Merge pull request #791 from ArnoChenFx/refactor-server
Browse filesRefactor File Indexing for Background Asynchronous Processing
- lightrag/api/lightrag_server.py +381 -312
- lightrag/base.py +4 -14
- lightrag/kg/json_doc_status_impl.py +5 -27
- lightrag/kg/mongo_impl.py +1 -17
- lightrag/kg/postgres_impl.py +1 -17
- lightrag/lightrag.py +5 -5
lightrag/api/lightrag_server.py
CHANGED
@@ -3,7 +3,6 @@ from fastapi import (
|
|
3 |
HTTPException,
|
4 |
File,
|
5 |
UploadFile,
|
6 |
-
Form,
|
7 |
BackgroundTasks,
|
8 |
)
|
9 |
import asyncio
|
@@ -14,7 +13,7 @@ import re
|
|
14 |
from fastapi.staticfiles import StaticFiles
|
15 |
import logging
|
16 |
import argparse
|
17 |
-
from typing import List, Any, Optional,
|
18 |
from pydantic import BaseModel
|
19 |
from lightrag import LightRAG, QueryParam
|
20 |
from lightrag.types import GPTKeywordExtractionFormat
|
@@ -34,6 +33,9 @@ from starlette.status import HTTP_403_FORBIDDEN
|
|
34 |
import pipmaster as pm
|
35 |
from dotenv import load_dotenv
|
36 |
import configparser
|
|
|
|
|
|
|
37 |
from lightrag.utils import logger
|
38 |
from .ollama_api import (
|
39 |
OllamaAPI,
|
@@ -635,9 +637,47 @@ class SearchMode(str, Enum):
|
|
635 |
|
636 |
class QueryRequest(BaseModel):
|
637 |
query: str
|
|
|
|
|
638 |
mode: SearchMode = SearchMode.hybrid
|
639 |
-
|
640 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
|
642 |
|
643 |
class QueryResponse(BaseModel):
|
@@ -646,13 +686,38 @@ class QueryResponse(BaseModel):
|
|
646 |
|
647 |
class InsertTextRequest(BaseModel):
|
648 |
text: str
|
649 |
-
description: Optional[str] = None
|
650 |
|
651 |
|
652 |
class InsertResponse(BaseModel):
|
653 |
status: str
|
654 |
message: str
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
657 |
|
658 |
def get_api_key_dependency(api_key: Optional[str]):
|
@@ -666,7 +731,9 @@ def get_api_key_dependency(api_key: Optional[str]):
|
|
666 |
# If API key is configured, use proper authentication
|
667 |
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
668 |
|
669 |
-
async def api_key_auth(
|
|
|
|
|
670 |
if not api_key_header_value:
|
671 |
raise HTTPException(
|
672 |
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
@@ -682,6 +749,7 @@ def get_api_key_dependency(api_key: Optional[str]):
|
|
682 |
|
683 |
# Global configuration
|
684 |
global_top_k = 60 # default value
|
|
|
685 |
|
686 |
|
687 |
def create_app(args):
|
@@ -1132,79 +1200,162 @@ def create_app(args):
|
|
1132 |
("llm_response_cache", rag.llm_response_cache),
|
1133 |
]
|
1134 |
|
1135 |
-
async def
|
1136 |
-
"""
|
1137 |
|
1138 |
Args:
|
1139 |
-
file_path: Path to the file
|
1140 |
-
|
1141 |
-
|
1142 |
-
ValueError: If file format is not supported
|
1143 |
-
FileNotFoundError: If file doesn't exist
|
1144 |
"""
|
1145 |
-
|
1146 |
-
|
|
|
1147 |
|
1148 |
-
|
1149 |
-
|
|
|
1150 |
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1154 |
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1158 |
|
1159 |
-
|
1160 |
-
|
1161 |
-
# Text files handling
|
1162 |
-
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
1163 |
-
content = await f.read()
|
1164 |
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
|
|
|
|
1169 |
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
result = converter.convert(file_path)
|
1174 |
-
return result.document.export_to_markdown()
|
1175 |
|
1176 |
-
|
|
|
1177 |
|
1178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1179 |
|
1180 |
-
|
1181 |
-
|
|
|
|
|
|
|
1182 |
|
1183 |
-
|
1184 |
-
|
1185 |
-
|
1186 |
-
|
1187 |
-
logging.
|
1188 |
-
else:
|
1189 |
-
logging.warning(f"No content extracted from file: {file_path}")
|
1190 |
|
1191 |
-
|
1192 |
-
|
1193 |
-
"""Trigger the scanning process"""
|
1194 |
-
global scan_progress
|
1195 |
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
|
|
|
|
|
|
|
|
1199 |
|
1200 |
-
|
1201 |
-
|
1202 |
-
scan_progress["progress"] = 0
|
1203 |
|
1204 |
-
|
1205 |
-
|
1206 |
|
1207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1208 |
|
1209 |
async def run_scanning_process():
|
1210 |
"""Background task to scan and index documents"""
|
@@ -1220,7 +1371,7 @@ def create_app(args):
|
|
1220 |
with progress_lock:
|
1221 |
scan_progress["current_file"] = os.path.basename(file_path)
|
1222 |
|
1223 |
-
await
|
1224 |
|
1225 |
with progress_lock:
|
1226 |
scan_progress["indexed_count"] += 1
|
@@ -1238,6 +1389,24 @@ def create_app(args):
|
|
1238 |
with progress_lock:
|
1239 |
scan_progress["is_scanning"] = False
|
1240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1241 |
@app.get("/documents/scan-progress")
|
1242 |
async def get_scan_progress():
|
1243 |
"""Get the current scanning progress"""
|
@@ -1245,7 +1414,9 @@ def create_app(args):
|
|
1245 |
return scan_progress
|
1246 |
|
1247 |
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
1248 |
-
async def upload_to_input_dir(
|
|
|
|
|
1249 |
"""
|
1250 |
Endpoint for uploading a file to the input directory and indexing it.
|
1251 |
|
@@ -1254,6 +1425,7 @@ def create_app(args):
|
|
1254 |
indexes it for retrieval, and returns a success status with relevant details.
|
1255 |
|
1256 |
Parameters:
|
|
|
1257 |
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
|
1258 |
`doc_manager.supported_extensions`.
|
1259 |
|
@@ -1278,121 +1450,16 @@ def create_app(args):
|
|
1278 |
with open(file_path, "wb") as buffer:
|
1279 |
shutil.copyfileobj(file.file, buffer)
|
1280 |
|
1281 |
-
#
|
1282 |
-
|
1283 |
-
|
1284 |
-
return {
|
1285 |
-
"status": "success",
|
1286 |
-
"message": f"File uploaded and indexed: {file.filename}",
|
1287 |
-
"total_documents": len(doc_manager.indexed_files),
|
1288 |
-
}
|
1289 |
-
except Exception as e:
|
1290 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1291 |
-
|
1292 |
-
@app.post(
|
1293 |
-
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
|
1294 |
-
)
|
1295 |
-
async def query_text(request: QueryRequest):
|
1296 |
-
"""
|
1297 |
-
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
1298 |
-
|
1299 |
-
Parameters:
|
1300 |
-
request (QueryRequest): A Pydantic model containing the following fields:
|
1301 |
-
- query (str): The text of the user's query.
|
1302 |
-
- mode (ModeEnum): Optional. Specifies the mode of retrieval augmentation.
|
1303 |
-
- stream (bool): Optional. Determines if the response should be streamed.
|
1304 |
-
- only_need_context (bool): Optional. If true, returns only the context without further processing.
|
1305 |
-
|
1306 |
-
Returns:
|
1307 |
-
QueryResponse: A Pydantic model containing the result of the query processing.
|
1308 |
-
If a string is returned (e.g., cache hit), it's directly returned.
|
1309 |
-
Otherwise, an async generator may be used to build the response.
|
1310 |
-
|
1311 |
-
Raises:
|
1312 |
-
HTTPException: Raised when an error occurs during the request handling process,
|
1313 |
-
with status code 500 and detail containing the exception message.
|
1314 |
-
"""
|
1315 |
-
try:
|
1316 |
-
response = await rag.aquery(
|
1317 |
-
request.query,
|
1318 |
-
param=QueryParam(
|
1319 |
-
mode=request.mode,
|
1320 |
-
stream=request.stream,
|
1321 |
-
only_need_context=request.only_need_context,
|
1322 |
-
top_k=global_top_k,
|
1323 |
-
),
|
1324 |
-
)
|
1325 |
-
|
1326 |
-
# If response is a string (e.g. cache hit), return directly
|
1327 |
-
if isinstance(response, str):
|
1328 |
-
return QueryResponse(response=response)
|
1329 |
-
|
1330 |
-
# If it's an async generator, decide whether to stream based on stream parameter
|
1331 |
-
if request.stream:
|
1332 |
-
result = ""
|
1333 |
-
async for chunk in response:
|
1334 |
-
result += chunk
|
1335 |
-
return QueryResponse(response=result)
|
1336 |
-
else:
|
1337 |
-
result = ""
|
1338 |
-
async for chunk in response:
|
1339 |
-
result += chunk
|
1340 |
-
return QueryResponse(response=result)
|
1341 |
-
except Exception as e:
|
1342 |
-
trace_exception(e)
|
1343 |
-
raise HTTPException(status_code=500, detail=str(e))
|
1344 |
-
|
1345 |
-
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
1346 |
-
async def query_text_stream(request: QueryRequest):
|
1347 |
-
"""
|
1348 |
-
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
1349 |
-
|
1350 |
-
Args:
|
1351 |
-
request (QueryRequest): The request object containing the query parameters.
|
1352 |
-
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
1353 |
-
|
1354 |
-
Returns:
|
1355 |
-
StreamingResponse: A streaming response containing the RAG query results.
|
1356 |
-
"""
|
1357 |
-
try:
|
1358 |
-
response = await rag.aquery( # Use aquery instead of query, and add await
|
1359 |
-
request.query,
|
1360 |
-
param=QueryParam(
|
1361 |
-
mode=request.mode,
|
1362 |
-
stream=True,
|
1363 |
-
only_need_context=request.only_need_context,
|
1364 |
-
top_k=global_top_k,
|
1365 |
-
),
|
1366 |
-
)
|
1367 |
-
|
1368 |
-
from fastapi.responses import StreamingResponse
|
1369 |
-
|
1370 |
-
async def stream_generator():
|
1371 |
-
if isinstance(response, str):
|
1372 |
-
# If it's a string, send it all at once
|
1373 |
-
yield f"{json.dumps({'response': response})}\n"
|
1374 |
-
else:
|
1375 |
-
# If it's an async generator, send chunks one by one
|
1376 |
-
try:
|
1377 |
-
async for chunk in response:
|
1378 |
-
if chunk: # Only send non-empty content
|
1379 |
-
yield f"{json.dumps({'response': chunk})}\n"
|
1380 |
-
except Exception as e:
|
1381 |
-
logging.error(f"Streaming error: {str(e)}")
|
1382 |
-
yield f"{json.dumps({'error': str(e)})}\n"
|
1383 |
|
1384 |
-
return
|
1385 |
-
|
1386 |
-
|
1387 |
-
headers={
|
1388 |
-
"Cache-Control": "no-cache",
|
1389 |
-
"Connection": "keep-alive",
|
1390 |
-
"Content-Type": "application/x-ndjson",
|
1391 |
-
"X-Accel-Buffering": "no", # 确保在Nginx代理时正确处理流式响应
|
1392 |
-
},
|
1393 |
)
|
1394 |
except Exception as e:
|
1395 |
-
|
|
|
1396 |
raise HTTPException(status_code=500, detail=str(e))
|
1397 |
|
1398 |
@app.post(
|
@@ -1400,7 +1467,9 @@ def create_app(args):
|
|
1400 |
response_model=InsertResponse,
|
1401 |
dependencies=[Depends(optional_api_key)],
|
1402 |
)
|
1403 |
-
async def insert_text(
|
|
|
|
|
1404 |
"""
|
1405 |
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
1406 |
|
@@ -1408,18 +1477,20 @@ def create_app(args):
|
|
1408 |
|
1409 |
Args:
|
1410 |
request (InsertTextRequest): The request body containing the text to be inserted.
|
|
|
1411 |
|
1412 |
Returns:
|
1413 |
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
1414 |
"""
|
1415 |
try:
|
1416 |
-
|
1417 |
return InsertResponse(
|
1418 |
status="success",
|
1419 |
-
message="Text successfully
|
1420 |
-
document_count=1,
|
1421 |
)
|
1422 |
except Exception as e:
|
|
|
|
|
1423 |
raise HTTPException(status_code=500, detail=str(e))
|
1424 |
|
1425 |
@app.post(
|
@@ -1427,12 +1498,14 @@ def create_app(args):
|
|
1427 |
response_model=InsertResponse,
|
1428 |
dependencies=[Depends(optional_api_key)],
|
1429 |
)
|
1430 |
-
async def insert_file(
|
|
|
|
|
1431 |
"""Insert a file directly into the RAG system
|
1432 |
|
1433 |
Args:
|
|
|
1434 |
file: Uploaded file
|
1435 |
-
description: Optional description of the file
|
1436 |
|
1437 |
Returns:
|
1438 |
InsertResponse: Status of the insertion operation
|
@@ -1441,68 +1514,26 @@ def create_app(args):
|
|
1441 |
HTTPException: For unsupported file types or processing errors
|
1442 |
"""
|
1443 |
try:
|
1444 |
-
|
1445 |
-
# Get file extension in lowercase
|
1446 |
-
ext = Path(file.filename).suffix.lower()
|
1447 |
-
|
1448 |
-
match ext:
|
1449 |
-
case ".txt" | ".md":
|
1450 |
-
# Text files handling
|
1451 |
-
text_content = await file.read()
|
1452 |
-
content = text_content.decode("utf-8")
|
1453 |
-
|
1454 |
-
case ".pdf" | ".docx" | ".pptx" | ".xlsx":
|
1455 |
-
if not pm.is_installed("docling"):
|
1456 |
-
pm.install("docling")
|
1457 |
-
from docling.document_converter import DocumentConverter
|
1458 |
-
|
1459 |
-
# Create a temporary file to save the uploaded content
|
1460 |
-
temp_path = Path("temp") / file.filename
|
1461 |
-
temp_path.parent.mkdir(exist_ok=True)
|
1462 |
-
|
1463 |
-
# Save the uploaded file
|
1464 |
-
with temp_path.open("wb") as f:
|
1465 |
-
f.write(await file.read())
|
1466 |
-
|
1467 |
-
try:
|
1468 |
-
|
1469 |
-
async def convert_doc():
|
1470 |
-
def sync_convert():
|
1471 |
-
converter = DocumentConverter()
|
1472 |
-
result = converter.convert(str(temp_path))
|
1473 |
-
return result.document.export_to_markdown()
|
1474 |
-
|
1475 |
-
return await asyncio.to_thread(sync_convert)
|
1476 |
-
|
1477 |
-
content = await convert_doc()
|
1478 |
-
finally:
|
1479 |
-
# Clean up the temporary file
|
1480 |
-
temp_path.unlink()
|
1481 |
-
|
1482 |
-
# Insert content into RAG system
|
1483 |
-
if content:
|
1484 |
-
# Add description if provided
|
1485 |
-
if description:
|
1486 |
-
content = f"{description}\n\n{content}"
|
1487 |
-
|
1488 |
-
await rag.ainsert(content)
|
1489 |
-
logging.info(f"Successfully indexed file: {file.filename}")
|
1490 |
-
|
1491 |
-
return InsertResponse(
|
1492 |
-
status="success",
|
1493 |
-
message=f"File '{file.filename}' successfully inserted",
|
1494 |
-
document_count=1,
|
1495 |
-
)
|
1496 |
-
else:
|
1497 |
raise HTTPException(
|
1498 |
status_code=400,
|
1499 |
-
detail="
|
1500 |
)
|
1501 |
|
1502 |
-
|
1503 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1504 |
except Exception as e:
|
1505 |
-
logging.error(f"Error
|
|
|
1506 |
raise HTTPException(status_code=500, detail=str(e))
|
1507 |
|
1508 |
@app.post(
|
@@ -1510,10 +1541,13 @@ def create_app(args):
|
|
1510 |
response_model=InsertResponse,
|
1511 |
dependencies=[Depends(optional_api_key)],
|
1512 |
)
|
1513 |
-
async def insert_batch(
|
|
|
|
|
1514 |
"""Process multiple files in batch mode
|
1515 |
|
1516 |
Args:
|
|
|
1517 |
files: List of files to process
|
1518 |
|
1519 |
Returns:
|
@@ -1525,72 +1559,18 @@ def create_app(args):
|
|
1525 |
try:
|
1526 |
inserted_count = 0
|
1527 |
failed_files = []
|
|
|
1528 |
|
1529 |
for file in files:
|
1530 |
-
|
1531 |
-
|
1532 |
-
|
1533 |
-
|
1534 |
-
|
1535 |
-
|
1536 |
-
text_content = await file.read()
|
1537 |
-
content = text_content.decode("utf-8")
|
1538 |
-
|
1539 |
-
case ".pdf":
|
1540 |
-
if not pm.is_installed("pypdf2"):
|
1541 |
-
pm.install("pypdf2")
|
1542 |
-
from PyPDF2 import PdfReader
|
1543 |
-
from io import BytesIO
|
1544 |
-
|
1545 |
-
pdf_content = await file.read()
|
1546 |
-
pdf_file = BytesIO(pdf_content)
|
1547 |
-
reader = PdfReader(pdf_file)
|
1548 |
-
for page in reader.pages:
|
1549 |
-
content += page.extract_text() + "\n"
|
1550 |
-
|
1551 |
-
case ".docx":
|
1552 |
-
if not pm.is_installed("docx"):
|
1553 |
-
pm.install("docx")
|
1554 |
-
from docx import Document
|
1555 |
-
from io import BytesIO
|
1556 |
-
|
1557 |
-
docx_content = await file.read()
|
1558 |
-
docx_file = BytesIO(docx_content)
|
1559 |
-
doc = Document(docx_file)
|
1560 |
-
content = "\n".join(
|
1561 |
-
[paragraph.text for paragraph in doc.paragraphs]
|
1562 |
-
)
|
1563 |
-
|
1564 |
-
case ".pptx":
|
1565 |
-
if not pm.is_installed("pptx"):
|
1566 |
-
pm.install("pptx")
|
1567 |
-
from pptx import Presentation # type: ignore
|
1568 |
-
from io import BytesIO
|
1569 |
-
|
1570 |
-
pptx_content = await file.read()
|
1571 |
-
pptx_file = BytesIO(pptx_content)
|
1572 |
-
prs = Presentation(pptx_file)
|
1573 |
-
for slide in prs.slides:
|
1574 |
-
for shape in slide.shapes:
|
1575 |
-
if hasattr(shape, "text"):
|
1576 |
-
content += shape.text + "\n"
|
1577 |
-
|
1578 |
-
case _:
|
1579 |
-
failed_files.append(f"{file.filename} (unsupported type)")
|
1580 |
-
continue
|
1581 |
-
|
1582 |
-
if content:
|
1583 |
-
await rag.ainsert(content)
|
1584 |
-
inserted_count += 1
|
1585 |
-
logging.info(f"Successfully indexed file: {file.filename}")
|
1586 |
-
else:
|
1587 |
-
failed_files.append(f"{file.filename} (no content extracted)")
|
1588 |
|
1589 |
-
|
1590 |
-
|
1591 |
-
except Exception as e:
|
1592 |
-
failed_files.append(f"{file.filename} ({str(e)})")
|
1593 |
-
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
1594 |
|
1595 |
# Prepare status message
|
1596 |
if inserted_count == len(files):
|
@@ -1607,14 +1587,11 @@ def create_app(args):
|
|
1607 |
if failed_files:
|
1608 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
1609 |
|
1610 |
-
return InsertResponse(
|
1611 |
-
status=status,
|
1612 |
-
message=status_message,
|
1613 |
-
document_count=inserted_count,
|
1614 |
-
)
|
1615 |
|
1616 |
except Exception as e:
|
1617 |
-
logging.error(f"
|
|
|
1618 |
raise HTTPException(status_code=500, detail=str(e))
|
1619 |
|
1620 |
@app.delete(
|
@@ -1637,11 +1614,103 @@ def create_app(args):
|
|
1637 |
rag.entities_vdb = None
|
1638 |
rag.relationships_vdb = None
|
1639 |
return InsertResponse(
|
1640 |
-
status="success",
|
1641 |
-
|
1642 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1643 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1644 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1645 |
raise HTTPException(status_code=500, detail=str(e))
|
1646 |
|
1647 |
# query all graph labels
|
|
|
3 |
HTTPException,
|
4 |
File,
|
5 |
UploadFile,
|
|
|
6 |
BackgroundTasks,
|
7 |
)
|
8 |
import asyncio
|
|
|
13 |
from fastapi.staticfiles import StaticFiles
|
14 |
import logging
|
15 |
import argparse
|
16 |
+
from typing import List, Any, Optional, Dict
|
17 |
from pydantic import BaseModel
|
18 |
from lightrag import LightRAG, QueryParam
|
19 |
from lightrag.types import GPTKeywordExtractionFormat
|
|
|
33 |
import pipmaster as pm
|
34 |
from dotenv import load_dotenv
|
35 |
import configparser
|
36 |
+
import traceback
|
37 |
+
from datetime import datetime
|
38 |
+
|
39 |
from lightrag.utils import logger
|
40 |
from .ollama_api import (
|
41 |
OllamaAPI,
|
|
|
637 |
|
638 |
class QueryRequest(BaseModel):
|
639 |
query: str
|
640 |
+
|
641 |
+
"""Specifies the retrieval mode"""
|
642 |
mode: SearchMode = SearchMode.hybrid
|
643 |
+
|
644 |
+
"""If True, enables streaming output for real-time responses."""
|
645 |
+
stream: Optional[bool] = None
|
646 |
+
|
647 |
+
"""If True, only returns the retrieved context without generating a response."""
|
648 |
+
only_need_context: Optional[bool] = None
|
649 |
+
|
650 |
+
"""If True, only returns the generated prompt without producing a response."""
|
651 |
+
only_need_prompt: Optional[bool] = None
|
652 |
+
|
653 |
+
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
654 |
+
response_type: Optional[str] = None
|
655 |
+
|
656 |
+
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
657 |
+
top_k: Optional[int] = None
|
658 |
+
|
659 |
+
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
660 |
+
max_token_for_text_unit: Optional[int] = None
|
661 |
+
|
662 |
+
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
663 |
+
max_token_for_global_context: Optional[int] = None
|
664 |
+
|
665 |
+
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
666 |
+
max_token_for_local_context: Optional[int] = None
|
667 |
+
|
668 |
+
"""List of high-level keywords to prioritize in retrieval."""
|
669 |
+
hl_keywords: Optional[List[str]] = None
|
670 |
+
|
671 |
+
"""List of low-level keywords to refine retrieval focus."""
|
672 |
+
ll_keywords: Optional[List[str]] = None
|
673 |
+
|
674 |
+
"""Stores past conversation history to maintain context.
|
675 |
+
Format: [{"role": "user/assistant", "content": "message"}].
|
676 |
+
"""
|
677 |
+
conversation_history: Optional[List[dict[str, Any]]] = None
|
678 |
+
|
679 |
+
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
680 |
+
history_turns: Optional[int] = None
|
681 |
|
682 |
|
683 |
class QueryResponse(BaseModel):
|
|
|
686 |
|
687 |
class InsertTextRequest(BaseModel):
|
688 |
text: str
|
|
|
689 |
|
690 |
|
691 |
class InsertResponse(BaseModel):
|
692 |
status: str
|
693 |
message: str
|
694 |
+
|
695 |
+
|
696 |
+
def QueryRequestToQueryParams(request: QueryRequest):
|
697 |
+
param = QueryParam(mode=request.mode, stream=request.stream)
|
698 |
+
if request.only_need_context is not None:
|
699 |
+
param.only_need_context = request.only_need_context
|
700 |
+
if request.only_need_prompt is not None:
|
701 |
+
param.only_need_prompt = request.only_need_prompt
|
702 |
+
if request.response_type is not None:
|
703 |
+
param.response_type = request.response_type
|
704 |
+
if request.top_k is not None:
|
705 |
+
param.top_k = request.top_k
|
706 |
+
if request.max_token_for_text_unit is not None:
|
707 |
+
param.max_token_for_text_unit = request.max_token_for_text_unit
|
708 |
+
if request.max_token_for_global_context is not None:
|
709 |
+
param.max_token_for_global_context = request.max_token_for_global_context
|
710 |
+
if request.max_token_for_local_context is not None:
|
711 |
+
param.max_token_for_local_context = request.max_token_for_local_context
|
712 |
+
if request.hl_keywords is not None:
|
713 |
+
param.hl_keywords = request.hl_keywords
|
714 |
+
if request.ll_keywords is not None:
|
715 |
+
param.ll_keywords = request.ll_keywords
|
716 |
+
if request.conversation_history is not None:
|
717 |
+
param.conversation_history = request.conversation_history
|
718 |
+
if request.history_turns is not None:
|
719 |
+
param.history_turns = request.history_turns
|
720 |
+
return param
|
721 |
|
722 |
|
723 |
def get_api_key_dependency(api_key: Optional[str]):
|
|
|
731 |
# If API key is configured, use proper authentication
|
732 |
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
733 |
|
734 |
+
async def api_key_auth(
|
735 |
+
api_key_header_value: Optional[str] = Security(api_key_header),
|
736 |
+
):
|
737 |
if not api_key_header_value:
|
738 |
raise HTTPException(
|
739 |
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
|
|
749 |
|
750 |
# Global configuration
|
751 |
global_top_k = 60 # default value
|
752 |
+
temp_prefix = "__tmp_" # prefix for temporary files
|
753 |
|
754 |
|
755 |
def create_app(args):
|
|
|
1200 |
("llm_response_cache", rag.llm_response_cache),
|
1201 |
]
|
1202 |
|
1203 |
+
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
1204 |
+
"""Add a file to the queue for processing
|
1205 |
|
1206 |
Args:
|
1207 |
+
file_path: Path to the saved file
|
1208 |
+
Returns:
|
1209 |
+
bool: True if the file was successfully enqueued, False otherwise
|
|
|
|
|
1210 |
"""
|
1211 |
+
try:
|
1212 |
+
content = ""
|
1213 |
+
ext = file_path.suffix.lower()
|
1214 |
|
1215 |
+
file = None
|
1216 |
+
async with aiofiles.open(file_path, "rb") as f:
|
1217 |
+
file = await f.read()
|
1218 |
|
1219 |
+
# Process based on file type
|
1220 |
+
match ext:
|
1221 |
+
case ".txt" | ".md":
|
1222 |
+
content = file.decode("utf-8")
|
1223 |
+
case ".pdf":
|
1224 |
+
if not pm.is_installed("pypdf2"):
|
1225 |
+
pm.install("pypdf2")
|
1226 |
+
from PyPDF2 import PdfReader
|
1227 |
+
from io import BytesIO
|
1228 |
+
|
1229 |
+
pdf_file = BytesIO(file)
|
1230 |
+
reader = PdfReader(pdf_file)
|
1231 |
+
for page in reader.pages:
|
1232 |
+
content += page.extract_text() + "\n"
|
1233 |
+
case ".docx":
|
1234 |
+
if not pm.is_installed("docx"):
|
1235 |
+
pm.install("docx")
|
1236 |
+
from docx import Document
|
1237 |
+
from io import BytesIO
|
1238 |
+
|
1239 |
+
docx_content = await file.read()
|
1240 |
+
docx_file = BytesIO(docx_content)
|
1241 |
+
doc = Document(docx_file)
|
1242 |
+
content = "\n".join(
|
1243 |
+
[paragraph.text for paragraph in doc.paragraphs]
|
1244 |
+
)
|
1245 |
+
case ".pptx":
|
1246 |
+
if not pm.is_installed("pptx"):
|
1247 |
+
pm.install("pptx")
|
1248 |
+
from pptx import Presentation # type: ignore
|
1249 |
+
from io import BytesIO
|
1250 |
+
|
1251 |
+
pptx_content = await file.read()
|
1252 |
+
pptx_file = BytesIO(pptx_content)
|
1253 |
+
prs = Presentation(pptx_file)
|
1254 |
+
for slide in prs.slides:
|
1255 |
+
for shape in slide.shapes:
|
1256 |
+
if hasattr(shape, "text"):
|
1257 |
+
content += shape.text + "\n"
|
1258 |
+
case _:
|
1259 |
+
logging.error(
|
1260 |
+
f"Unsupported file type: {file_path.name} (extension {ext})"
|
1261 |
+
)
|
1262 |
+
return False
|
1263 |
+
|
1264 |
+
# Insert into the RAG queue
|
1265 |
+
if content:
|
1266 |
+
await rag.apipeline_enqueue_documents(content)
|
1267 |
+
logging.info(
|
1268 |
+
f"Successfully processed and enqueued file: {file_path.name}"
|
1269 |
+
)
|
1270 |
+
return True
|
1271 |
+
else:
|
1272 |
+
logging.error(
|
1273 |
+
f"No content could be extracted from file: {file_path.name}"
|
1274 |
+
)
|
1275 |
|
1276 |
+
except Exception as e:
|
1277 |
+
logging.error(
|
1278 |
+
f"Error processing or enqueueing file {file_path.name}: {str(e)}"
|
1279 |
+
)
|
1280 |
+
logging.error(traceback.format_exc())
|
1281 |
+
finally:
|
1282 |
+
if file_path.name.startswith(temp_prefix):
|
1283 |
+
# Clean up the temporary file after indexing
|
1284 |
+
try:
|
1285 |
+
file_path.unlink()
|
1286 |
+
except Exception as e:
|
1287 |
+
logging.error(f"Error deleting file {file_path}: {str(e)}")
|
1288 |
+
return False
|
1289 |
|
1290 |
+
async def pipeline_index_file(file_path: Path):
|
1291 |
+
"""Index a file
|
|
|
|
|
|
|
1292 |
|
1293 |
+
Args:
|
1294 |
+
file_path: Path to the saved file
|
1295 |
+
"""
|
1296 |
+
try:
|
1297 |
+
if await pipeline_enqueue_file(file_path):
|
1298 |
+
await rag.apipeline_process_enqueue_documents()
|
1299 |
|
1300 |
+
except Exception as e:
|
1301 |
+
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
|
1302 |
+
logging.error(traceback.format_exc())
|
|
|
|
|
1303 |
|
1304 |
+
async def pipeline_index_files(file_paths: List[Path]):
|
1305 |
+
"""Index multiple files concurrently
|
1306 |
|
1307 |
+
Args:
|
1308 |
+
file_paths: Paths to the files to index
|
1309 |
+
"""
|
1310 |
+
if not file_paths:
|
1311 |
+
return
|
1312 |
+
try:
|
1313 |
+
enqueued = False
|
1314 |
|
1315 |
+
if len(file_paths) == 1:
|
1316 |
+
enqueued = await pipeline_enqueue_file(file_paths[0])
|
1317 |
+
else:
|
1318 |
+
tasks = [pipeline_enqueue_file(path) for path in file_paths]
|
1319 |
+
enqueued = any(await asyncio.gather(*tasks))
|
1320 |
|
1321 |
+
if enqueued:
|
1322 |
+
await rag.apipeline_process_enqueue_documents()
|
1323 |
+
except Exception as e:
|
1324 |
+
logging.error(f"Error indexing files: {str(e)}")
|
1325 |
+
logging.error(traceback.format_exc())
|
|
|
|
|
1326 |
|
1327 |
+
async def pipeline_index_texts(texts: List[str]):
|
1328 |
+
"""Index a list of texts
|
|
|
|
|
1329 |
|
1330 |
+
Args:
|
1331 |
+
texts: The texts to index
|
1332 |
+
"""
|
1333 |
+
if not texts:
|
1334 |
+
return
|
1335 |
+
await rag.apipeline_enqueue_documents(texts)
|
1336 |
+
await rag.apipeline_process_enqueue_documents()
|
1337 |
|
1338 |
+
async def save_temp_file(file: UploadFile = File(...)) -> Path:
|
1339 |
+
"""Save the uploaded file to a temporary location
|
|
|
1340 |
|
1341 |
+
Args:
|
1342 |
+
file: The uploaded file
|
1343 |
|
1344 |
+
Returns:
|
1345 |
+
Path: The path to the saved file
|
1346 |
+
"""
|
1347 |
+
# Generate unique filename to avoid conflicts
|
1348 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
1349 |
+
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
|
1350 |
+
|
1351 |
+
# Create a temporary file to save the uploaded content
|
1352 |
+
temp_path = doc_manager.input_dir / "temp" / unique_filename
|
1353 |
+
temp_path.parent.mkdir(exist_ok=True)
|
1354 |
+
|
1355 |
+
# Save the file
|
1356 |
+
with open(temp_path, "wb") as buffer:
|
1357 |
+
shutil.copyfileobj(file.file, buffer)
|
1358 |
+
return temp_path
|
1359 |
|
1360 |
async def run_scanning_process():
|
1361 |
"""Background task to scan and index documents"""
|
|
|
1371 |
with progress_lock:
|
1372 |
scan_progress["current_file"] = os.path.basename(file_path)
|
1373 |
|
1374 |
+
await pipeline_index_file(file_path)
|
1375 |
|
1376 |
with progress_lock:
|
1377 |
scan_progress["indexed_count"] += 1
|
|
|
1389 |
with progress_lock:
|
1390 |
scan_progress["is_scanning"] = False
|
1391 |
|
1392 |
+
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
|
1393 |
+
async def scan_for_new_documents(background_tasks: BackgroundTasks):
|
1394 |
+
"""Trigger the scanning process"""
|
1395 |
+
global scan_progress
|
1396 |
+
|
1397 |
+
with progress_lock:
|
1398 |
+
if scan_progress["is_scanning"]:
|
1399 |
+
return {"status": "already_scanning"}
|
1400 |
+
|
1401 |
+
scan_progress["is_scanning"] = True
|
1402 |
+
scan_progress["indexed_count"] = 0
|
1403 |
+
scan_progress["progress"] = 0
|
1404 |
+
|
1405 |
+
# Start the scanning process in the background
|
1406 |
+
background_tasks.add_task(run_scanning_process)
|
1407 |
+
|
1408 |
+
return {"status": "scanning_started"}
|
1409 |
+
|
1410 |
@app.get("/documents/scan-progress")
|
1411 |
async def get_scan_progress():
|
1412 |
"""Get the current scanning progress"""
|
|
|
1414 |
return scan_progress
|
1415 |
|
1416 |
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
1417 |
+
async def upload_to_input_dir(
|
1418 |
+
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
1419 |
+
):
|
1420 |
"""
|
1421 |
Endpoint for uploading a file to the input directory and indexing it.
|
1422 |
|
|
|
1425 |
indexes it for retrieval, and returns a success status with relevant details.
|
1426 |
|
1427 |
Parameters:
|
1428 |
+
background_tasks: FastAPI BackgroundTasks for async processing
|
1429 |
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
|
1430 |
`doc_manager.supported_extensions`.
|
1431 |
|
|
|
1450 |
with open(file_path, "wb") as buffer:
|
1451 |
shutil.copyfileobj(file.file, buffer)
|
1452 |
|
1453 |
+
# Add to background tasks
|
1454 |
+
background_tasks.add_task(pipeline_index_file, file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1455 |
|
1456 |
+
return InsertResponse(
|
1457 |
+
status="success",
|
1458 |
+
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
|
|
|
|
|
|
|
|
|
|
|
|
|
1459 |
)
|
1460 |
except Exception as e:
|
1461 |
+
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
1462 |
+
logging.error(traceback.format_exc())
|
1463 |
raise HTTPException(status_code=500, detail=str(e))
|
1464 |
|
1465 |
@app.post(
|
|
|
1467 |
response_model=InsertResponse,
|
1468 |
dependencies=[Depends(optional_api_key)],
|
1469 |
)
|
1470 |
+
async def insert_text(
|
1471 |
+
request: InsertTextRequest, background_tasks: BackgroundTasks
|
1472 |
+
):
|
1473 |
"""
|
1474 |
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
1475 |
|
|
|
1477 |
|
1478 |
Args:
|
1479 |
request (InsertTextRequest): The request body containing the text to be inserted.
|
1480 |
+
background_tasks: FastAPI BackgroundTasks for async processing
|
1481 |
|
1482 |
Returns:
|
1483 |
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
1484 |
"""
|
1485 |
try:
|
1486 |
+
background_tasks.add_task(pipeline_index_texts, [request.text])
|
1487 |
return InsertResponse(
|
1488 |
status="success",
|
1489 |
+
message="Text successfully received. Processing will continue in background.",
|
|
|
1490 |
)
|
1491 |
except Exception as e:
|
1492 |
+
logging.error(f"Error /documents/text: {str(e)}")
|
1493 |
+
logging.error(traceback.format_exc())
|
1494 |
raise HTTPException(status_code=500, detail=str(e))
|
1495 |
|
1496 |
@app.post(
|
|
|
1498 |
response_model=InsertResponse,
|
1499 |
dependencies=[Depends(optional_api_key)],
|
1500 |
)
|
1501 |
+
async def insert_file(
|
1502 |
+
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
1503 |
+
):
|
1504 |
"""Insert a file directly into the RAG system
|
1505 |
|
1506 |
Args:
|
1507 |
+
background_tasks: FastAPI BackgroundTasks for async processing
|
1508 |
file: Uploaded file
|
|
|
1509 |
|
1510 |
Returns:
|
1511 |
InsertResponse: Status of the insertion operation
|
|
|
1514 |
HTTPException: For unsupported file types or processing errors
|
1515 |
"""
|
1516 |
try:
|
1517 |
+
if not doc_manager.is_supported_file(file.filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1518 |
raise HTTPException(
|
1519 |
status_code=400,
|
1520 |
+
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
1521 |
)
|
1522 |
|
1523 |
+
# Create a temporary file to save the uploaded content
|
1524 |
+
temp_path = save_temp_file(file)
|
1525 |
+
|
1526 |
+
# Add to background tasks
|
1527 |
+
background_tasks.add_task(pipeline_index_file, temp_path)
|
1528 |
+
|
1529 |
+
return InsertResponse(
|
1530 |
+
status="success",
|
1531 |
+
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
|
1532 |
+
)
|
1533 |
+
|
1534 |
except Exception as e:
|
1535 |
+
logging.error(f"Error /documents/file: {str(e)}")
|
1536 |
+
logging.error(traceback.format_exc())
|
1537 |
raise HTTPException(status_code=500, detail=str(e))
|
1538 |
|
1539 |
@app.post(
|
|
|
1541 |
response_model=InsertResponse,
|
1542 |
dependencies=[Depends(optional_api_key)],
|
1543 |
)
|
1544 |
+
async def insert_batch(
|
1545 |
+
background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)
|
1546 |
+
):
|
1547 |
"""Process multiple files in batch mode
|
1548 |
|
1549 |
Args:
|
1550 |
+
background_tasks: FastAPI BackgroundTasks for async processing
|
1551 |
files: List of files to process
|
1552 |
|
1553 |
Returns:
|
|
|
1559 |
try:
|
1560 |
inserted_count = 0
|
1561 |
failed_files = []
|
1562 |
+
temp_files = []
|
1563 |
|
1564 |
for file in files:
|
1565 |
+
if doc_manager.is_supported_file(file.filename):
|
1566 |
+
# Create a temporary file to save the uploaded content
|
1567 |
+
temp_files.append(save_temp_file(file))
|
1568 |
+
inserted_count += 1
|
1569 |
+
else:
|
1570 |
+
failed_files.append(f"{file.filename} (unsupported type)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1571 |
|
1572 |
+
if temp_files:
|
1573 |
+
background_tasks.add_task(pipeline_index_files, temp_files)
|
|
|
|
|
|
|
1574 |
|
1575 |
# Prepare status message
|
1576 |
if inserted_count == len(files):
|
|
|
1587 |
if failed_files:
|
1588 |
status_message += f". Failed files: {', '.join(failed_files)}"
|
1589 |
|
1590 |
+
return InsertResponse(status=status, message=status_message)
|
|
|
|
|
|
|
|
|
1591 |
|
1592 |
except Exception as e:
|
1593 |
+
logging.error(f"Error /documents/batch: {file.filename}: {str(e)}")
|
1594 |
+
logging.error(traceback.format_exc())
|
1595 |
raise HTTPException(status_code=500, detail=str(e))
|
1596 |
|
1597 |
@app.delete(
|
|
|
1614 |
rag.entities_vdb = None
|
1615 |
rag.relationships_vdb = None
|
1616 |
return InsertResponse(
|
1617 |
+
status="success", message="All documents cleared successfully"
|
1618 |
+
)
|
1619 |
+
except Exception as e:
|
1620 |
+
logging.error(f"Error DELETE /documents: {str(e)}")
|
1621 |
+
logging.error(traceback.format_exc())
|
1622 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1623 |
+
|
1624 |
+
@app.post(
|
1625 |
+
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
|
1626 |
+
)
|
1627 |
+
async def query_text(request: QueryRequest):
|
1628 |
+
"""
|
1629 |
+
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
1630 |
+
|
1631 |
+
Parameters:
|
1632 |
+
request (QueryRequest): The request object containing the query parameters.
|
1633 |
+
Returns:
|
1634 |
+
QueryResponse: A Pydantic model containing the result of the query processing.
|
1635 |
+
If a string is returned (e.g., cache hit), it's directly returned.
|
1636 |
+
Otherwise, an async generator may be used to build the response.
|
1637 |
+
|
1638 |
+
Raises:
|
1639 |
+
HTTPException: Raised when an error occurs during the request handling process,
|
1640 |
+
with status code 500 and detail containing the exception message.
|
1641 |
+
"""
|
1642 |
+
try:
|
1643 |
+
response = await rag.aquery(
|
1644 |
+
request.query, param=QueryRequestToQueryParams(request)
|
1645 |
)
|
1646 |
+
|
1647 |
+
# If response is a string (e.g. cache hit), return directly
|
1648 |
+
if isinstance(response, str):
|
1649 |
+
return QueryResponse(response=response)
|
1650 |
+
|
1651 |
+
# If it's an async generator, decide whether to stream based on stream parameter
|
1652 |
+
if request.stream or hasattr(response, "__aiter__"):
|
1653 |
+
result = ""
|
1654 |
+
async for chunk in response:
|
1655 |
+
result += chunk
|
1656 |
+
return QueryResponse(response=result)
|
1657 |
+
elif isinstance(response, dict):
|
1658 |
+
result = json.dumps(response, indent=2)
|
1659 |
+
return QueryResponse(response=result)
|
1660 |
+
else:
|
1661 |
+
return QueryResponse(response=str(response))
|
1662 |
except Exception as e:
|
1663 |
+
trace_exception(e)
|
1664 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1665 |
+
|
1666 |
+
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
1667 |
+
async def query_text_stream(request: QueryRequest):
|
1668 |
+
"""
|
1669 |
+
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
1670 |
+
|
1671 |
+
Args:
|
1672 |
+
request (QueryRequest): The request object containing the query parameters.
|
1673 |
+
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
1674 |
+
|
1675 |
+
Returns:
|
1676 |
+
StreamingResponse: A streaming response containing the RAG query results.
|
1677 |
+
"""
|
1678 |
+
try:
|
1679 |
+
params = QueryRequestToQueryParams(request)
|
1680 |
+
|
1681 |
+
params.stream = True
|
1682 |
+
response = await rag.aquery( # Use aquery instead of query, and add await
|
1683 |
+
request.query, param=params
|
1684 |
+
)
|
1685 |
+
|
1686 |
+
from fastapi.responses import StreamingResponse
|
1687 |
+
|
1688 |
+
async def stream_generator():
|
1689 |
+
if isinstance(response, str):
|
1690 |
+
# If it's a string, send it all at once
|
1691 |
+
yield f"{json.dumps({'response': response})}\n"
|
1692 |
+
else:
|
1693 |
+
# If it's an async generator, send chunks one by one
|
1694 |
+
try:
|
1695 |
+
async for chunk in response:
|
1696 |
+
if chunk: # Only send non-empty content
|
1697 |
+
yield f"{json.dumps({'response': chunk})}\n"
|
1698 |
+
except Exception as e:
|
1699 |
+
logging.error(f"Streaming error: {str(e)}")
|
1700 |
+
yield f"{json.dumps({'error': str(e)})}\n"
|
1701 |
+
|
1702 |
+
return StreamingResponse(
|
1703 |
+
stream_generator(),
|
1704 |
+
media_type="application/x-ndjson",
|
1705 |
+
headers={
|
1706 |
+
"Cache-Control": "no-cache",
|
1707 |
+
"Connection": "keep-alive",
|
1708 |
+
"Content-Type": "application/x-ndjson",
|
1709 |
+
"X-Accel-Buffering": "no", # 确保在Nginx代理时正确处理流式响应
|
1710 |
+
},
|
1711 |
+
)
|
1712 |
+
except Exception as e:
|
1713 |
+
trace_exception(e)
|
1714 |
raise HTTPException(status_code=500, detail=str(e))
|
1715 |
|
1716 |
# query all graph labels
|
lightrag/base.py
CHANGED
@@ -249,20 +249,10 @@ class DocStatusStorage(BaseKVStorage):
|
|
249 |
"""Get counts of documents in each status"""
|
250 |
raise NotImplementedError
|
251 |
|
252 |
-
async def
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
257 |
-
"""Get all pending documents"""
|
258 |
-
raise NotImplementedError
|
259 |
-
|
260 |
-
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
261 |
-
"""Get all processing documents"""
|
262 |
-
raise NotImplementedError
|
263 |
-
|
264 |
-
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
265 |
-
"""Get all procesed documents"""
|
266 |
raise NotImplementedError
|
267 |
|
268 |
async def update_doc_status(self, data: dict[str, Any]) -> None:
|
|
|
249 |
"""Get counts of documents in each status"""
|
250 |
raise NotImplementedError
|
251 |
|
252 |
+
async def get_docs_by_status(
|
253 |
+
self, status: DocStatus
|
254 |
+
) -> dict[str, DocProcessingStatus]:
|
255 |
+
"""Get all documents with a specific status"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
raise NotImplementedError
|
257 |
|
258 |
async def update_doc_status(self, data: dict[str, Any]) -> None:
|
lightrag/kg/json_doc_status_impl.py
CHANGED
@@ -93,36 +93,14 @@ class JsonDocStatusStorage(DocStatusStorage):
|
|
93 |
counts[doc["status"]] += 1
|
94 |
return counts
|
95 |
|
96 |
-
async def
|
97 |
-
|
|
|
|
|
98 |
return {
|
99 |
k: DocProcessingStatus(**v)
|
100 |
for k, v in self._data.items()
|
101 |
-
if v["status"] ==
|
102 |
-
}
|
103 |
-
|
104 |
-
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
105 |
-
"""Get all pending documents"""
|
106 |
-
return {
|
107 |
-
k: DocProcessingStatus(**v)
|
108 |
-
for k, v in self._data.items()
|
109 |
-
if v["status"] == DocStatus.PENDING
|
110 |
-
}
|
111 |
-
|
112 |
-
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
113 |
-
"""Get all processed documents"""
|
114 |
-
return {
|
115 |
-
k: DocProcessingStatus(**v)
|
116 |
-
for k, v in self._data.items()
|
117 |
-
if v["status"] == DocStatus.PROCESSED
|
118 |
-
}
|
119 |
-
|
120 |
-
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
121 |
-
"""Get all processing documents"""
|
122 |
-
return {
|
123 |
-
k: DocProcessingStatus(**v)
|
124 |
-
for k, v in self._data.items()
|
125 |
-
if v["status"] == DocStatus.PROCESSING
|
126 |
}
|
127 |
|
128 |
async def index_done_callback(self):
|
|
|
93 |
counts[doc["status"]] += 1
|
94 |
return counts
|
95 |
|
96 |
+
async def get_docs_by_status(
|
97 |
+
self, status: DocStatus
|
98 |
+
) -> dict[str, DocProcessingStatus]:
|
99 |
+
"""all documents with a specific status"""
|
100 |
return {
|
101 |
k: DocProcessingStatus(**v)
|
102 |
for k, v in self._data.items()
|
103 |
+
if v["status"] == status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
}
|
105 |
|
106 |
async def index_done_callback(self):
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -175,7 +175,7 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|
175 |
async def get_docs_by_status(
|
176 |
self, status: DocStatus
|
177 |
) -> dict[str, DocProcessingStatus]:
|
178 |
-
"""Get all documents
|
179 |
cursor = self._data.find({"status": status.value})
|
180 |
result = await cursor.to_list()
|
181 |
return {
|
@@ -191,22 +191,6 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|
191 |
for doc in result
|
192 |
}
|
193 |
|
194 |
-
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
|
195 |
-
"""Get all failed documents"""
|
196 |
-
return await self.get_docs_by_status(DocStatus.FAILED)
|
197 |
-
|
198 |
-
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
199 |
-
"""Get all pending documents"""
|
200 |
-
return await self.get_docs_by_status(DocStatus.PENDING)
|
201 |
-
|
202 |
-
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
203 |
-
"""Get all processing documents"""
|
204 |
-
return await self.get_docs_by_status(DocStatus.PROCESSING)
|
205 |
-
|
206 |
-
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
207 |
-
"""Get all procesed documents"""
|
208 |
-
return await self.get_docs_by_status(DocStatus.PROCESSED)
|
209 |
-
|
210 |
|
211 |
@dataclass
|
212 |
class MongoGraphStorage(BaseGraphStorage):
|
|
|
175 |
async def get_docs_by_status(
|
176 |
self, status: DocStatus
|
177 |
) -> dict[str, DocProcessingStatus]:
|
178 |
+
"""Get all documents with a specific status"""
|
179 |
cursor = self._data.find({"status": status.value})
|
180 |
result = await cursor.to_list()
|
181 |
return {
|
|
|
191 |
for doc in result
|
192 |
}
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
@dataclass
|
196 |
class MongoGraphStorage(BaseGraphStorage):
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -468,7 +468,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
468 |
async def get_docs_by_status(
|
469 |
self, status: DocStatus
|
470 |
) -> Dict[str, DocProcessingStatus]:
|
471 |
-
"""
|
472 |
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
473 |
params = {"workspace": self.db.workspace, "status": status}
|
474 |
result = await self.db.query(sql, params, True)
|
@@ -485,22 +485,6 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
485 |
for element in result
|
486 |
}
|
487 |
|
488 |
-
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
489 |
-
"""Get all failed documents"""
|
490 |
-
return await self.get_docs_by_status(DocStatus.FAILED)
|
491 |
-
|
492 |
-
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
493 |
-
"""Get all pending documents"""
|
494 |
-
return await self.get_docs_by_status(DocStatus.PENDING)
|
495 |
-
|
496 |
-
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
497 |
-
"""Get all processing documents"""
|
498 |
-
return await self.get_docs_by_status(DocStatus.PROCESSING)
|
499 |
-
|
500 |
-
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
501 |
-
"""Get all procesed documents"""
|
502 |
-
return await self.get_docs_by_status(DocStatus.PROCESSED)
|
503 |
-
|
504 |
async def index_done_callback(self):
|
505 |
"""Save data after indexing, but for PostgreSQL, we already saved them during the upsert stage, so no action to take here"""
|
506 |
logger.info("Doc status had been saved into postgresql db!")
|
|
|
468 |
async def get_docs_by_status(
|
469 |
self, status: DocStatus
|
470 |
) -> Dict[str, DocProcessingStatus]:
|
471 |
+
"""all documents with a specific status"""
|
472 |
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
473 |
params = {"workspace": self.db.workspace, "status": status}
|
474 |
result = await self.db.query(sql, params, True)
|
|
|
485 |
for element in result
|
486 |
}
|
487 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
async def index_done_callback(self):
|
489 |
"""Save data after indexing, but for PostgreSQL, we already saved them during the upsert stage, so no action to take here"""
|
490 |
logger.info("Doc status had been saved into postgresql db!")
|
lightrag/lightrag.py
CHANGED
@@ -89,7 +89,7 @@ STORAGE_IMPLEMENTATIONS = {
|
|
89 |
"PGDocStatusStorage",
|
90 |
"MongoDocStatusStorage",
|
91 |
],
|
92 |
-
"required_methods": ["
|
93 |
},
|
94 |
}
|
95 |
|
@@ -230,7 +230,7 @@ class LightRAG:
|
|
230 |
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
231 |
|
232 |
working_dir: str = field(
|
233 |
-
default_factory=lambda: f
|
234 |
)
|
235 |
"""Directory where cache and temporary files are stored."""
|
236 |
|
@@ -715,11 +715,11 @@ class LightRAG:
|
|
715 |
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
716 |
to_process_docs: dict[str, DocProcessingStatus] = {}
|
717 |
|
718 |
-
processing_docs = await self.doc_status.
|
719 |
to_process_docs.update(processing_docs)
|
720 |
-
failed_docs = await self.doc_status.
|
721 |
to_process_docs.update(failed_docs)
|
722 |
-
pendings_docs = await self.doc_status.
|
723 |
to_process_docs.update(pendings_docs)
|
724 |
|
725 |
if not to_process_docs:
|
|
|
89 |
"PGDocStatusStorage",
|
90 |
"MongoDocStatusStorage",
|
91 |
],
|
92 |
+
"required_methods": ["get_docs_by_status"],
|
93 |
},
|
94 |
}
|
95 |
|
|
|
230 |
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
231 |
|
232 |
working_dir: str = field(
|
233 |
+
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
234 |
)
|
235 |
"""Directory where cache and temporary files are stored."""
|
236 |
|
|
|
715 |
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
716 |
to_process_docs: dict[str, DocProcessingStatus] = {}
|
717 |
|
718 |
+
processing_docs = await self.doc_status.get_docs_by_status(DocStatus.PROCESSING)
|
719 |
to_process_docs.update(processing_docs)
|
720 |
+
failed_docs = await self.doc_status.get_docs_by_status(DocStatus.FAILED)
|
721 |
to_process_docs.update(failed_docs)
|
722 |
+
pendings_docs = await self.doc_status.get_docs_by_status(DocStatus.PENDING)
|
723 |
to_process_docs.update(pendings_docs)
|
724 |
|
725 |
if not to_process_docs:
|