Fixed linting
Browse files- .gitignore +1 -1
- api/.gitignore +1 -1
- api/README_OPENAI.md +0 -1
- api/ollama_lightrag_server.py +121 -75
- api/openai_lightrag_server.py +113 -77
- api/requirements.txt +2 -2
.gitignore
CHANGED
@@ -14,4 +14,4 @@ ignore_this.txt
|
|
14 |
.ruff_cache/
|
15 |
gui/
|
16 |
*.log
|
17 |
-
.vscode
|
|
|
14 |
.ruff_cache/
|
15 |
gui/
|
16 |
*.log
|
17 |
+
.vscode
|
api/.gitignore
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
inputs
|
2 |
-
rag_storage
|
|
|
1 |
inputs
|
2 |
+
rag_storage
|
api/README_OPENAI.md
CHANGED
@@ -169,4 +169,3 @@ This project is licensed under the MIT License - see the LICENSE file for detail
|
|
169 |
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
170 |
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
171 |
- Powered by [OpenAI](https://openai.com/) for language model inference
|
172 |
-
|
|
|
169 |
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
170 |
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
171 |
- Powered by [OpenAI](https://openai.com/) for language model inference
|
|
api/ollama_lightrag_server.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
-
import asyncio
|
5 |
-
import os
|
6 |
import logging
|
7 |
import argparse
|
8 |
from lightrag import LightRAG, QueryParam
|
@@ -13,7 +10,8 @@ from enum import Enum
|
|
13 |
from pathlib import Path
|
14 |
import shutil
|
15 |
import aiofiles
|
16 |
-
from ascii_colors import
|
|
|
17 |
|
18 |
def parse_args():
|
19 |
parser = argparse.ArgumentParser(
|
@@ -21,45 +19,84 @@ def parse_args():
|
|
21 |
)
|
22 |
|
23 |
# Server configuration
|
24 |
-
parser.add_argument(
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
# Directory configuration
|
28 |
-
parser.add_argument(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Model configuration
|
34 |
-
parser.add_argument(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# RAG configuration
|
41 |
-
parser.add_argument(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Logging configuration
|
49 |
-
parser.add_argument(
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
return parser.parse_args()
|
54 |
|
|
|
55 |
class DocumentManager:
|
56 |
"""Handles document operations and tracking"""
|
57 |
-
|
58 |
-
def __init__(self, input_dir: str, supported_extensions: tuple = (
|
59 |
self.input_dir = Path(input_dir)
|
60 |
self.supported_extensions = supported_extensions
|
61 |
self.indexed_files = set()
|
62 |
-
|
63 |
# Create input directory if it doesn't exist
|
64 |
self.input_dir.mkdir(parents=True, exist_ok=True)
|
65 |
|
@@ -67,7 +104,7 @@ class DocumentManager:
|
|
67 |
"""Scan input directory for new files"""
|
68 |
new_files = []
|
69 |
for ext in self.supported_extensions:
|
70 |
-
for file_path in self.input_dir.rglob(f
|
71 |
if file_path not in self.indexed_files:
|
72 |
new_files.append(file_path)
|
73 |
return new_files
|
@@ -80,6 +117,7 @@ class DocumentManager:
|
|
80 |
"""Check if file type is supported"""
|
81 |
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
82 |
|
|
|
83 |
# Pydantic models
|
84 |
class SearchMode(str, Enum):
|
85 |
naive = "naive"
|
@@ -87,31 +125,38 @@ class SearchMode(str, Enum):
|
|
87 |
global_ = "global"
|
88 |
hybrid = "hybrid"
|
89 |
|
|
|
90 |
class QueryRequest(BaseModel):
|
91 |
query: str
|
92 |
mode: SearchMode = SearchMode.hybrid
|
93 |
stream: bool = False
|
94 |
|
|
|
95 |
class QueryResponse(BaseModel):
|
96 |
response: str
|
97 |
|
|
|
98 |
class InsertTextRequest(BaseModel):
|
99 |
text: str
|
100 |
description: Optional[str] = None
|
101 |
|
|
|
102 |
class InsertResponse(BaseModel):
|
103 |
status: str
|
104 |
message: str
|
105 |
document_count: int
|
106 |
|
|
|
107 |
def create_app(args):
|
108 |
# Setup logging
|
109 |
-
logging.basicConfig(
|
|
|
|
|
110 |
|
111 |
# Initialize FastAPI app
|
112 |
app = FastAPI(
|
113 |
title="LightRAG API",
|
114 |
-
description="API for querying text using LightRAG with separate storage and input directories"
|
115 |
)
|
116 |
|
117 |
# Create working directory if it doesn't exist
|
@@ -127,7 +172,10 @@ def create_app(args):
|
|
127 |
llm_model_name=args.model,
|
128 |
llm_model_max_async=args.max_async,
|
129 |
llm_model_max_token_size=args.max_tokens,
|
130 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
131 |
embedding_func=EmbeddingFunc(
|
132 |
embedding_dim=args.embedding_dim,
|
133 |
max_token_size=args.max_embed_tokens,
|
@@ -136,6 +184,7 @@ def create_app(args):
|
|
136 |
),
|
137 |
),
|
138 |
)
|
|
|
139 |
@app.on_event("startup")
|
140 |
async def startup_event():
|
141 |
"""Index all files in input directory during startup"""
|
@@ -144,7 +193,7 @@ def create_app(args):
|
|
144 |
for file_path in new_files:
|
145 |
try:
|
146 |
# Use async file reading
|
147 |
-
async with aiofiles.open(file_path,
|
148 |
content = await f.read()
|
149 |
# Use the async version of insert directly
|
150 |
await rag.ainsert(content)
|
@@ -153,9 +202,9 @@ def create_app(args):
|
|
153 |
except Exception as e:
|
154 |
trace_exception(e)
|
155 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
156 |
-
|
157 |
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
158 |
-
|
159 |
except Exception as e:
|
160 |
logging.error(f"Error during startup indexing: {str(e)}")
|
161 |
|
@@ -165,21 +214,21 @@ def create_app(args):
|
|
165 |
try:
|
166 |
new_files = doc_manager.scan_directory()
|
167 |
indexed_count = 0
|
168 |
-
|
169 |
for file_path in new_files:
|
170 |
try:
|
171 |
-
with open(file_path,
|
172 |
content = f.read()
|
173 |
rag.insert(content)
|
174 |
doc_manager.mark_as_indexed(file_path)
|
175 |
indexed_count += 1
|
176 |
except Exception as e:
|
177 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
178 |
-
|
179 |
return {
|
180 |
"status": "success",
|
181 |
"indexed_count": indexed_count,
|
182 |
-
"total_documents": len(doc_manager.indexed_files)
|
183 |
}
|
184 |
except Exception as e:
|
185 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -191,23 +240,23 @@ def create_app(args):
|
|
191 |
if not doc_manager.is_supported_file(file.filename):
|
192 |
raise HTTPException(
|
193 |
status_code=400,
|
194 |
-
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
195 |
)
|
196 |
-
|
197 |
file_path = doc_manager.input_dir / file.filename
|
198 |
with open(file_path, "wb") as buffer:
|
199 |
shutil.copyfileobj(file.file, buffer)
|
200 |
-
|
201 |
# Immediately index the uploaded file
|
202 |
with open(file_path, "r", encoding="utf-8") as f:
|
203 |
content = f.read()
|
204 |
rag.insert(content)
|
205 |
doc_manager.mark_as_indexed(file_path)
|
206 |
-
|
207 |
return {
|
208 |
"status": "success",
|
209 |
"message": f"File uploaded and indexed: {file.filename}",
|
210 |
-
"total_documents": len(doc_manager.indexed_files)
|
211 |
}
|
212 |
except Exception as e:
|
213 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -217,9 +266,9 @@ def create_app(args):
|
|
217 |
try:
|
218 |
response = await rag.aquery(
|
219 |
request.query,
|
220 |
-
param=QueryParam(mode=request.mode, stream=request.stream)
|
221 |
)
|
222 |
-
|
223 |
if request.stream:
|
224 |
result = ""
|
225 |
async for chunk in response:
|
@@ -234,14 +283,13 @@ def create_app(args):
|
|
234 |
async def query_text_stream(request: QueryRequest):
|
235 |
try:
|
236 |
response = rag.query(
|
237 |
-
request.query,
|
238 |
-
param=QueryParam(mode=request.mode, stream=True)
|
239 |
)
|
240 |
-
|
241 |
async def stream_generator():
|
242 |
async for chunk in response:
|
243 |
yield chunk
|
244 |
-
|
245 |
return stream_generator()
|
246 |
except Exception as e:
|
247 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -253,32 +301,29 @@ def create_app(args):
|
|
253 |
return InsertResponse(
|
254 |
status="success",
|
255 |
message="Text successfully inserted",
|
256 |
-
document_count=len(rag)
|
257 |
)
|
258 |
except Exception as e:
|
259 |
raise HTTPException(status_code=500, detail=str(e))
|
260 |
|
261 |
@app.post("/documents/file", response_model=InsertResponse)
|
262 |
-
async def insert_file(
|
263 |
-
file: UploadFile = File(...),
|
264 |
-
description: str = Form(None)
|
265 |
-
):
|
266 |
try:
|
267 |
content = await file.read()
|
268 |
-
|
269 |
-
if file.filename.endswith((
|
270 |
-
text = content.decode(
|
271 |
rag.insert(text)
|
272 |
else:
|
273 |
raise HTTPException(
|
274 |
status_code=400,
|
275 |
-
detail="Unsupported file type. Only .txt and .md files are supported"
|
276 |
)
|
277 |
-
|
278 |
return InsertResponse(
|
279 |
status="success",
|
280 |
message=f"File '{file.filename}' successfully inserted",
|
281 |
-
document_count=len(rag)
|
282 |
)
|
283 |
except UnicodeDecodeError:
|
284 |
raise HTTPException(status_code=400, detail="File encoding not supported")
|
@@ -290,27 +335,27 @@ def create_app(args):
|
|
290 |
try:
|
291 |
inserted_count = 0
|
292 |
failed_files = []
|
293 |
-
|
294 |
for file in files:
|
295 |
try:
|
296 |
content = await file.read()
|
297 |
-
if file.filename.endswith((
|
298 |
-
text = content.decode(
|
299 |
rag.insert(text)
|
300 |
inserted_count += 1
|
301 |
else:
|
302 |
failed_files.append(f"{file.filename} (unsupported type)")
|
303 |
except Exception as e:
|
304 |
failed_files.append(f"{file.filename} ({str(e)})")
|
305 |
-
|
306 |
status_message = f"Successfully inserted {inserted_count} documents"
|
307 |
if failed_files:
|
308 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
309 |
-
|
310 |
return InsertResponse(
|
311 |
status="success" if inserted_count > 0 else "partial_success",
|
312 |
message=status_message,
|
313 |
-
document_count=len(rag)
|
314 |
)
|
315 |
except Exception as e:
|
316 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -324,12 +369,11 @@ def create_app(args):
|
|
324 |
return InsertResponse(
|
325 |
status="success",
|
326 |
message="All documents cleared successfully",
|
327 |
-
document_count=0
|
328 |
)
|
329 |
except Exception as e:
|
330 |
raise HTTPException(status_code=500, detail=str(e))
|
331 |
|
332 |
-
|
333 |
@app.get("/health")
|
334 |
async def get_status():
|
335 |
"""Get current system status"""
|
@@ -342,14 +386,16 @@ def create_app(args):
|
|
342 |
"model": args.model,
|
343 |
"embedding_model": args.embedding_model,
|
344 |
"max_tokens": args.max_tokens,
|
345 |
-
"ollama_host": args.ollama_host
|
346 |
-
}
|
347 |
}
|
348 |
|
349 |
return app
|
350 |
|
|
|
351 |
if __name__ == "__main__":
|
352 |
args = parse_args()
|
353 |
import uvicorn
|
|
|
354 |
app = create_app(args)
|
355 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
|
|
2 |
from pydantic import BaseModel
|
|
|
|
|
3 |
import logging
|
4 |
import argparse
|
5 |
from lightrag import LightRAG, QueryParam
|
|
|
10 |
from pathlib import Path
|
11 |
import shutil
|
12 |
import aiofiles
|
13 |
+
from ascii_colors import trace_exception
|
14 |
+
|
15 |
|
16 |
def parse_args():
|
17 |
parser = argparse.ArgumentParser(
|
|
|
19 |
)
|
20 |
|
21 |
# Server configuration
|
22 |
+
parser.add_argument(
|
23 |
+
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
27 |
+
)
|
28 |
+
|
29 |
# Directory configuration
|
30 |
+
parser.add_argument(
|
31 |
+
"--working-dir",
|
32 |
+
default="./rag_storage",
|
33 |
+
help="Working directory for RAG storage (default: ./rag_storage)",
|
34 |
+
)
|
35 |
+
parser.add_argument(
|
36 |
+
"--input-dir",
|
37 |
+
default="./inputs",
|
38 |
+
help="Directory containing input documents (default: ./inputs)",
|
39 |
+
)
|
40 |
+
|
41 |
# Model configuration
|
42 |
+
parser.add_argument(
|
43 |
+
"--model",
|
44 |
+
default="mistral-nemo:latest",
|
45 |
+
help="LLM model name (default: mistral-nemo:latest)",
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--embedding-model",
|
49 |
+
default="bge-m3:latest",
|
50 |
+
help="Embedding model name (default: bge-m3:latest)",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--ollama-host",
|
54 |
+
default="http://localhost:11434",
|
55 |
+
help="Ollama host URL (default: http://localhost:11434)",
|
56 |
+
)
|
57 |
+
|
58 |
# RAG configuration
|
59 |
+
parser.add_argument(
|
60 |
+
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--max-tokens",
|
64 |
+
type=int,
|
65 |
+
default=32768,
|
66 |
+
help="Maximum token size (default: 32768)",
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--embedding-dim",
|
70 |
+
type=int,
|
71 |
+
default=1024,
|
72 |
+
help="Embedding dimensions (default: 1024)",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--max-embed-tokens",
|
76 |
+
type=int,
|
77 |
+
default=8192,
|
78 |
+
help="Maximum embedding token size (default: 8192)",
|
79 |
+
)
|
80 |
+
|
81 |
# Logging configuration
|
82 |
+
parser.add_argument(
|
83 |
+
"--log-level",
|
84 |
+
default="INFO",
|
85 |
+
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
86 |
+
help="Logging level (default: INFO)",
|
87 |
+
)
|
88 |
+
|
89 |
return parser.parse_args()
|
90 |
|
91 |
+
|
92 |
class DocumentManager:
|
93 |
"""Handles document operations and tracking"""
|
94 |
+
|
95 |
+
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
96 |
self.input_dir = Path(input_dir)
|
97 |
self.supported_extensions = supported_extensions
|
98 |
self.indexed_files = set()
|
99 |
+
|
100 |
# Create input directory if it doesn't exist
|
101 |
self.input_dir.mkdir(parents=True, exist_ok=True)
|
102 |
|
|
|
104 |
"""Scan input directory for new files"""
|
105 |
new_files = []
|
106 |
for ext in self.supported_extensions:
|
107 |
+
for file_path in self.input_dir.rglob(f"*{ext}"):
|
108 |
if file_path not in self.indexed_files:
|
109 |
new_files.append(file_path)
|
110 |
return new_files
|
|
|
117 |
"""Check if file type is supported"""
|
118 |
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
119 |
|
120 |
+
|
121 |
# Pydantic models
|
122 |
class SearchMode(str, Enum):
|
123 |
naive = "naive"
|
|
|
125 |
global_ = "global"
|
126 |
hybrid = "hybrid"
|
127 |
|
128 |
+
|
129 |
class QueryRequest(BaseModel):
|
130 |
query: str
|
131 |
mode: SearchMode = SearchMode.hybrid
|
132 |
stream: bool = False
|
133 |
|
134 |
+
|
135 |
class QueryResponse(BaseModel):
|
136 |
response: str
|
137 |
|
138 |
+
|
139 |
class InsertTextRequest(BaseModel):
|
140 |
text: str
|
141 |
description: Optional[str] = None
|
142 |
|
143 |
+
|
144 |
class InsertResponse(BaseModel):
|
145 |
status: str
|
146 |
message: str
|
147 |
document_count: int
|
148 |
|
149 |
+
|
150 |
def create_app(args):
|
151 |
# Setup logging
|
152 |
+
logging.basicConfig(
|
153 |
+
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
154 |
+
)
|
155 |
|
156 |
# Initialize FastAPI app
|
157 |
app = FastAPI(
|
158 |
title="LightRAG API",
|
159 |
+
description="API for querying text using LightRAG with separate storage and input directories",
|
160 |
)
|
161 |
|
162 |
# Create working directory if it doesn't exist
|
|
|
172 |
llm_model_name=args.model,
|
173 |
llm_model_max_async=args.max_async,
|
174 |
llm_model_max_token_size=args.max_tokens,
|
175 |
+
llm_model_kwargs={
|
176 |
+
"host": args.ollama_host,
|
177 |
+
"options": {"num_ctx": args.max_tokens},
|
178 |
+
},
|
179 |
embedding_func=EmbeddingFunc(
|
180 |
embedding_dim=args.embedding_dim,
|
181 |
max_token_size=args.max_embed_tokens,
|
|
|
184 |
),
|
185 |
),
|
186 |
)
|
187 |
+
|
188 |
@app.on_event("startup")
|
189 |
async def startup_event():
|
190 |
"""Index all files in input directory during startup"""
|
|
|
193 |
for file_path in new_files:
|
194 |
try:
|
195 |
# Use async file reading
|
196 |
+
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
197 |
content = await f.read()
|
198 |
# Use the async version of insert directly
|
199 |
await rag.ainsert(content)
|
|
|
202 |
except Exception as e:
|
203 |
trace_exception(e)
|
204 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
205 |
+
|
206 |
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
207 |
+
|
208 |
except Exception as e:
|
209 |
logging.error(f"Error during startup indexing: {str(e)}")
|
210 |
|
|
|
214 |
try:
|
215 |
new_files = doc_manager.scan_directory()
|
216 |
indexed_count = 0
|
217 |
+
|
218 |
for file_path in new_files:
|
219 |
try:
|
220 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
221 |
content = f.read()
|
222 |
rag.insert(content)
|
223 |
doc_manager.mark_as_indexed(file_path)
|
224 |
indexed_count += 1
|
225 |
except Exception as e:
|
226 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
227 |
+
|
228 |
return {
|
229 |
"status": "success",
|
230 |
"indexed_count": indexed_count,
|
231 |
+
"total_documents": len(doc_manager.indexed_files),
|
232 |
}
|
233 |
except Exception as e:
|
234 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
240 |
if not doc_manager.is_supported_file(file.filename):
|
241 |
raise HTTPException(
|
242 |
status_code=400,
|
243 |
+
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
244 |
)
|
245 |
+
|
246 |
file_path = doc_manager.input_dir / file.filename
|
247 |
with open(file_path, "wb") as buffer:
|
248 |
shutil.copyfileobj(file.file, buffer)
|
249 |
+
|
250 |
# Immediately index the uploaded file
|
251 |
with open(file_path, "r", encoding="utf-8") as f:
|
252 |
content = f.read()
|
253 |
rag.insert(content)
|
254 |
doc_manager.mark_as_indexed(file_path)
|
255 |
+
|
256 |
return {
|
257 |
"status": "success",
|
258 |
"message": f"File uploaded and indexed: {file.filename}",
|
259 |
+
"total_documents": len(doc_manager.indexed_files),
|
260 |
}
|
261 |
except Exception as e:
|
262 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
266 |
try:
|
267 |
response = await rag.aquery(
|
268 |
request.query,
|
269 |
+
param=QueryParam(mode=request.mode, stream=request.stream),
|
270 |
)
|
271 |
+
|
272 |
if request.stream:
|
273 |
result = ""
|
274 |
async for chunk in response:
|
|
|
283 |
async def query_text_stream(request: QueryRequest):
|
284 |
try:
|
285 |
response = rag.query(
|
286 |
+
request.query, param=QueryParam(mode=request.mode, stream=True)
|
|
|
287 |
)
|
288 |
+
|
289 |
async def stream_generator():
|
290 |
async for chunk in response:
|
291 |
yield chunk
|
292 |
+
|
293 |
return stream_generator()
|
294 |
except Exception as e:
|
295 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
301 |
return InsertResponse(
|
302 |
status="success",
|
303 |
message="Text successfully inserted",
|
304 |
+
document_count=len(rag),
|
305 |
)
|
306 |
except Exception as e:
|
307 |
raise HTTPException(status_code=500, detail=str(e))
|
308 |
|
309 |
@app.post("/documents/file", response_model=InsertResponse)
|
310 |
+
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
|
|
|
|
|
|
311 |
try:
|
312 |
content = await file.read()
|
313 |
+
|
314 |
+
if file.filename.endswith((".txt", ".md")):
|
315 |
+
text = content.decode("utf-8")
|
316 |
rag.insert(text)
|
317 |
else:
|
318 |
raise HTTPException(
|
319 |
status_code=400,
|
320 |
+
detail="Unsupported file type. Only .txt and .md files are supported",
|
321 |
)
|
322 |
+
|
323 |
return InsertResponse(
|
324 |
status="success",
|
325 |
message=f"File '{file.filename}' successfully inserted",
|
326 |
+
document_count=len(rag),
|
327 |
)
|
328 |
except UnicodeDecodeError:
|
329 |
raise HTTPException(status_code=400, detail="File encoding not supported")
|
|
|
335 |
try:
|
336 |
inserted_count = 0
|
337 |
failed_files = []
|
338 |
+
|
339 |
for file in files:
|
340 |
try:
|
341 |
content = await file.read()
|
342 |
+
if file.filename.endswith((".txt", ".md")):
|
343 |
+
text = content.decode("utf-8")
|
344 |
rag.insert(text)
|
345 |
inserted_count += 1
|
346 |
else:
|
347 |
failed_files.append(f"{file.filename} (unsupported type)")
|
348 |
except Exception as e:
|
349 |
failed_files.append(f"{file.filename} ({str(e)})")
|
350 |
+
|
351 |
status_message = f"Successfully inserted {inserted_count} documents"
|
352 |
if failed_files:
|
353 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
354 |
+
|
355 |
return InsertResponse(
|
356 |
status="success" if inserted_count > 0 else "partial_success",
|
357 |
message=status_message,
|
358 |
+
document_count=len(rag),
|
359 |
)
|
360 |
except Exception as e:
|
361 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
369 |
return InsertResponse(
|
370 |
status="success",
|
371 |
message="All documents cleared successfully",
|
372 |
+
document_count=0,
|
373 |
)
|
374 |
except Exception as e:
|
375 |
raise HTTPException(status_code=500, detail=str(e))
|
376 |
|
|
|
377 |
@app.get("/health")
|
378 |
async def get_status():
|
379 |
"""Get current system status"""
|
|
|
386 |
"model": args.model,
|
387 |
"embedding_model": args.embedding_model,
|
388 |
"max_tokens": args.max_tokens,
|
389 |
+
"ollama_host": args.ollama_host,
|
390 |
+
},
|
391 |
}
|
392 |
|
393 |
return app
|
394 |
|
395 |
+
|
396 |
if __name__ == "__main__":
|
397 |
args = parse_args()
|
398 |
import uvicorn
|
399 |
+
|
400 |
app = create_app(args)
|
401 |
uvicorn.run(app, host=args.host, port=args.port)
|
api/openai_lightrag_server.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
import asyncio
|
5 |
-
import os
|
6 |
import logging
|
7 |
import argparse
|
8 |
from lightrag import LightRAG, QueryParam
|
@@ -13,53 +11,81 @@ from enum import Enum
|
|
13 |
from pathlib import Path
|
14 |
import shutil
|
15 |
import aiofiles
|
16 |
-
from ascii_colors import
|
17 |
-
import numpy as np
|
18 |
import nest_asyncio
|
19 |
|
20 |
# Apply nest_asyncio to solve event loop issues
|
21 |
nest_asyncio.apply()
|
22 |
|
|
|
23 |
def parse_args():
|
24 |
parser = argparse.ArgumentParser(
|
25 |
description="LightRAG FastAPI Server with OpenAI integration"
|
26 |
)
|
27 |
|
28 |
# Server configuration
|
29 |
-
parser.add_argument(
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
# Directory configuration
|
33 |
-
parser.add_argument(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Model configuration
|
39 |
-
parser.add_argument(
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
# RAG configuration
|
44 |
-
parser.add_argument(
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Logging configuration
|
49 |
-
parser.add_argument(
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
return parser.parse_args()
|
54 |
|
|
|
55 |
class DocumentManager:
|
56 |
"""Handles document operations and tracking"""
|
57 |
-
|
58 |
-
def __init__(self, input_dir: str, supported_extensions: tuple = (
|
59 |
self.input_dir = Path(input_dir)
|
60 |
self.supported_extensions = supported_extensions
|
61 |
self.indexed_files = set()
|
62 |
-
|
63 |
# Create input directory if it doesn't exist
|
64 |
self.input_dir.mkdir(parents=True, exist_ok=True)
|
65 |
|
@@ -67,7 +93,7 @@ class DocumentManager:
|
|
67 |
"""Scan input directory for new files"""
|
68 |
new_files = []
|
69 |
for ext in self.supported_extensions:
|
70 |
-
for file_path in self.input_dir.rglob(f
|
71 |
if file_path not in self.indexed_files:
|
72 |
new_files.append(file_path)
|
73 |
return new_files
|
@@ -80,6 +106,7 @@ class DocumentManager:
|
|
80 |
"""Check if file type is supported"""
|
81 |
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
82 |
|
|
|
83 |
# Pydantic models
|
84 |
class SearchMode(str, Enum):
|
85 |
naive = "naive"
|
@@ -87,37 +114,45 @@ class SearchMode(str, Enum):
|
|
87 |
global_ = "global"
|
88 |
hybrid = "hybrid"
|
89 |
|
|
|
90 |
class QueryRequest(BaseModel):
|
91 |
query: str
|
92 |
mode: SearchMode = SearchMode.hybrid
|
93 |
stream: bool = False
|
94 |
|
|
|
95 |
class QueryResponse(BaseModel):
|
96 |
response: str
|
97 |
|
|
|
98 |
class InsertTextRequest(BaseModel):
|
99 |
text: str
|
100 |
description: Optional[str] = None
|
101 |
|
|
|
102 |
class InsertResponse(BaseModel):
|
103 |
status: str
|
104 |
message: str
|
105 |
document_count: int
|
106 |
|
|
|
107 |
async def get_embedding_dim(embedding_model: str) -> int:
|
108 |
"""Get embedding dimensions for the specified model"""
|
109 |
test_text = ["This is a test sentence."]
|
110 |
embedding = await openai_embedding(test_text, model=embedding_model)
|
111 |
return embedding.shape[1]
|
112 |
|
|
|
113 |
def create_app(args):
|
114 |
# Setup logging
|
115 |
-
logging.basicConfig(
|
|
|
|
|
116 |
|
117 |
# Initialize FastAPI app
|
118 |
app = FastAPI(
|
119 |
title="LightRAG API",
|
120 |
-
description="API for querying text using LightRAG with OpenAI integration"
|
121 |
)
|
122 |
|
123 |
# Create working directory if it doesn't exist
|
@@ -129,6 +164,18 @@ def create_app(args):
|
|
129 |
# Get embedding dimensions
|
130 |
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
# Initialize RAG with OpenAI configuration
|
133 |
rag = LightRAG(
|
134 |
working_dir=args.working_dir,
|
@@ -142,15 +189,6 @@ def create_app(args):
|
|
142 |
),
|
143 |
)
|
144 |
|
145 |
-
async def async_openai_complete(prompt, system_prompt=None, history_messages=[], **kwargs):
|
146 |
-
"""Async wrapper for OpenAI completion"""
|
147 |
-
return await openai_complete_if_cache(
|
148 |
-
args.model,
|
149 |
-
prompt,
|
150 |
-
system_prompt=system_prompt,
|
151 |
-
history_messages=history_messages,
|
152 |
-
**kwargs
|
153 |
-
)
|
154 |
@app.on_event("startup")
|
155 |
async def startup_event():
|
156 |
"""Index all files in input directory during startup"""
|
@@ -159,7 +197,7 @@ def create_app(args):
|
|
159 |
for file_path in new_files:
|
160 |
try:
|
161 |
# Use async file reading
|
162 |
-
async with aiofiles.open(file_path,
|
163 |
content = await f.read()
|
164 |
# Use the async version of insert directly
|
165 |
await rag.ainsert(content)
|
@@ -168,9 +206,9 @@ def create_app(args):
|
|
168 |
except Exception as e:
|
169 |
trace_exception(e)
|
170 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
171 |
-
|
172 |
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
173 |
-
|
174 |
except Exception as e:
|
175 |
logging.error(f"Error during startup indexing: {str(e)}")
|
176 |
|
@@ -180,21 +218,21 @@ def create_app(args):
|
|
180 |
try:
|
181 |
new_files = doc_manager.scan_directory()
|
182 |
indexed_count = 0
|
183 |
-
|
184 |
for file_path in new_files:
|
185 |
try:
|
186 |
-
with open(file_path,
|
187 |
content = f.read()
|
188 |
rag.insert(content)
|
189 |
doc_manager.mark_as_indexed(file_path)
|
190 |
indexed_count += 1
|
191 |
except Exception as e:
|
192 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
193 |
-
|
194 |
return {
|
195 |
"status": "success",
|
196 |
"indexed_count": indexed_count,
|
197 |
-
"total_documents": len(doc_manager.indexed_files)
|
198 |
}
|
199 |
except Exception as e:
|
200 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -206,23 +244,23 @@ def create_app(args):
|
|
206 |
if not doc_manager.is_supported_file(file.filename):
|
207 |
raise HTTPException(
|
208 |
status_code=400,
|
209 |
-
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
210 |
)
|
211 |
-
|
212 |
file_path = doc_manager.input_dir / file.filename
|
213 |
with open(file_path, "wb") as buffer:
|
214 |
shutil.copyfileobj(file.file, buffer)
|
215 |
-
|
216 |
# Immediately index the uploaded file
|
217 |
with open(file_path, "r", encoding="utf-8") as f:
|
218 |
content = f.read()
|
219 |
rag.insert(content)
|
220 |
doc_manager.mark_as_indexed(file_path)
|
221 |
-
|
222 |
return {
|
223 |
"status": "success",
|
224 |
"message": f"File uploaded and indexed: {file.filename}",
|
225 |
-
"total_documents": len(doc_manager.indexed_files)
|
226 |
}
|
227 |
except Exception as e:
|
228 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -232,9 +270,9 @@ def create_app(args):
|
|
232 |
try:
|
233 |
response = await rag.aquery(
|
234 |
request.query,
|
235 |
-
param=QueryParam(mode=request.mode, stream=request.stream)
|
236 |
)
|
237 |
-
|
238 |
if request.stream:
|
239 |
result = ""
|
240 |
async for chunk in response:
|
@@ -249,14 +287,13 @@ def create_app(args):
|
|
249 |
async def query_text_stream(request: QueryRequest):
|
250 |
try:
|
251 |
response = rag.query(
|
252 |
-
request.query,
|
253 |
-
param=QueryParam(mode=request.mode, stream=True)
|
254 |
)
|
255 |
-
|
256 |
async def stream_generator():
|
257 |
async for chunk in response:
|
258 |
yield chunk
|
259 |
-
|
260 |
return stream_generator()
|
261 |
except Exception as e:
|
262 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -268,32 +305,29 @@ def create_app(args):
|
|
268 |
return InsertResponse(
|
269 |
status="success",
|
270 |
message="Text successfully inserted",
|
271 |
-
document_count=len(rag)
|
272 |
)
|
273 |
except Exception as e:
|
274 |
raise HTTPException(status_code=500, detail=str(e))
|
275 |
|
276 |
@app.post("/documents/file", response_model=InsertResponse)
|
277 |
-
async def insert_file(
|
278 |
-
file: UploadFile = File(...),
|
279 |
-
description: str = Form(None)
|
280 |
-
):
|
281 |
try:
|
282 |
content = await file.read()
|
283 |
-
|
284 |
-
if file.filename.endswith((
|
285 |
-
text = content.decode(
|
286 |
rag.insert(text)
|
287 |
else:
|
288 |
raise HTTPException(
|
289 |
status_code=400,
|
290 |
-
detail="Unsupported file type. Only .txt and .md files are supported"
|
291 |
)
|
292 |
-
|
293 |
return InsertResponse(
|
294 |
status="success",
|
295 |
message=f"File '{file.filename}' successfully inserted",
|
296 |
-
document_count=len(rag)
|
297 |
)
|
298 |
except UnicodeDecodeError:
|
299 |
raise HTTPException(status_code=400, detail="File encoding not supported")
|
@@ -305,27 +339,27 @@ def create_app(args):
|
|
305 |
try:
|
306 |
inserted_count = 0
|
307 |
failed_files = []
|
308 |
-
|
309 |
for file in files:
|
310 |
try:
|
311 |
content = await file.read()
|
312 |
-
if file.filename.endswith((
|
313 |
-
text = content.decode(
|
314 |
rag.insert(text)
|
315 |
inserted_count += 1
|
316 |
else:
|
317 |
failed_files.append(f"{file.filename} (unsupported type)")
|
318 |
except Exception as e:
|
319 |
failed_files.append(f"{file.filename} ({str(e)})")
|
320 |
-
|
321 |
status_message = f"Successfully inserted {inserted_count} documents"
|
322 |
if failed_files:
|
323 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
324 |
-
|
325 |
return InsertResponse(
|
326 |
status="success" if inserted_count > 0 else "partial_success",
|
327 |
message=status_message,
|
328 |
-
document_count=len(rag)
|
329 |
)
|
330 |
except Exception as e:
|
331 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -339,7 +373,7 @@ def create_app(args):
|
|
339 |
return InsertResponse(
|
340 |
status="success",
|
341 |
message="All documents cleared successfully",
|
342 |
-
document_count=0
|
343 |
)
|
344 |
except Exception as e:
|
345 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -356,14 +390,16 @@ def create_app(args):
|
|
356 |
"model": args.model,
|
357 |
"embedding_model": args.embedding_model,
|
358 |
"max_tokens": args.max_tokens,
|
359 |
-
"embedding_dim": embedding_dim
|
360 |
-
}
|
361 |
}
|
362 |
|
363 |
return app
|
364 |
|
|
|
365 |
if __name__ == "__main__":
|
366 |
args = parse_args()
|
367 |
import uvicorn
|
|
|
368 |
app = create_app(args)
|
369 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import asyncio
|
|
|
4 |
import logging
|
5 |
import argparse
|
6 |
from lightrag import LightRAG, QueryParam
|
|
|
11 |
from pathlib import Path
|
12 |
import shutil
|
13 |
import aiofiles
|
14 |
+
from ascii_colors import trace_exception
|
|
|
15 |
import nest_asyncio
|
16 |
|
17 |
# Apply nest_asyncio to solve event loop issues
|
18 |
nest_asyncio.apply()
|
19 |
|
20 |
+
|
21 |
def parse_args():
|
22 |
parser = argparse.ArgumentParser(
|
23 |
description="LightRAG FastAPI Server with OpenAI integration"
|
24 |
)
|
25 |
|
26 |
# Server configuration
|
27 |
+
parser.add_argument(
|
28 |
+
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
32 |
+
)
|
33 |
+
|
34 |
# Directory configuration
|
35 |
+
parser.add_argument(
|
36 |
+
"--working-dir",
|
37 |
+
default="./rag_storage",
|
38 |
+
help="Working directory for RAG storage (default: ./rag_storage)",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--input-dir",
|
42 |
+
default="./inputs",
|
43 |
+
help="Directory containing input documents (default: ./inputs)",
|
44 |
+
)
|
45 |
+
|
46 |
# Model configuration
|
47 |
+
parser.add_argument(
|
48 |
+
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--embedding-model",
|
52 |
+
default="text-embedding-3-large",
|
53 |
+
help="OpenAI embedding model (default: text-embedding-3-large)",
|
54 |
+
)
|
55 |
+
|
56 |
# RAG configuration
|
57 |
+
parser.add_argument(
|
58 |
+
"--max-tokens",
|
59 |
+
type=int,
|
60 |
+
default=32768,
|
61 |
+
help="Maximum token size (default: 32768)",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--max-embed-tokens",
|
65 |
+
type=int,
|
66 |
+
default=8192,
|
67 |
+
help="Maximum embedding token size (default: 8192)",
|
68 |
+
)
|
69 |
+
|
70 |
# Logging configuration
|
71 |
+
parser.add_argument(
|
72 |
+
"--log-level",
|
73 |
+
default="INFO",
|
74 |
+
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
75 |
+
help="Logging level (default: INFO)",
|
76 |
+
)
|
77 |
+
|
78 |
return parser.parse_args()
|
79 |
|
80 |
+
|
81 |
class DocumentManager:
|
82 |
"""Handles document operations and tracking"""
|
83 |
+
|
84 |
+
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
85 |
self.input_dir = Path(input_dir)
|
86 |
self.supported_extensions = supported_extensions
|
87 |
self.indexed_files = set()
|
88 |
+
|
89 |
# Create input directory if it doesn't exist
|
90 |
self.input_dir.mkdir(parents=True, exist_ok=True)
|
91 |
|
|
|
93 |
"""Scan input directory for new files"""
|
94 |
new_files = []
|
95 |
for ext in self.supported_extensions:
|
96 |
+
for file_path in self.input_dir.rglob(f"*{ext}"):
|
97 |
if file_path not in self.indexed_files:
|
98 |
new_files.append(file_path)
|
99 |
return new_files
|
|
|
106 |
"""Check if file type is supported"""
|
107 |
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
108 |
|
109 |
+
|
110 |
# Pydantic models
|
111 |
class SearchMode(str, Enum):
|
112 |
naive = "naive"
|
|
|
114 |
global_ = "global"
|
115 |
hybrid = "hybrid"
|
116 |
|
117 |
+
|
118 |
class QueryRequest(BaseModel):
|
119 |
query: str
|
120 |
mode: SearchMode = SearchMode.hybrid
|
121 |
stream: bool = False
|
122 |
|
123 |
+
|
124 |
class QueryResponse(BaseModel):
|
125 |
response: str
|
126 |
|
127 |
+
|
128 |
class InsertTextRequest(BaseModel):
|
129 |
text: str
|
130 |
description: Optional[str] = None
|
131 |
|
132 |
+
|
133 |
class InsertResponse(BaseModel):
|
134 |
status: str
|
135 |
message: str
|
136 |
document_count: int
|
137 |
|
138 |
+
|
139 |
async def get_embedding_dim(embedding_model: str) -> int:
|
140 |
"""Get embedding dimensions for the specified model"""
|
141 |
test_text = ["This is a test sentence."]
|
142 |
embedding = await openai_embedding(test_text, model=embedding_model)
|
143 |
return embedding.shape[1]
|
144 |
|
145 |
+
|
146 |
def create_app(args):
|
147 |
# Setup logging
|
148 |
+
logging.basicConfig(
|
149 |
+
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
150 |
+
)
|
151 |
|
152 |
# Initialize FastAPI app
|
153 |
app = FastAPI(
|
154 |
title="LightRAG API",
|
155 |
+
description="API for querying text using LightRAG with OpenAI integration",
|
156 |
)
|
157 |
|
158 |
# Create working directory if it doesn't exist
|
|
|
164 |
# Get embedding dimensions
|
165 |
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
166 |
|
167 |
+
async def async_openai_complete(
|
168 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
169 |
+
):
|
170 |
+
"""Async wrapper for OpenAI completion"""
|
171 |
+
return await openai_complete_if_cache(
|
172 |
+
args.model,
|
173 |
+
prompt,
|
174 |
+
system_prompt=system_prompt,
|
175 |
+
history_messages=history_messages,
|
176 |
+
**kwargs,
|
177 |
+
)
|
178 |
+
|
179 |
# Initialize RAG with OpenAI configuration
|
180 |
rag = LightRAG(
|
181 |
working_dir=args.working_dir,
|
|
|
189 |
),
|
190 |
)
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
@app.on_event("startup")
|
193 |
async def startup_event():
|
194 |
"""Index all files in input directory during startup"""
|
|
|
197 |
for file_path in new_files:
|
198 |
try:
|
199 |
# Use async file reading
|
200 |
+
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
201 |
content = await f.read()
|
202 |
# Use the async version of insert directly
|
203 |
await rag.ainsert(content)
|
|
|
206 |
except Exception as e:
|
207 |
trace_exception(e)
|
208 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
209 |
+
|
210 |
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
211 |
+
|
212 |
except Exception as e:
|
213 |
logging.error(f"Error during startup indexing: {str(e)}")
|
214 |
|
|
|
218 |
try:
|
219 |
new_files = doc_manager.scan_directory()
|
220 |
indexed_count = 0
|
221 |
+
|
222 |
for file_path in new_files:
|
223 |
try:
|
224 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
225 |
content = f.read()
|
226 |
rag.insert(content)
|
227 |
doc_manager.mark_as_indexed(file_path)
|
228 |
indexed_count += 1
|
229 |
except Exception as e:
|
230 |
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
231 |
+
|
232 |
return {
|
233 |
"status": "success",
|
234 |
"indexed_count": indexed_count,
|
235 |
+
"total_documents": len(doc_manager.indexed_files),
|
236 |
}
|
237 |
except Exception as e:
|
238 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
244 |
if not doc_manager.is_supported_file(file.filename):
|
245 |
raise HTTPException(
|
246 |
status_code=400,
|
247 |
+
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
248 |
)
|
249 |
+
|
250 |
file_path = doc_manager.input_dir / file.filename
|
251 |
with open(file_path, "wb") as buffer:
|
252 |
shutil.copyfileobj(file.file, buffer)
|
253 |
+
|
254 |
# Immediately index the uploaded file
|
255 |
with open(file_path, "r", encoding="utf-8") as f:
|
256 |
content = f.read()
|
257 |
rag.insert(content)
|
258 |
doc_manager.mark_as_indexed(file_path)
|
259 |
+
|
260 |
return {
|
261 |
"status": "success",
|
262 |
"message": f"File uploaded and indexed: {file.filename}",
|
263 |
+
"total_documents": len(doc_manager.indexed_files),
|
264 |
}
|
265 |
except Exception as e:
|
266 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
270 |
try:
|
271 |
response = await rag.aquery(
|
272 |
request.query,
|
273 |
+
param=QueryParam(mode=request.mode, stream=request.stream),
|
274 |
)
|
275 |
+
|
276 |
if request.stream:
|
277 |
result = ""
|
278 |
async for chunk in response:
|
|
|
287 |
async def query_text_stream(request: QueryRequest):
|
288 |
try:
|
289 |
response = rag.query(
|
290 |
+
request.query, param=QueryParam(mode=request.mode, stream=True)
|
|
|
291 |
)
|
292 |
+
|
293 |
async def stream_generator():
|
294 |
async for chunk in response:
|
295 |
yield chunk
|
296 |
+
|
297 |
return stream_generator()
|
298 |
except Exception as e:
|
299 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
305 |
return InsertResponse(
|
306 |
status="success",
|
307 |
message="Text successfully inserted",
|
308 |
+
document_count=len(rag),
|
309 |
)
|
310 |
except Exception as e:
|
311 |
raise HTTPException(status_code=500, detail=str(e))
|
312 |
|
313 |
@app.post("/documents/file", response_model=InsertResponse)
|
314 |
+
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
|
|
|
|
|
|
315 |
try:
|
316 |
content = await file.read()
|
317 |
+
|
318 |
+
if file.filename.endswith((".txt", ".md")):
|
319 |
+
text = content.decode("utf-8")
|
320 |
rag.insert(text)
|
321 |
else:
|
322 |
raise HTTPException(
|
323 |
status_code=400,
|
324 |
+
detail="Unsupported file type. Only .txt and .md files are supported",
|
325 |
)
|
326 |
+
|
327 |
return InsertResponse(
|
328 |
status="success",
|
329 |
message=f"File '{file.filename}' successfully inserted",
|
330 |
+
document_count=len(rag),
|
331 |
)
|
332 |
except UnicodeDecodeError:
|
333 |
raise HTTPException(status_code=400, detail="File encoding not supported")
|
|
|
339 |
try:
|
340 |
inserted_count = 0
|
341 |
failed_files = []
|
342 |
+
|
343 |
for file in files:
|
344 |
try:
|
345 |
content = await file.read()
|
346 |
+
if file.filename.endswith((".txt", ".md")):
|
347 |
+
text = content.decode("utf-8")
|
348 |
rag.insert(text)
|
349 |
inserted_count += 1
|
350 |
else:
|
351 |
failed_files.append(f"{file.filename} (unsupported type)")
|
352 |
except Exception as e:
|
353 |
failed_files.append(f"{file.filename} ({str(e)})")
|
354 |
+
|
355 |
status_message = f"Successfully inserted {inserted_count} documents"
|
356 |
if failed_files:
|
357 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
358 |
+
|
359 |
return InsertResponse(
|
360 |
status="success" if inserted_count > 0 else "partial_success",
|
361 |
message=status_message,
|
362 |
+
document_count=len(rag),
|
363 |
)
|
364 |
except Exception as e:
|
365 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
373 |
return InsertResponse(
|
374 |
status="success",
|
375 |
message="All documents cleared successfully",
|
376 |
+
document_count=0,
|
377 |
)
|
378 |
except Exception as e:
|
379 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
390 |
"model": args.model,
|
391 |
"embedding_model": args.embedding_model,
|
392 |
"max_tokens": args.max_tokens,
|
393 |
+
"embedding_dim": embedding_dim,
|
394 |
+
},
|
395 |
}
|
396 |
|
397 |
return app
|
398 |
|
399 |
+
|
400 |
if __name__ == "__main__":
|
401 |
args = parse_args()
|
402 |
import uvicorn
|
403 |
+
|
404 |
app = create_app(args)
|
405 |
uvicorn.run(app, host=args.host, port=args.port)
|
api/requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
|
|
1 |
fastapi
|
2 |
-
uvicorn
|
3 |
python-multipart
|
4 |
-
|
|
|
1 |
+
ascii_colors
|
2 |
fastapi
|
|
|
3 |
python-multipart
|
4 |
+
uvicorn
|