Update env sample file
Browse files- env.example +63 -87
env.example
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
### This is sample file of .env
|
2 |
|
|
|
3 |
### Server Configuration
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
# WORKERS=2
|
7 |
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
### Optional SSL Configuration
|
12 |
# SSL=true
|
@@ -14,11 +27,10 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
|
14 |
# SSL_KEYFILE=/path/to/key.pem
|
15 |
|
16 |
### Directory Configuration (defaults to current working directory)
|
17 |
-
|
|
|
18 |
# INPUT_DIR=<absolute_path_for_doc_input_dir>
|
19 |
-
|
20 |
-
### Ollama Emulating Model Tag
|
21 |
-
# OLLAMA_EMULATING_MODEL_TAG=latest
|
22 |
|
23 |
### Max nodes return from grap retrieval
|
24 |
# MAX_GRAPH_NODES=1000
|
@@ -39,82 +51,57 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
|
39 |
# MAX_TOKEN_RELATION_DESC=4000
|
40 |
# MAX_TOKEN_ENTITY_DESC=4000
|
41 |
|
42 |
-
###
|
|
|
43 |
SUMMARY_LANGUAGE=English
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
### Number of parallel processing documents in one patch
|
48 |
-
# MAX_PARALLEL_INSERT=2
|
49 |
-
|
50 |
### Max tokens for entity/relations description after merge
|
51 |
# MAX_TOKEN_SUMMARY=500
|
52 |
-
### Number of entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
53 |
-
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
54 |
|
55 |
-
###
|
56 |
-
#
|
57 |
-
###
|
58 |
-
#
|
59 |
-
#
|
60 |
|
61 |
### LLM Configuration
|
|
|
|
|
62 |
### Time out in seconds for LLM, None for infinite timeout
|
63 |
-
TIMEOUT=
|
64 |
### Some models like o1-mini require temperature to be set to 1
|
65 |
-
TEMPERATURE=0
|
66 |
### Max concurrency requests of LLM
|
67 |
MAX_ASYNC=4
|
68 |
-
### Max tokens send to LLM (less than context size of the model)
|
69 |
MAX_TOKENS=32768
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
LLM_BINDING=ollama
|
75 |
-
LLM_MODEL=mistral-nemo:latest
|
76 |
LLM_BINDING_API_KEY=your_api_key
|
77 |
-
|
78 |
-
|
79 |
-
###
|
80 |
-
|
81 |
-
# LLM_MODEL=gpt-4o
|
82 |
-
# LLM_BINDING_HOST=https://api.openai.com/v1
|
83 |
-
# LLM_BINDING_API_KEY=your_api_key
|
84 |
-
### lollms example
|
85 |
-
# LLM_BINDING=lollms
|
86 |
-
# LLM_MODEL=mistral-nemo:latest
|
87 |
-
# LLM_BINDING_HOST=http://localhost:9600
|
88 |
-
# LLM_BINDING_API_KEY=your_api_key
|
89 |
-
|
90 |
-
### Embedding Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
91 |
EMBEDDING_MODEL=bge-m3:latest
|
92 |
EMBEDDING_DIM=1024
|
93 |
-
|
94 |
-
|
95 |
-
EMBEDDING_BINDING=ollama
|
96 |
EMBEDDING_BINDING_HOST=http://localhost:11434
|
97 |
-
###
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
#
|
103 |
-
|
104 |
-
### Optional for Azure (LLM_BINDING_HOST, LLM_BINDING_API_KEY take priority)
|
105 |
-
# AZURE_OPENAI_API_VERSION=2024-08-01-preview
|
106 |
-
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
|
107 |
-
# AZURE_OPENAI_API_KEY=your_api_key
|
108 |
-
# AZURE_OPENAI_ENDPOINT=https://myendpoint.openai.azure.com
|
109 |
-
|
110 |
-
# AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
|
111 |
-
# AZURE_EMBEDDING_API_VERSION=2023-05-15
|
112 |
|
113 |
### Data storage selection
|
114 |
-
LIGHTRAG_KV_STORAGE=
|
115 |
-
LIGHTRAG_VECTOR_STORAGE=
|
116 |
-
|
117 |
-
|
118 |
|
119 |
### TiDB Configuration (Deprecated)
|
120 |
# TIDB_HOST=localhost
|
@@ -135,22 +122,22 @@ POSTGRES_MAX_CONNECTIONS=12
|
|
135 |
### separating all data from difference Lightrag instances(deprecating)
|
136 |
# POSTGRES_WORKSPACE=default
|
137 |
|
|
|
|
|
|
|
|
|
|
|
138 |
### Independent AGM Configuration(not for AMG embedded in PostreSQL)
|
139 |
-
AGE_POSTGRES_DB=
|
140 |
-
AGE_POSTGRES_USER=
|
141 |
-
AGE_POSTGRES_PASSWORD=
|
142 |
-
AGE_POSTGRES_HOST=
|
143 |
# AGE_POSTGRES_PORT=8529
|
144 |
|
145 |
# AGE Graph Name(apply to PostgreSQL and independent AGM)
|
146 |
### AGE_GRAPH_NAME is precated
|
147 |
# AGE_GRAPH_NAME=lightrag
|
148 |
|
149 |
-
### Neo4j Configuration
|
150 |
-
NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io
|
151 |
-
NEO4J_USERNAME=neo4j
|
152 |
-
NEO4J_PASSWORD='your_password'
|
153 |
-
|
154 |
### MongoDB Configuration
|
155 |
MONGO_URI=mongodb://root:root@localhost:27017/
|
156 |
MONGO_DATABASE=LightRAG
|
@@ -170,14 +157,3 @@ QDRANT_URL=http://localhost:16333
|
|
170 |
|
171 |
### Redis
|
172 |
REDIS_URI=redis://localhost:6379
|
173 |
-
|
174 |
-
### For JWT Auth
|
175 |
-
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
|
176 |
-
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
|
177 |
-
# TOKEN_EXPIRE_HOURS=48
|
178 |
-
# GUEST_TOKEN_EXPIRE_HOURS=24
|
179 |
-
# JWT_ALGORITHM=HS256
|
180 |
-
|
181 |
-
### API-Key to access LightRAG Server API
|
182 |
-
# LIGHTRAG_API_KEY=your-secure-api-key-here
|
183 |
-
# WHITELIST_PATHS=/health,/api/*
|
|
|
1 |
### This is sample file of .env
|
2 |
|
3 |
+
|
4 |
### Server Configuration
|
5 |
+
HOST=0.0.0.0
|
6 |
+
PORT=9621
|
7 |
+
WEBUI_TITLE='My Graph KB'
|
8 |
+
WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
9 |
+
OLLAMA_EMULATING_MODEL_TAG=latest
|
10 |
# WORKERS=2
|
11 |
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
|
12 |
+
|
13 |
+
### Login Configuration
|
14 |
+
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
|
15 |
+
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
|
16 |
+
# TOKEN_EXPIRE_HOURS=48
|
17 |
+
# GUEST_TOKEN_EXPIRE_HOURS=24
|
18 |
+
# JWT_ALGORITHM=HS256
|
19 |
+
|
20 |
+
### API-Key to access LightRAG Server API
|
21 |
+
# LIGHTRAG_API_KEY=your-secure-api-key-here
|
22 |
+
# WHITELIST_PATHS=/health,/api/*
|
23 |
|
24 |
### Optional SSL Configuration
|
25 |
# SSL=true
|
|
|
27 |
# SSL_KEYFILE=/path/to/key.pem
|
28 |
|
29 |
### Directory Configuration (defaults to current working directory)
|
30 |
+
### Should be set if deploy by docker (Set by Dockerfile instead of .env)
|
31 |
+
### Default value is ./inputs and ./rag_storage
|
32 |
# INPUT_DIR=<absolute_path_for_doc_input_dir>
|
33 |
+
# WORKING_DIR=<absolute_path_for_working_dir>
|
|
|
|
|
34 |
|
35 |
### Max nodes return from grap retrieval
|
36 |
# MAX_GRAPH_NODES=1000
|
|
|
51 |
# MAX_TOKEN_RELATION_DESC=4000
|
52 |
# MAX_TOKEN_ENTITY_DESC=4000
|
53 |
|
54 |
+
### Entity and ralation summarization configuration
|
55 |
+
### Language: English, Chinese, French, German ...
|
56 |
SUMMARY_LANGUAGE=English
|
57 |
+
### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
58 |
+
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
|
|
|
|
|
|
|
|
59 |
### Max tokens for entity/relations description after merge
|
60 |
# MAX_TOKEN_SUMMARY=500
|
|
|
|
|
61 |
|
62 |
+
### Number of parallel processing documents(Less than MAX_ASYNC/2 is recommended)
|
63 |
+
# MAX_PARALLEL_INSERT=2
|
64 |
+
### Chunk size for document splitting, 500~1500 is recommended
|
65 |
+
# CHUNK_SIZE=1200
|
66 |
+
# CHUNK_OVERLAP_SIZE=100
|
67 |
|
68 |
### LLM Configuration
|
69 |
+
ENABLE_LLM_CACHE=true
|
70 |
+
ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
71 |
### Time out in seconds for LLM, None for infinite timeout
|
72 |
+
TIMEOUT=240
|
73 |
### Some models like o1-mini require temperature to be set to 1
|
74 |
+
TEMPERATURE=0
|
75 |
### Max concurrency requests of LLM
|
76 |
MAX_ASYNC=4
|
77 |
+
### Max tokens send to LLM for entity relation summaries (less than context size of the model)
|
78 |
MAX_TOKENS=32768
|
79 |
+
### LLM Binding type: openai, ollama, lollms
|
80 |
+
LLM_BINDING=openai
|
81 |
+
LLM_MODEL=gpt-4o
|
82 |
+
LLM_BINDING_HOST=https://api.openai.com/v1
|
|
|
|
|
83 |
LLM_BINDING_API_KEY=your_api_key
|
84 |
+
|
85 |
+
### Embedding Configuration
|
86 |
+
### Embedding Binding type: openai, ollama, lollms
|
87 |
+
EMBEDDING_BINDING=ollama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
EMBEDDING_MODEL=bge-m3:latest
|
89 |
EMBEDDING_DIM=1024
|
90 |
+
EMBEDDING_BINDING_API_KEY=your_api_key
|
91 |
+
# If the embedding service is deployed within the same Docker stack, use host.docker.internal instead of localhost
|
|
|
92 |
EMBEDDING_BINDING_HOST=http://localhost:11434
|
93 |
+
### Num of chunks send to Embedding in single request
|
94 |
+
# EMBEDDING_BATCH_NUM=32
|
95 |
+
### Max concurrency requests for Embedding
|
96 |
+
# EMBEDDING_FUNC_MAX_ASYNC=16
|
97 |
+
### Maximum tokens sent to Embedding for each chunk (no longer in use?)
|
98 |
+
# MAX_EMBED_TOKENS=8192
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
### Data storage selection
|
101 |
+
# LIGHTRAG_KV_STORAGE=PGKVStorage
|
102 |
+
# LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
|
103 |
+
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
104 |
+
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
105 |
|
106 |
### TiDB Configuration (Deprecated)
|
107 |
# TIDB_HOST=localhost
|
|
|
122 |
### separating all data from difference Lightrag instances(deprecating)
|
123 |
# POSTGRES_WORKSPACE=default
|
124 |
|
125 |
+
### Neo4j Configuration
|
126 |
+
NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io
|
127 |
+
NEO4J_USERNAME=neo4j
|
128 |
+
NEO4J_PASSWORD='your_password'
|
129 |
+
|
130 |
### Independent AGM Configuration(not for AMG embedded in PostreSQL)
|
131 |
+
# AGE_POSTGRES_DB=
|
132 |
+
# AGE_POSTGRES_USER=
|
133 |
+
# AGE_POSTGRES_PASSWORD=
|
134 |
+
# AGE_POSTGRES_HOST=
|
135 |
# AGE_POSTGRES_PORT=8529
|
136 |
|
137 |
# AGE Graph Name(apply to PostgreSQL and independent AGM)
|
138 |
### AGE_GRAPH_NAME is precated
|
139 |
# AGE_GRAPH_NAME=lightrag
|
140 |
|
|
|
|
|
|
|
|
|
|
|
141 |
### MongoDB Configuration
|
142 |
MONGO_URI=mongodb://root:root@localhost:27017/
|
143 |
MONGO_DATABASE=LightRAG
|
|
|
157 |
|
158 |
### Redis
|
159 |
REDIS_URI=redis://localhost:6379
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|