0 AS node_exists"
|
48 |
result = tx.run(query)
|
49 |
+
single_result = result.single()
|
50 |
+
logger.info(
|
51 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["node_exists"]}'
|
52 |
+
)
|
53 |
+
|
54 |
+
return single_result["node_exists"]
|
55 |
|
|
|
|
|
|
|
|
|
56 |
with self._driver.session() as session:
|
57 |
+
return session.read_transaction(_check_node_exists, entity_name_label)
|
58 |
+
|
59 |
+
|
60 |
+
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
61 |
+
entity_name_label_source = source_node_id.strip('\"')
|
62 |
+
entity_name_label_target = target_node_id.strip('\"')
|
63 |
+
|
64 |
|
|
|
65 |
def _check_edge_existence(tx, label1, label2):
|
66 |
query = (
|
67 |
+
f"MATCH (a:`{label1}`)-[r]-(b:`{label2}`) "
|
68 |
"RETURN COUNT(r) > 0 AS edgeExists"
|
69 |
)
|
70 |
result = tx.run(query)
|
71 |
+
single_result = result.single()
|
72 |
+
# if result.single() == None:
|
73 |
+
# print (f"this should not happen: ---- {label1}/{label2} {query}")
|
74 |
+
|
75 |
+
logger.info(
|
76 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["edgeExists"]}'
|
77 |
+
)
|
78 |
+
|
79 |
+
return single_result["edgeExists"]
|
80 |
def close(self):
|
81 |
+
self._driver.close()
|
82 |
+
#hard code relaitionship type
|
83 |
+
with self._driver.session() as session:
|
84 |
+
result = session.read_transaction(_check_edge_existence, entity_name_label_source, entity_name_label_target)
|
85 |
+
return result
|
86 |
|
87 |
|
88 |
|
89 |
async def get_node(self, node_id: str) -> Union[dict, None]:
|
90 |
+
entity_name_label = node_id.strip('\"')
|
91 |
with self._driver.session() as session:
|
92 |
+
query = "MATCH (n:`{entity_name_label}`) RETURN n".format(entity_name_label=entity_name_label)
|
93 |
+
result = session.run(query)
|
94 |
for record in result:
|
95 |
+
result = record["n"]
|
96 |
+
logger.info(
|
97 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}'
|
98 |
+
)
|
99 |
+
return result
|
100 |
|
101 |
|
102 |
|
103 |
async def node_degree(self, node_id: str) -> int:
|
104 |
+
entity_name_label = node_id.strip('\"')
|
105 |
+
|
|
|
|
|
106 |
|
|
|
107 |
def _find_node_degree(session, label):
|
108 |
with session.begin_transaction() as tx:
|
109 |
+
# query = "MATCH (n:`{label}`) RETURN n, size((n)--()) AS degree".format(label=label)
|
110 |
+
query = f"""
|
111 |
+
MATCH (n:`{label}`)
|
112 |
+
RETURN COUNT{{ (n)--() }} AS totalEdgeCount
|
113 |
+
"""
|
114 |
+
result = tx.run(query)
|
115 |
record = result.single()
|
116 |
+
if record:
|
117 |
+
edge_count = record["totalEdgeCount"]
|
118 |
+
logger.info(
|
119 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}'
|
120 |
+
)
|
121 |
+
return edge_count
|
122 |
else:
|
123 |
return None
|
124 |
+
|
125 |
+
with self._driver.session() as session:
|
126 |
+
degree = _find_node_degree(session, entity_name_label)
|
127 |
+
return degree
|
128 |
|
129 |
|
130 |
# degree = session.read_transaction(get_edge_degree, 1, 2)
|
131 |
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
132 |
+
entity_name__label_source = src_id.strip('\"')
|
133 |
+
entity_name_label_target = tgt_id.strip('\"')
|
134 |
with self._driver.session() as session:
|
135 |
+
query = """MATCH (n1:`{node_label1}`)-[r]-(n2:`{node_label2}`)
|
136 |
+
RETURN count(r) AS degree""".format(entity_name__label_source=entity_name__label_source,
|
137 |
+
entity_name_label_target=entity_name_label_target)
|
138 |
+
|
139 |
+
result = session.run(query)
|
140 |
+
record = result.single()
|
141 |
+
logger.info(
|
142 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{record["degree"]}'
|
143 |
+
)
|
144 |
return record["degree"]
|
145 |
|
146 |
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
147 |
+
entity_name__label_source = source_node_id.strip('\"')
|
148 |
+
entity_name_label_target = target_node_id.strip('\"')
|
149 |
"""
|
150 |
Find all edges between nodes of two given labels
|
151 |
|
|
|
158 |
"""
|
159 |
with self._driver.session() as session:
|
160 |
query = f"""
|
161 |
+
MATCH (source:`{entity_name__label_source}`)-[r]-(target:`{entity_name_label_target}`)
|
162 |
RETURN r
|
163 |
"""
|
164 |
|
165 |
result = session.run(query)
|
166 |
+
for logrecord in result:
|
167 |
+
logger.info(
|
168 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{logrecord["r"]}'
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
return [record["r"] for record in result]
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
async def get_node_edges(self, source_node_id: str):
|
177 |
+
if self._graph.has_node(source_node_id):
|
178 |
+
return list(self._graph.edges(source_node_id))
|
179 |
+
return None
|
180 |
+
|
181 |
+
async def get_node_edges(self, source_node_id: str):
|
182 |
+
node_label = source_node_id.strip('\"')
|
183 |
+
|
184 |
+
"""
|
185 |
+
Retrieves all edges (relationships) for a particular node identified by its label and ID.
|
186 |
+
|
187 |
+
:param uri: Neo4j database URI
|
188 |
+
:param username: Neo4j username
|
189 |
+
:param password: Neo4j password
|
190 |
+
:param node_label: Label of the node
|
191 |
+
:param node_id: ID property of the node
|
192 |
+
:return: List of dictionaries containing edge information
|
193 |
+
"""
|
194 |
+
|
195 |
+
def fetch_edges(tx, label):
|
196 |
+
query = f"""MATCH (n:`{label}`)
|
197 |
+
OPTIONAL MATCH (n)-[r]-(connected)
|
198 |
+
RETURN n, r, connected"""
|
199 |
+
|
200 |
+
results = tx.run(query)
|
201 |
+
|
202 |
+
edges = []
|
203 |
+
for record in results:
|
204 |
+
source_node = record['n']
|
205 |
+
connected_node = record['connected']
|
206 |
+
|
207 |
+
source_label = list(source_node.labels)[0] if source_node.labels else None
|
208 |
+
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
209 |
+
|
210 |
+
if source_label and target_label:
|
211 |
+
print (f"appending: {[source_label, target_label]}")
|
212 |
+
edges.append([source_label, target_label])
|
213 |
+
|
214 |
+
return edges
|
215 |
+
|
216 |
+
with self._driver.session() as session:
|
217 |
+
edges = session.read_transaction(fetch_edges,node_label)
|
218 |
+
return edges
|
219 |
+
|
220 |
+
|
221 |
+
# try:
|
222 |
+
# with self._driver.session() as session:
|
223 |
+
# if self.has_node(node_label):
|
224 |
+
# edges = session.read_transaction(fetch_edges,node_label)
|
225 |
+
# return list(edges)
|
226 |
+
# return edges
|
227 |
+
# finally:
|
228 |
+
# print ("consider closign driver here")
|
229 |
+
# # driver.close()
|
230 |
+
|
231 |
+
from typing import List, Tuple
|
232 |
+
async def get_node_connections(driver: GraphDatabase.driver, label: str) -> List[Tuple[str, str]]:
|
233 |
+
def run_query(tx):
|
234 |
+
query = f"""
|
235 |
+
MATCH (n:`{label}`)
|
236 |
+
OPTIONAL MATCH (n)-[r]-(connected)
|
237 |
+
RETURN n, r, connected
|
238 |
+
"""
|
239 |
+
results = tx.run(query)
|
240 |
+
|
241 |
+
connections = []
|
242 |
+
for record in results:
|
243 |
+
source_node = record['n']
|
244 |
+
connected_node = record['connected']
|
245 |
+
|
246 |
+
source_label = list(source_node.labels)[0] if source_node.labels else None
|
247 |
+
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
248 |
+
|
249 |
+
if source_label and target_label:
|
250 |
+
connections.append((source_label, target_label))
|
251 |
+
|
252 |
+
return connections
|
253 |
|
254 |
+
with driver.session() as session:
|
255 |
+
return session.read_transaction(run_query)
|
256 |
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
#upsert_node
|
262 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
263 |
+
label = node_id.strip('\"')
|
264 |
properties = node_data
|
265 |
"""
|
266 |
Upsert a node with the given label and properties within a transaction.
|
|
|
276 |
Returns:
|
277 |
Dictionary containing the node's properties after upsert, or None if operation fails
|
278 |
"""
|
279 |
+
def _do_upsert(tx, label: str, properties: dict[str, Any]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
+
"""
|
|
|
|
|
|
|
|
|
282 |
Args:
|
283 |
tx: Neo4j transaction object
|
284 |
label: The node label to search for and apply
|
|
|
287 |
Returns:
|
288 |
Dictionary containing the node's properties after upsert, or None if operation fails
|
289 |
"""
|
290 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
query = f"""
|
292 |
+
MERGE (n:`{label}`)
|
293 |
+
SET n += $properties
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
RETURN n
|
295 |
"""
|
296 |
+
# Execute the query with properties as parameters
|
297 |
+
# with session.begin_transaction() as tx:
|
298 |
+
result = tx.run(query, properties=properties)
|
299 |
+
record = result.single()
|
300 |
+
if record:
|
301 |
+
logger.info(
|
302 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{dict(record["n"])}'
|
303 |
+
)
|
304 |
+
return dict(record["n"])
|
305 |
+
return None
|
306 |
+
|
307 |
+
|
308 |
+
with self._driver.session() as session:
|
309 |
+
with session.begin_transaction() as tx:
|
310 |
+
try:
|
311 |
+
result = _do_upsert(tx,label,properties)
|
312 |
+
tx.commit()
|
313 |
+
return result
|
314 |
+
except Exception as e:
|
315 |
+
raise # roll back
|
316 |
+
|
317 |
+
|
318 |
|
319 |
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]) -> None:
|
320 |
+
source_node_label = source_node_id.strip('\"')
|
321 |
+
target_node_label = target_node_id.strip('\"')
|
322 |
+
edge_properties = edge_data
|
323 |
"""
|
324 |
Upsert an edge and its properties between two nodes identified by their labels.
|
325 |
|
|
|
328 |
target_node_label (str): Label of the target node (used as identifier)
|
329 |
edge_properties (dict): Dictionary of properties to set on the edge
|
330 |
"""
|
331 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
+
|
334 |
+
def _do_upsert_edge(tx, source_node_label: str, target_node_label: str, edge_properties: dict[str, Any]) -> None:
|
335 |
"""
|
336 |
Static method to perform the edge upsert within a transaction.
|
337 |
|
|
|
341 |
3. Set all properties on the relationship, updating existing ones and adding new ones
|
342 |
"""
|
343 |
# Convert edge properties to Cypher parameter string
|
344 |
+
# props_string = ", ".join(f"r.{key} = ${key}" for key in edge_properties.keys())
|
345 |
+
|
346 |
+
# """.format(props_string)
|
347 |
+
query = f"""
|
348 |
+
MATCH (source:`{source_node_label}`)
|
349 |
+
WITH source
|
350 |
+
MATCH (target:`{target_node_label}`)
|
351 |
MERGE (source)-[r:DIRECTED]->(target)
|
352 |
+
SET r += $properties
|
353 |
+
RETURN r
|
354 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
+
result = tx.run(query, properties=edge_properties)
|
357 |
+
logger.info(
|
358 |
+
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{None}'
|
359 |
+
)
|
360 |
+
return result.single()
|
361 |
+
|
362 |
+
with self._driver.session() as session:
|
363 |
+
session.execute_write(
|
364 |
+
_do_upsert_edge,
|
365 |
+
source_node_label,
|
366 |
+
target_node_label,
|
367 |
+
edge_properties
|
368 |
+
)
|
369 |
+
# return result
|
370 |
|
371 |
async def _node2vec_embed(self):
|
372 |
# async def _node2vec_embed(self):
|
373 |
with self._driver.session() as session:
|
374 |
#Define the Cypher query
|
375 |
options = self.global_config["node2vec_params"]
|
376 |
+
logger.info(f"building embeddings with options {options}")
|
377 |
+
query = f"""CALL gds.node2vec.write('91fbae6c', {
|
378 |
+
options
|
379 |
+
})
|
380 |
+
YIELD nodeId, labels, embedding
|
381 |
+
RETURN
|
382 |
+
nodeId AS id,
|
383 |
+
labels[0] AS distinctLabel,
|
384 |
+
embedding AS nodeToVecEmbedding
|
385 |
+
"""
|
386 |
# Run the query and process the results
|
387 |
results = session.run(query)
|
388 |
+
embeddings = []
|
389 |
+
node_labels = []
|
390 |
for record in results:
|
391 |
+
node_id = record["id"]
|
392 |
+
embedding = record["nodeToVecEmbedding"]
|
393 |
+
label = record["distinctLabel"]
|
394 |
+
print(f"Node id/label: {label}/{node_id}, Embedding: {embedding}")
|
395 |
+
embeddings.append(embedding)
|
396 |
+
node_labels.append(label)
|
397 |
+
return embeddings, node_labels
|
398 |
|
lightrag/lightrag.py
CHANGED
@@ -103,7 +103,7 @@ class LightRAG:
|
|
103 |
# module = importlib.import_module('kg.neo4j')
|
104 |
# Neo4JStorage = getattr(module, 'GraphStorage')
|
105 |
|
106 |
-
if True==
|
107 |
graph_storage_cls: Type[BaseGraphStorage] = Neo4JStorage
|
108 |
else:
|
109 |
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
|
|
|
103 |
# module = importlib.import_module('kg.neo4j')
|
104 |
# Neo4JStorage = getattr(module, 'GraphStorage')
|
105 |
|
106 |
+
if True==True:
|
107 |
graph_storage_cls: Type[BaseGraphStorage] = Neo4JStorage
|
108 |
else:
|
109 |
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
|
lightrag/llm.py
CHANGED
@@ -73,7 +73,7 @@ async def openai_complete_if_cache(
|
|
73 |
@retry(
|
74 |
stop=stop_after_attempt(3),
|
75 |
#kw_
|
76 |
-
wait=wait_exponential(multiplier=1, min=
|
77 |
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
78 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
79 |
)
|
|
|
73 |
@retry(
|
74 |
stop=stop_after_attempt(3),
|
75 |
#kw_
|
76 |
+
wait=wait_exponential(multiplier=1, min=10, max=60),
|
77 |
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
78 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
79 |
)
|
neo4jWorkDir/kv_store_full_docs.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/kv_store_llm_response_cache.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/kv_store_text_chunks.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/lightrag.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/vdb_chunks.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/vdb_entities.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
neo4jWorkDir/vdb_relationships.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
testkg.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from lightrag import LightRAG, QueryParam
|
3 |
+
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
4 |
+
|
5 |
+
#########
|
6 |
+
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
7 |
+
# import nest_asyncio
|
8 |
+
# nest_asyncio.apply()
|
9 |
+
#########
|
10 |
+
|
11 |
+
WORKING_DIR = "./neo4jWorkDir"
|
12 |
+
|
13 |
+
|
14 |
+
if not os.path.exists(WORKING_DIR):
|
15 |
+
os.mkdir(WORKING_DIR)
|
16 |
+
|
17 |
+
rag = LightRAG(
|
18 |
+
working_dir=WORKING_DIR,
|
19 |
+
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
20 |
+
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
21 |
+
)
|
22 |
+
|
23 |
+
with open("./book.txt") as f:
|
24 |
+
rag.insert(f.read())
|
25 |
+
|
26 |
+
# Perform naive search
|
27 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
28 |
+
|
29 |
+
# Perform local search
|
30 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
31 |
+
|
32 |
+
# Perform global search
|
33 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
34 |
+
|
35 |
+
# Perform hybrid search
|
36 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|