Merge branch 'main' into add-Memgraph-graph-db
Browse files- env.example +6 -12
- examples/raganything_example.py +198 -69
- examples/unofficial-sample/copy_llm_cache_to_another_storage.py +34 -18
- lightrag/api/__init__.py +1 -1
- lightrag/api/routers/document_routes.py +73 -7
- lightrag/api/routers/ollama_api.py +26 -2
- lightrag/api/routers/query_routes.py +3 -0
- lightrag/base.py +4 -11
- lightrag/constants.py +1 -0
- lightrag/kg/__init__.py +4 -1
- lightrag/kg/{chroma_impl.py β deprecated/chroma_impl.py} +1 -2
- lightrag/kg/{gremlin_impl.py β deprecated/gremlin_impl.py} +0 -0
- lightrag/kg/{tidb_impl.py β deprecated/tidb_impl.py} +2 -9
- lightrag/kg/faiss_impl.py +2 -3
- lightrag/kg/json_doc_status_impl.py +4 -0
- lightrag/kg/json_kv_impl.py +141 -38
- lightrag/kg/milvus_impl.py +619 -33
- lightrag/kg/mongo_impl.py +437 -170
- lightrag/kg/networkx_impl.py +3 -1
- lightrag/kg/postgres_impl.py +574 -105
- lightrag/kg/qdrant_impl.py +1 -1
- lightrag/kg/redis_impl.py +557 -39
- lightrag/lightrag.py +61 -63
- lightrag/operate.py +176 -50
- lightrag/utils.py +109 -158
- lightrag/utils_graph.py +1 -1
- reproduce/batch_eval.py +4 -0
- tests/test_graph_storage.py +1 -0
env.example
CHANGED
@@ -58,6 +58,8 @@ SUMMARY_LANGUAGE=English
|
|
58 |
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
59 |
### Max tokens for entity/relations description after merge
|
60 |
# MAX_TOKEN_SUMMARY=500
|
|
|
|
|
61 |
|
62 |
### Number of parallel processing documents(Less than MAX_ASYNC/2 is recommended)
|
63 |
# MAX_PARALLEL_INSERT=2
|
@@ -112,15 +114,6 @@ EMBEDDING_BINDING_HOST=http://localhost:11434
|
|
112 |
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
113 |
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
114 |
|
115 |
-
### TiDB Configuration (Deprecated)
|
116 |
-
# TIDB_HOST=localhost
|
117 |
-
# TIDB_PORT=4000
|
118 |
-
# TIDB_USER=your_username
|
119 |
-
# TIDB_PASSWORD='your_password'
|
120 |
-
# TIDB_DATABASE=your_database
|
121 |
-
### separating all data from difference Lightrag instances(deprecating)
|
122 |
-
# TIDB_WORKSPACE=default
|
123 |
-
|
124 |
### PostgreSQL Configuration
|
125 |
POSTGRES_HOST=localhost
|
126 |
POSTGRES_PORT=5432
|
@@ -128,7 +121,7 @@ POSTGRES_USER=your_username
|
|
128 |
POSTGRES_PASSWORD='your_password'
|
129 |
POSTGRES_DATABASE=your_database
|
130 |
POSTGRES_MAX_CONNECTIONS=12
|
131 |
-
### separating all data from difference Lightrag instances
|
132 |
# POSTGRES_WORKSPACE=default
|
133 |
|
134 |
### Neo4j Configuration
|
@@ -144,14 +137,15 @@ NEO4J_PASSWORD='your_password'
|
|
144 |
# AGE_POSTGRES_PORT=8529
|
145 |
|
146 |
# AGE Graph Name(apply to PostgreSQL and independent AGM)
|
147 |
-
### AGE_GRAPH_NAME is
|
148 |
# AGE_GRAPH_NAME=lightrag
|
149 |
|
150 |
### MongoDB Configuration
|
151 |
MONGO_URI=mongodb://root:root@localhost:27017/
|
152 |
MONGO_DATABASE=LightRAG
|
153 |
### separating all data from difference Lightrag instances(deprecating)
|
154 |
-
|
|
|
155 |
|
156 |
### Milvus Configuration
|
157 |
MILVUS_URI=http://localhost:19530
|
|
|
58 |
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
59 |
### Max tokens for entity/relations description after merge
|
60 |
# MAX_TOKEN_SUMMARY=500
|
61 |
+
### Maximum number of entity extraction attempts for ambiguous content
|
62 |
+
# MAX_GLEANING=1
|
63 |
|
64 |
### Number of parallel processing documents(Less than MAX_ASYNC/2 is recommended)
|
65 |
# MAX_PARALLEL_INSERT=2
|
|
|
114 |
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
115 |
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
### PostgreSQL Configuration
|
118 |
POSTGRES_HOST=localhost
|
119 |
POSTGRES_PORT=5432
|
|
|
121 |
POSTGRES_PASSWORD='your_password'
|
122 |
POSTGRES_DATABASE=your_database
|
123 |
POSTGRES_MAX_CONNECTIONS=12
|
124 |
+
### separating all data from difference Lightrag instances
|
125 |
# POSTGRES_WORKSPACE=default
|
126 |
|
127 |
### Neo4j Configuration
|
|
|
137 |
# AGE_POSTGRES_PORT=8529
|
138 |
|
139 |
# AGE Graph Name(apply to PostgreSQL and independent AGM)
|
140 |
+
### AGE_GRAPH_NAME is deprecated
|
141 |
# AGE_GRAPH_NAME=lightrag
|
142 |
|
143 |
### MongoDB Configuration
|
144 |
MONGO_URI=mongodb://root:root@localhost:27017/
|
145 |
MONGO_DATABASE=LightRAG
|
146 |
### separating all data from difference Lightrag instances(deprecating)
|
147 |
+
### separating all data from difference Lightrag instances
|
148 |
+
# MONGODB_WORKSPACE=default
|
149 |
|
150 |
### Milvus Configuration
|
151 |
MILVUS_URI=http://localhost:19530
|
examples/raganything_example.py
CHANGED
@@ -11,9 +11,74 @@ This example shows how to:
|
|
11 |
import os
|
12 |
import argparse
|
13 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
15 |
-
from lightrag.utils import EmbeddingFunc
|
16 |
-
from raganything
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
async def process_with_rag(
|
@@ -31,15 +96,21 @@ async def process_with_rag(
|
|
31 |
output_dir: Output directory for RAG results
|
32 |
api_key: OpenAI API key
|
33 |
base_url: Optional base URL for API
|
|
|
34 |
"""
|
35 |
try:
|
36 |
-
#
|
37 |
-
|
38 |
-
working_dir=working_dir,
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
"gpt-4o-mini",
|
44 |
prompt,
|
45 |
system_prompt=system_prompt,
|
@@ -47,81 +118,123 @@ async def process_with_rag(
|
|
47 |
api_key=api_key,
|
48 |
base_url=base_url,
|
49 |
**kwargs,
|
50 |
-
),
|
51 |
-
vision_model_func=lambda prompt,
|
52 |
-
system_prompt=None,
|
53 |
-
history_messages=[],
|
54 |
-
image_data=None,
|
55 |
-
**kwargs: openai_complete_if_cache(
|
56 |
-
"gpt-4o",
|
57 |
-
"",
|
58 |
-
system_prompt=None,
|
59 |
-
history_messages=[],
|
60 |
-
messages=[
|
61 |
-
{"role": "system", "content": system_prompt}
|
62 |
-
if system_prompt
|
63 |
-
else None,
|
64 |
-
{
|
65 |
-
"role": "user",
|
66 |
-
"content": [
|
67 |
-
{"type": "text", "text": prompt},
|
68 |
-
{
|
69 |
-
"type": "image_url",
|
70 |
-
"image_url": {
|
71 |
-
"url": f"data:image/jpeg;base64,{image_data}"
|
72 |
-
},
|
73 |
-
},
|
74 |
-
],
|
75 |
-
}
|
76 |
-
if image_data
|
77 |
-
else {"role": "user", "content": prompt},
|
78 |
-
],
|
79 |
-
api_key=api_key,
|
80 |
-
base_url=base_url,
|
81 |
-
**kwargs,
|
82 |
)
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
api_key=api_key,
|
100 |
base_url=base_url,
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
),
|
103 |
)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# Process document
|
106 |
await rag.process_document_complete(
|
107 |
file_path=file_path, output_dir=output_dir, parse_method="auto"
|
108 |
)
|
109 |
|
110 |
-
# Example queries
|
111 |
-
|
|
|
|
|
|
|
112 |
"What is the main content of the document?",
|
113 |
-
"
|
114 |
-
"Tell me about the experimental results and data tables",
|
115 |
]
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
except Exception as e:
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
def main():
|
@@ -135,12 +248,20 @@ def main():
|
|
135 |
"--output", "-o", default="./output", help="Output directory path"
|
136 |
)
|
137 |
parser.add_argument(
|
138 |
-
"--api-key",
|
|
|
|
|
139 |
)
|
140 |
parser.add_argument("--base-url", help="Optional base URL for API")
|
141 |
|
142 |
args = parser.parse_args()
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# Create output directory if specified
|
145 |
if args.output:
|
146 |
os.makedirs(args.output, exist_ok=True)
|
@@ -154,4 +275,12 @@ def main():
|
|
154 |
|
155 |
|
156 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
main()
|
|
|
11 |
import os
|
12 |
import argparse
|
13 |
import asyncio
|
14 |
+
import logging
|
15 |
+
import logging.config
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
# Add project root directory to Python path
|
19 |
+
import sys
|
20 |
+
|
21 |
+
sys.path.append(str(Path(__file__).parent.parent))
|
22 |
+
|
23 |
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
24 |
+
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
25 |
+
from raganything import RAGAnything, RAGAnythingConfig
|
26 |
+
|
27 |
+
|
28 |
+
def configure_logging():
|
29 |
+
"""Configure logging for the application"""
|
30 |
+
# Get log directory path from environment variable or use current directory
|
31 |
+
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
32 |
+
log_file_path = os.path.abspath(os.path.join(log_dir, "raganything_example.log"))
|
33 |
+
|
34 |
+
print(f"\nRAGAnything example log file: {log_file_path}\n")
|
35 |
+
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
36 |
+
|
37 |
+
# Get log file max size and backup count from environment variables
|
38 |
+
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
39 |
+
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
40 |
+
|
41 |
+
logging.config.dictConfig(
|
42 |
+
{
|
43 |
+
"version": 1,
|
44 |
+
"disable_existing_loggers": False,
|
45 |
+
"formatters": {
|
46 |
+
"default": {
|
47 |
+
"format": "%(levelname)s: %(message)s",
|
48 |
+
},
|
49 |
+
"detailed": {
|
50 |
+
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
51 |
+
},
|
52 |
+
},
|
53 |
+
"handlers": {
|
54 |
+
"console": {
|
55 |
+
"formatter": "default",
|
56 |
+
"class": "logging.StreamHandler",
|
57 |
+
"stream": "ext://sys.stderr",
|
58 |
+
},
|
59 |
+
"file": {
|
60 |
+
"formatter": "detailed",
|
61 |
+
"class": "logging.handlers.RotatingFileHandler",
|
62 |
+
"filename": log_file_path,
|
63 |
+
"maxBytes": log_max_bytes,
|
64 |
+
"backupCount": log_backup_count,
|
65 |
+
"encoding": "utf-8",
|
66 |
+
},
|
67 |
+
},
|
68 |
+
"loggers": {
|
69 |
+
"lightrag": {
|
70 |
+
"handlers": ["console", "file"],
|
71 |
+
"level": "INFO",
|
72 |
+
"propagate": False,
|
73 |
+
},
|
74 |
+
},
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
# Set the logger level to INFO
|
79 |
+
logger.setLevel(logging.INFO)
|
80 |
+
# Enable verbose debug if needed
|
81 |
+
set_verbose_debug(os.getenv("VERBOSE", "false").lower() == "true")
|
82 |
|
83 |
|
84 |
async def process_with_rag(
|
|
|
96 |
output_dir: Output directory for RAG results
|
97 |
api_key: OpenAI API key
|
98 |
base_url: Optional base URL for API
|
99 |
+
working_dir: Working directory for RAG storage
|
100 |
"""
|
101 |
try:
|
102 |
+
# Create RAGAnything configuration
|
103 |
+
config = RAGAnythingConfig(
|
104 |
+
working_dir=working_dir or "./rag_storage",
|
105 |
+
mineru_parse_method="auto",
|
106 |
+
enable_image_processing=True,
|
107 |
+
enable_table_processing=True,
|
108 |
+
enable_equation_processing=True,
|
109 |
+
)
|
110 |
+
|
111 |
+
# Define LLM model function
|
112 |
+
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
113 |
+
return openai_complete_if_cache(
|
114 |
"gpt-4o-mini",
|
115 |
prompt,
|
116 |
system_prompt=system_prompt,
|
|
|
118 |
api_key=api_key,
|
119 |
base_url=base_url,
|
120 |
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
+
|
123 |
+
# Define vision model function for image processing
|
124 |
+
def vision_model_func(
|
125 |
+
prompt, system_prompt=None, history_messages=[], image_data=None, **kwargs
|
126 |
+
):
|
127 |
+
if image_data:
|
128 |
+
return openai_complete_if_cache(
|
129 |
+
"gpt-4o",
|
130 |
+
"",
|
131 |
+
system_prompt=None,
|
132 |
+
history_messages=[],
|
133 |
+
messages=[
|
134 |
+
{"role": "system", "content": system_prompt}
|
135 |
+
if system_prompt
|
136 |
+
else None,
|
137 |
+
{
|
138 |
+
"role": "user",
|
139 |
+
"content": [
|
140 |
+
{"type": "text", "text": prompt},
|
141 |
+
{
|
142 |
+
"type": "image_url",
|
143 |
+
"image_url": {
|
144 |
+
"url": f"data:image/jpeg;base64,{image_data}"
|
145 |
+
},
|
146 |
+
},
|
147 |
+
],
|
148 |
+
}
|
149 |
+
if image_data
|
150 |
+
else {"role": "user", "content": prompt},
|
151 |
+
],
|
152 |
api_key=api_key,
|
153 |
base_url=base_url,
|
154 |
+
**kwargs,
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
|
158 |
+
|
159 |
+
# Define embedding function
|
160 |
+
embedding_func = EmbeddingFunc(
|
161 |
+
embedding_dim=3072,
|
162 |
+
max_token_size=8192,
|
163 |
+
func=lambda texts: openai_embed(
|
164 |
+
texts,
|
165 |
+
model="text-embedding-3-large",
|
166 |
+
api_key=api_key,
|
167 |
+
base_url=base_url,
|
168 |
),
|
169 |
)
|
170 |
|
171 |
+
# Initialize RAGAnything with new dataclass structure
|
172 |
+
rag = RAGAnything(
|
173 |
+
config=config,
|
174 |
+
llm_model_func=llm_model_func,
|
175 |
+
vision_model_func=vision_model_func,
|
176 |
+
embedding_func=embedding_func,
|
177 |
+
)
|
178 |
+
|
179 |
# Process document
|
180 |
await rag.process_document_complete(
|
181 |
file_path=file_path, output_dir=output_dir, parse_method="auto"
|
182 |
)
|
183 |
|
184 |
+
# Example queries - demonstrating different query approaches
|
185 |
+
logger.info("\nQuerying processed document:")
|
186 |
+
|
187 |
+
# 1. Pure text queries using aquery()
|
188 |
+
text_queries = [
|
189 |
"What is the main content of the document?",
|
190 |
+
"What are the key topics discussed?",
|
|
|
191 |
]
|
192 |
|
193 |
+
for query in text_queries:
|
194 |
+
logger.info(f"\n[Text Query]: {query}")
|
195 |
+
result = await rag.aquery(query, mode="hybrid")
|
196 |
+
logger.info(f"Answer: {result}")
|
197 |
+
|
198 |
+
# 2. Multimodal query with specific multimodal content using aquery_with_multimodal()
|
199 |
+
logger.info(
|
200 |
+
"\n[Multimodal Query]: Analyzing performance data in context of document"
|
201 |
+
)
|
202 |
+
multimodal_result = await rag.aquery_with_multimodal(
|
203 |
+
"Compare this performance data with any similar results mentioned in the document",
|
204 |
+
multimodal_content=[
|
205 |
+
{
|
206 |
+
"type": "table",
|
207 |
+
"table_data": """Method,Accuracy,Processing_Time
|
208 |
+
RAGAnything,95.2%,120ms
|
209 |
+
Traditional_RAG,87.3%,180ms
|
210 |
+
Baseline,82.1%,200ms""",
|
211 |
+
"table_caption": "Performance comparison results",
|
212 |
+
}
|
213 |
+
],
|
214 |
+
mode="hybrid",
|
215 |
+
)
|
216 |
+
logger.info(f"Answer: {multimodal_result}")
|
217 |
+
|
218 |
+
# 3. Another multimodal query with equation content
|
219 |
+
logger.info("\n[Multimodal Query]: Mathematical formula analysis")
|
220 |
+
equation_result = await rag.aquery_with_multimodal(
|
221 |
+
"Explain this formula and relate it to any mathematical concepts in the document",
|
222 |
+
multimodal_content=[
|
223 |
+
{
|
224 |
+
"type": "equation",
|
225 |
+
"latex": "F1 = 2 \\cdot \\frac{precision \\cdot recall}{precision + recall}",
|
226 |
+
"equation_caption": "F1-score calculation formula",
|
227 |
+
}
|
228 |
+
],
|
229 |
+
mode="hybrid",
|
230 |
+
)
|
231 |
+
logger.info(f"Answer: {equation_result}")
|
232 |
|
233 |
except Exception as e:
|
234 |
+
logger.error(f"Error processing with RAG: {str(e)}")
|
235 |
+
import traceback
|
236 |
+
|
237 |
+
logger.error(traceback.format_exc())
|
238 |
|
239 |
|
240 |
def main():
|
|
|
248 |
"--output", "-o", default="./output", help="Output directory path"
|
249 |
)
|
250 |
parser.add_argument(
|
251 |
+
"--api-key",
|
252 |
+
default=os.getenv("OPENAI_API_KEY"),
|
253 |
+
help="OpenAI API key (defaults to OPENAI_API_KEY env var)",
|
254 |
)
|
255 |
parser.add_argument("--base-url", help="Optional base URL for API")
|
256 |
|
257 |
args = parser.parse_args()
|
258 |
|
259 |
+
# Check if API key is provided
|
260 |
+
if not args.api_key:
|
261 |
+
logger.error("Error: OpenAI API key is required")
|
262 |
+
logger.error("Set OPENAI_API_KEY environment variable or use --api-key option")
|
263 |
+
return
|
264 |
+
|
265 |
# Create output directory if specified
|
266 |
if args.output:
|
267 |
os.makedirs(args.output, exist_ok=True)
|
|
|
275 |
|
276 |
|
277 |
if __name__ == "__main__":
|
278 |
+
# Configure logging first
|
279 |
+
configure_logging()
|
280 |
+
|
281 |
+
print("RAGAnything Example")
|
282 |
+
print("=" * 30)
|
283 |
+
print("Processing document with multimodal RAG pipeline")
|
284 |
+
print("=" * 30)
|
285 |
+
|
286 |
main()
|
examples/unofficial-sample/copy_llm_cache_to_another_storage.py
CHANGED
@@ -52,18 +52,23 @@ async def copy_from_postgres_to_json():
|
|
52 |
embedding_func=None,
|
53 |
)
|
54 |
|
|
|
|
|
|
|
|
|
55 |
kv = {}
|
56 |
-
for
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
await to_llm_response_cache.upsert(kv)
|
68 |
await to_llm_response_cache.index_done_callback()
|
69 |
print("Mission accomplished!")
|
@@ -85,13 +90,24 @@ async def copy_from_json_to_postgres():
|
|
85 |
db=postgres_db,
|
86 |
)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
if __name__ == "__main__":
|
|
|
52 |
embedding_func=None,
|
53 |
)
|
54 |
|
55 |
+
# Get all cache data using the new flattened structure
|
56 |
+
all_data = await from_llm_response_cache.get_all()
|
57 |
+
|
58 |
+
# Convert flattened data to hierarchical structure for JsonKVStorage
|
59 |
kv = {}
|
60 |
+
for flattened_key, cache_entry in all_data.items():
|
61 |
+
# Parse flattened key: {mode}:{cache_type}:{hash}
|
62 |
+
parts = flattened_key.split(":", 2)
|
63 |
+
if len(parts) == 3:
|
64 |
+
mode, cache_type, hash_value = parts
|
65 |
+
if mode not in kv:
|
66 |
+
kv[mode] = {}
|
67 |
+
kv[mode][hash_value] = cache_entry
|
68 |
+
print(f"Copying {flattened_key} -> {mode}[{hash_value}]")
|
69 |
+
else:
|
70 |
+
print(f"Skipping invalid key format: {flattened_key}")
|
71 |
+
|
72 |
await to_llm_response_cache.upsert(kv)
|
73 |
await to_llm_response_cache.index_done_callback()
|
74 |
print("Mission accomplished!")
|
|
|
90 |
db=postgres_db,
|
91 |
)
|
92 |
|
93 |
+
# Get all cache data from JsonKVStorage (hierarchical structure)
|
94 |
+
all_data = await from_llm_response_cache.get_all()
|
95 |
+
|
96 |
+
# Convert hierarchical data to flattened structure for PGKVStorage
|
97 |
+
flattened_data = {}
|
98 |
+
for mode, mode_data in all_data.items():
|
99 |
+
print(f"Processing mode: {mode}")
|
100 |
+
for hash_value, cache_entry in mode_data.items():
|
101 |
+
# Determine cache_type from cache entry or use default
|
102 |
+
cache_type = cache_entry.get("cache_type", "extract")
|
103 |
+
# Create flattened key: {mode}:{cache_type}:{hash}
|
104 |
+
flattened_key = f"{mode}:{cache_type}:{hash_value}"
|
105 |
+
flattened_data[flattened_key] = cache_entry
|
106 |
+
print(f"\tConverting {mode}[{hash_value}] -> {flattened_key}")
|
107 |
+
|
108 |
+
# Upsert the flattened data
|
109 |
+
await to_llm_response_cache.upsert(flattened_data)
|
110 |
+
print("Mission accomplished!")
|
111 |
|
112 |
|
113 |
if __name__ == "__main__":
|
lightrag/api/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
__api_version__ = "
|
|
|
1 |
+
__api_version__ = "0178"
|
lightrag/api/routers/document_routes.py
CHANGED
@@ -62,6 +62,51 @@ router = APIRouter(
|
|
62 |
temp_prefix = "__tmp__"
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
class ScanResponse(BaseModel):
|
66 |
"""Response model for document scanning operation
|
67 |
|
@@ -783,7 +828,7 @@ async def run_scanning_process(rag: LightRAG, doc_manager: DocumentManager):
|
|
783 |
try:
|
784 |
new_files = doc_manager.scan_directory_for_new_files()
|
785 |
total_files = len(new_files)
|
786 |
-
logger.info(f"Found {total_files}
|
787 |
|
788 |
if not new_files:
|
789 |
return
|
@@ -816,8 +861,13 @@ async def background_delete_documents(
|
|
816 |
successful_deletions = []
|
817 |
failed_deletions = []
|
818 |
|
819 |
-
#
|
820 |
async with pipeline_status_lock:
|
|
|
|
|
|
|
|
|
|
|
821 |
pipeline_status.update(
|
822 |
{
|
823 |
"busy": True,
|
@@ -926,13 +976,26 @@ async def background_delete_documents(
|
|
926 |
async with pipeline_status_lock:
|
927 |
pipeline_status["history_messages"].append(error_msg)
|
928 |
finally:
|
929 |
-
# Final summary
|
930 |
async with pipeline_status_lock:
|
931 |
pipeline_status["busy"] = False
|
932 |
completion_msg = f"Deletion completed: {len(successful_deletions)} successful, {len(failed_deletions)} failed"
|
933 |
pipeline_status["latest_message"] = completion_msg
|
934 |
pipeline_status["history_messages"].append(completion_msg)
|
935 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
936 |
|
937 |
def create_document_routes(
|
938 |
rag: LightRAG, doc_manager: DocumentManager, api_key: Optional[str] = None
|
@@ -986,18 +1049,21 @@ def create_document_routes(
|
|
986 |
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
987 |
"""
|
988 |
try:
|
989 |
-
|
|
|
|
|
|
|
990 |
raise HTTPException(
|
991 |
status_code=400,
|
992 |
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
993 |
)
|
994 |
|
995 |
-
file_path = doc_manager.input_dir /
|
996 |
# Check if file already exists
|
997 |
if file_path.exists():
|
998 |
return InsertResponse(
|
999 |
status="duplicated",
|
1000 |
-
message=f"File '{
|
1001 |
)
|
1002 |
|
1003 |
with open(file_path, "wb") as buffer:
|
@@ -1008,7 +1074,7 @@ def create_document_routes(
|
|
1008 |
|
1009 |
return InsertResponse(
|
1010 |
status="success",
|
1011 |
-
message=f"File '{
|
1012 |
)
|
1013 |
except Exception as e:
|
1014 |
logger.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
|
|
62 |
temp_prefix = "__tmp__"
|
63 |
|
64 |
|
65 |
+
def sanitize_filename(filename: str, input_dir: Path) -> str:
|
66 |
+
"""
|
67 |
+
Sanitize uploaded filename to prevent Path Traversal attacks.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
filename: The original filename from the upload
|
71 |
+
input_dir: The target input directory
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
str: Sanitized filename that is safe to use
|
75 |
+
|
76 |
+
Raises:
|
77 |
+
HTTPException: If the filename is unsafe or invalid
|
78 |
+
"""
|
79 |
+
# Basic validation
|
80 |
+
if not filename or not filename.strip():
|
81 |
+
raise HTTPException(status_code=400, detail="Filename cannot be empty")
|
82 |
+
|
83 |
+
# Remove path separators and traversal sequences
|
84 |
+
clean_name = filename.replace("/", "").replace("\\", "")
|
85 |
+
clean_name = clean_name.replace("..", "")
|
86 |
+
|
87 |
+
# Remove control characters and null bytes
|
88 |
+
clean_name = "".join(c for c in clean_name if ord(c) >= 32 and c != "\x7f")
|
89 |
+
|
90 |
+
# Remove leading/trailing whitespace and dots
|
91 |
+
clean_name = clean_name.strip().strip(".")
|
92 |
+
|
93 |
+
# Check if anything is left after sanitization
|
94 |
+
if not clean_name:
|
95 |
+
raise HTTPException(
|
96 |
+
status_code=400, detail="Invalid filename after sanitization"
|
97 |
+
)
|
98 |
+
|
99 |
+
# Verify the final path stays within the input directory
|
100 |
+
try:
|
101 |
+
final_path = (input_dir / clean_name).resolve()
|
102 |
+
if not final_path.is_relative_to(input_dir.resolve()):
|
103 |
+
raise HTTPException(status_code=400, detail="Unsafe filename detected")
|
104 |
+
except (OSError, ValueError):
|
105 |
+
raise HTTPException(status_code=400, detail="Invalid filename")
|
106 |
+
|
107 |
+
return clean_name
|
108 |
+
|
109 |
+
|
110 |
class ScanResponse(BaseModel):
|
111 |
"""Response model for document scanning operation
|
112 |
|
|
|
828 |
try:
|
829 |
new_files = doc_manager.scan_directory_for_new_files()
|
830 |
total_files = len(new_files)
|
831 |
+
logger.info(f"Found {total_files} files to index.")
|
832 |
|
833 |
if not new_files:
|
834 |
return
|
|
|
861 |
successful_deletions = []
|
862 |
failed_deletions = []
|
863 |
|
864 |
+
# Double-check pipeline status before proceeding
|
865 |
async with pipeline_status_lock:
|
866 |
+
if pipeline_status.get("busy", False):
|
867 |
+
logger.warning("Error: Unexpected pipeline busy state, aborting deletion.")
|
868 |
+
return # Abort deletion operation
|
869 |
+
|
870 |
+
# Set pipeline status to busy for deletion
|
871 |
pipeline_status.update(
|
872 |
{
|
873 |
"busy": True,
|
|
|
976 |
async with pipeline_status_lock:
|
977 |
pipeline_status["history_messages"].append(error_msg)
|
978 |
finally:
|
979 |
+
# Final summary and check for pending requests
|
980 |
async with pipeline_status_lock:
|
981 |
pipeline_status["busy"] = False
|
982 |
completion_msg = f"Deletion completed: {len(successful_deletions)} successful, {len(failed_deletions)} failed"
|
983 |
pipeline_status["latest_message"] = completion_msg
|
984 |
pipeline_status["history_messages"].append(completion_msg)
|
985 |
|
986 |
+
# Check if there are pending document indexing requests
|
987 |
+
has_pending_request = pipeline_status.get("request_pending", False)
|
988 |
+
|
989 |
+
# If there are pending requests, start document processing pipeline
|
990 |
+
if has_pending_request:
|
991 |
+
try:
|
992 |
+
logger.info(
|
993 |
+
"Processing pending document indexing requests after deletion"
|
994 |
+
)
|
995 |
+
await rag.apipeline_process_enqueue_documents()
|
996 |
+
except Exception as e:
|
997 |
+
logger.error(f"Error processing pending documents after deletion: {e}")
|
998 |
+
|
999 |
|
1000 |
def create_document_routes(
|
1001 |
rag: LightRAG, doc_manager: DocumentManager, api_key: Optional[str] = None
|
|
|
1049 |
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
1050 |
"""
|
1051 |
try:
|
1052 |
+
# Sanitize filename to prevent Path Traversal attacks
|
1053 |
+
safe_filename = sanitize_filename(file.filename, doc_manager.input_dir)
|
1054 |
+
|
1055 |
+
if not doc_manager.is_supported_file(safe_filename):
|
1056 |
raise HTTPException(
|
1057 |
status_code=400,
|
1058 |
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
1059 |
)
|
1060 |
|
1061 |
+
file_path = doc_manager.input_dir / safe_filename
|
1062 |
# Check if file already exists
|
1063 |
if file_path.exists():
|
1064 |
return InsertResponse(
|
1065 |
status="duplicated",
|
1066 |
+
message=f"File '{safe_filename}' already exists in the input directory.",
|
1067 |
)
|
1068 |
|
1069 |
with open(file_path, "wb") as buffer:
|
|
|
1074 |
|
1075 |
return InsertResponse(
|
1076 |
status="success",
|
1077 |
+
message=f"File '{safe_filename}' uploaded successfully. Processing will continue in background.",
|
1078 |
)
|
1079 |
except Exception as e:
|
1080 |
logger.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
lightrag/api/routers/ollama_api.py
CHANGED
@@ -234,7 +234,7 @@ class OllamaAPI:
|
|
234 |
@self.router.get("/version", dependencies=[Depends(combined_auth)])
|
235 |
async def get_version():
|
236 |
"""Get Ollama version information"""
|
237 |
-
return OllamaVersionResponse(version="0.
|
238 |
|
239 |
@self.router.get("/tags", dependencies=[Depends(combined_auth)])
|
240 |
async def get_tags():
|
@@ -244,9 +244,9 @@ class OllamaAPI:
|
|
244 |
{
|
245 |
"name": self.ollama_server_infos.LIGHTRAG_MODEL,
|
246 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
|
|
247 |
"size": self.ollama_server_infos.LIGHTRAG_SIZE,
|
248 |
"digest": self.ollama_server_infos.LIGHTRAG_DIGEST,
|
249 |
-
"modified_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
250 |
"details": {
|
251 |
"parent_model": "",
|
252 |
"format": "gguf",
|
@@ -337,7 +337,10 @@ class OllamaAPI:
|
|
337 |
data = {
|
338 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
339 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
|
|
340 |
"done": True,
|
|
|
|
|
341 |
"total_duration": total_time,
|
342 |
"load_duration": 0,
|
343 |
"prompt_eval_count": prompt_tokens,
|
@@ -377,6 +380,7 @@ class OllamaAPI:
|
|
377 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
378 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
379 |
"response": f"\n\nError: {error_msg}",
|
|
|
380 |
"done": False,
|
381 |
}
|
382 |
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
|
@@ -385,6 +389,7 @@ class OllamaAPI:
|
|
385 |
final_data = {
|
386 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
387 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
|
|
388 |
"done": True,
|
389 |
}
|
390 |
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
|
@@ -399,7 +404,10 @@ class OllamaAPI:
|
|
399 |
data = {
|
400 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
401 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
|
|
402 |
"done": True,
|
|
|
|
|
403 |
"total_duration": total_time,
|
404 |
"load_duration": 0,
|
405 |
"prompt_eval_count": prompt_tokens,
|
@@ -444,6 +452,8 @@ class OllamaAPI:
|
|
444 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
445 |
"response": str(response_text),
|
446 |
"done": True,
|
|
|
|
|
447 |
"total_duration": total_time,
|
448 |
"load_duration": 0,
|
449 |
"prompt_eval_count": prompt_tokens,
|
@@ -557,6 +567,12 @@ class OllamaAPI:
|
|
557 |
data = {
|
558 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
559 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
"done": True,
|
561 |
"total_duration": total_time,
|
562 |
"load_duration": 0,
|
@@ -605,6 +621,7 @@ class OllamaAPI:
|
|
605 |
"content": f"\n\nError: {error_msg}",
|
606 |
"images": None,
|
607 |
},
|
|
|
608 |
"done": False,
|
609 |
}
|
610 |
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
|
@@ -613,6 +630,11 @@ class OllamaAPI:
|
|
613 |
final_data = {
|
614 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
615 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
|
|
|
|
|
|
|
|
|
|
616 |
"done": True,
|
617 |
}
|
618 |
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
|
@@ -633,6 +655,7 @@ class OllamaAPI:
|
|
633 |
"content": "",
|
634 |
"images": None,
|
635 |
},
|
|
|
636 |
"done": True,
|
637 |
"total_duration": total_time,
|
638 |
"load_duration": 0,
|
@@ -697,6 +720,7 @@ class OllamaAPI:
|
|
697 |
"content": str(response_text),
|
698 |
"images": None,
|
699 |
},
|
|
|
700 |
"done": True,
|
701 |
"total_duration": total_time,
|
702 |
"load_duration": 0,
|
|
|
234 |
@self.router.get("/version", dependencies=[Depends(combined_auth)])
|
235 |
async def get_version():
|
236 |
"""Get Ollama version information"""
|
237 |
+
return OllamaVersionResponse(version="0.9.3")
|
238 |
|
239 |
@self.router.get("/tags", dependencies=[Depends(combined_auth)])
|
240 |
async def get_tags():
|
|
|
244 |
{
|
245 |
"name": self.ollama_server_infos.LIGHTRAG_MODEL,
|
246 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
247 |
+
"modified_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
248 |
"size": self.ollama_server_infos.LIGHTRAG_SIZE,
|
249 |
"digest": self.ollama_server_infos.LIGHTRAG_DIGEST,
|
|
|
250 |
"details": {
|
251 |
"parent_model": "",
|
252 |
"format": "gguf",
|
|
|
337 |
data = {
|
338 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
339 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
340 |
+
"response": "",
|
341 |
"done": True,
|
342 |
+
"done_reason": "stop",
|
343 |
+
"context": [],
|
344 |
"total_duration": total_time,
|
345 |
"load_duration": 0,
|
346 |
"prompt_eval_count": prompt_tokens,
|
|
|
380 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
381 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
382 |
"response": f"\n\nError: {error_msg}",
|
383 |
+
"error": f"\n\nError: {error_msg}",
|
384 |
"done": False,
|
385 |
}
|
386 |
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
|
|
|
389 |
final_data = {
|
390 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
391 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
392 |
+
"response": "",
|
393 |
"done": True,
|
394 |
}
|
395 |
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
|
|
|
404 |
data = {
|
405 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
406 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
407 |
+
"response": "",
|
408 |
"done": True,
|
409 |
+
"done_reason": "stop",
|
410 |
+
"context": [],
|
411 |
"total_duration": total_time,
|
412 |
"load_duration": 0,
|
413 |
"prompt_eval_count": prompt_tokens,
|
|
|
452 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
453 |
"response": str(response_text),
|
454 |
"done": True,
|
455 |
+
"done_reason": "stop",
|
456 |
+
"context": [],
|
457 |
"total_duration": total_time,
|
458 |
"load_duration": 0,
|
459 |
"prompt_eval_count": prompt_tokens,
|
|
|
567 |
data = {
|
568 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
569 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
570 |
+
"message": {
|
571 |
+
"role": "assistant",
|
572 |
+
"content": "",
|
573 |
+
"images": None,
|
574 |
+
},
|
575 |
+
"done_reason": "stop",
|
576 |
"done": True,
|
577 |
"total_duration": total_time,
|
578 |
"load_duration": 0,
|
|
|
621 |
"content": f"\n\nError: {error_msg}",
|
622 |
"images": None,
|
623 |
},
|
624 |
+
"error": f"\n\nError: {error_msg}",
|
625 |
"done": False,
|
626 |
}
|
627 |
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
|
|
|
630 |
final_data = {
|
631 |
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
|
632 |
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
|
633 |
+
"message": {
|
634 |
+
"role": "assistant",
|
635 |
+
"content": "",
|
636 |
+
"images": None,
|
637 |
+
},
|
638 |
"done": True,
|
639 |
}
|
640 |
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
|
|
|
655 |
"content": "",
|
656 |
"images": None,
|
657 |
},
|
658 |
+
"done_reason": "stop",
|
659 |
"done": True,
|
660 |
"total_duration": total_time,
|
661 |
"load_duration": 0,
|
|
|
720 |
"content": str(response_text),
|
721 |
"images": None,
|
722 |
},
|
723 |
+
"done_reason": "stop",
|
724 |
"done": True,
|
725 |
"total_duration": total_time,
|
726 |
"load_duration": 0,
|
lightrag/api/routers/query_routes.py
CHANGED
@@ -183,6 +183,9 @@ def create_query_routes(rag, api_key: Optional[str] = None, top_k: int = 60):
|
|
183 |
if isinstance(response, str):
|
184 |
# If it's a string, send it all at once
|
185 |
yield f"{json.dumps({'response': response})}\n"
|
|
|
|
|
|
|
186 |
else:
|
187 |
# If it's an async generator, send chunks one by one
|
188 |
try:
|
|
|
183 |
if isinstance(response, str):
|
184 |
# If it's a string, send it all at once
|
185 |
yield f"{json.dumps({'response': response})}\n"
|
186 |
+
elif response is None:
|
187 |
+
# Handle None response (e.g., when only_need_context=True but no context found)
|
188 |
+
yield f"{json.dumps({'response': 'No relevant context found for the query.'})}\n"
|
189 |
else:
|
190 |
# If it's an async generator, send chunks one by one
|
191 |
try:
|
lightrag/base.py
CHANGED
@@ -297,6 +297,8 @@ class BaseKVStorage(StorageNameSpace, ABC):
|
|
297 |
|
298 |
@dataclass
|
299 |
class BaseGraphStorage(StorageNameSpace, ABC):
|
|
|
|
|
300 |
embedding_func: EmbeddingFunc
|
301 |
|
302 |
@abstractmethod
|
@@ -468,17 +470,6 @@ class BaseGraphStorage(StorageNameSpace, ABC):
|
|
468 |
list[dict]: A list of nodes, where each node is a dictionary of its properties.
|
469 |
An empty list if no matching nodes are found.
|
470 |
"""
|
471 |
-
# Default implementation iterates through all nodes, which is inefficient.
|
472 |
-
# This method should be overridden by subclasses for better performance.
|
473 |
-
all_nodes = []
|
474 |
-
all_labels = await self.get_all_labels()
|
475 |
-
for label in all_labels:
|
476 |
-
node = await self.get_node(label)
|
477 |
-
if node and "source_id" in node:
|
478 |
-
source_ids = set(node["source_id"].split(GRAPH_FIELD_SEP))
|
479 |
-
if not source_ids.isdisjoint(chunk_ids):
|
480 |
-
all_nodes.append(node)
|
481 |
-
return all_nodes
|
482 |
|
483 |
@abstractmethod
|
484 |
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
@@ -643,6 +634,8 @@ class DocProcessingStatus:
|
|
643 |
"""ISO format timestamp when document was last updated"""
|
644 |
chunks_count: int | None = None
|
645 |
"""Number of chunks after splitting, used for processing"""
|
|
|
|
|
646 |
error: str | None = None
|
647 |
"""Error message if failed"""
|
648 |
metadata: dict[str, Any] = field(default_factory=dict)
|
|
|
297 |
|
298 |
@dataclass
|
299 |
class BaseGraphStorage(StorageNameSpace, ABC):
|
300 |
+
"""All operations related to edges in graph should be undirected."""
|
301 |
+
|
302 |
embedding_func: EmbeddingFunc
|
303 |
|
304 |
@abstractmethod
|
|
|
470 |
list[dict]: A list of nodes, where each node is a dictionary of its properties.
|
471 |
An empty list if no matching nodes are found.
|
472 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
@abstractmethod
|
475 |
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
|
|
634 |
"""ISO format timestamp when document was last updated"""
|
635 |
chunks_count: int | None = None
|
636 |
"""Number of chunks after splitting, used for processing"""
|
637 |
+
chunks_list: list[str] | None = field(default_factory=list)
|
638 |
+
"""List of chunk IDs associated with this document, used for deletion"""
|
639 |
error: str | None = None
|
640 |
"""Error message if failed"""
|
641 |
metadata: dict[str, Any] = field(default_factory=dict)
|
lightrag/constants.py
CHANGED
@@ -7,6 +7,7 @@ consistency and makes maintenance easier.
|
|
7 |
"""
|
8 |
|
9 |
# Default values for environment variables
|
|
|
10 |
DEFAULT_MAX_TOKEN_SUMMARY = 500
|
11 |
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 6
|
12 |
DEFAULT_WOKERS = 2
|
|
|
7 |
"""
|
8 |
|
9 |
# Default values for environment variables
|
10 |
+
DEFAULT_MAX_GLEANING = 1
|
11 |
DEFAULT_MAX_TOKEN_SUMMARY = 500
|
12 |
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 6
|
13 |
DEFAULT_WOKERS = 2
|
lightrag/kg/__init__.py
CHANGED
@@ -26,11 +26,11 @@ STORAGE_IMPLEMENTATIONS = {
|
|
26 |
"implementations": [
|
27 |
"NanoVectorDBStorage",
|
28 |
"MilvusVectorDBStorage",
|
29 |
-
"ChromaVectorDBStorage",
|
30 |
"PGVectorStorage",
|
31 |
"FaissVectorDBStorage",
|
32 |
"QdrantVectorDBStorage",
|
33 |
"MongoVectorDBStorage",
|
|
|
34 |
# "TiDBVectorDBStorage",
|
35 |
],
|
36 |
"required_methods": ["query", "upsert"],
|
@@ -38,6 +38,7 @@ STORAGE_IMPLEMENTATIONS = {
|
|
38 |
"DOC_STATUS_STORAGE": {
|
39 |
"implementations": [
|
40 |
"JsonDocStatusStorage",
|
|
|
41 |
"PGDocStatusStorage",
|
42 |
"MongoDocStatusStorage",
|
43 |
],
|
@@ -81,6 +82,7 @@ STORAGE_ENV_REQUIREMENTS: dict[str, list[str]] = {
|
|
81 |
"MongoVectorDBStorage": [],
|
82 |
# Document Status Storage Implementations
|
83 |
"JsonDocStatusStorage": [],
|
|
|
84 |
"PGDocStatusStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
|
85 |
"MongoDocStatusStorage": [],
|
86 |
}
|
@@ -98,6 +100,7 @@ STORAGES = {
|
|
98 |
"MongoGraphStorage": ".kg.mongo_impl",
|
99 |
"MongoVectorDBStorage": ".kg.mongo_impl",
|
100 |
"RedisKVStorage": ".kg.redis_impl",
|
|
|
101 |
"ChromaVectorDBStorage": ".kg.chroma_impl",
|
102 |
# "TiDBKVStorage": ".kg.tidb_impl",
|
103 |
# "TiDBVectorDBStorage": ".kg.tidb_impl",
|
|
|
26 |
"implementations": [
|
27 |
"NanoVectorDBStorage",
|
28 |
"MilvusVectorDBStorage",
|
|
|
29 |
"PGVectorStorage",
|
30 |
"FaissVectorDBStorage",
|
31 |
"QdrantVectorDBStorage",
|
32 |
"MongoVectorDBStorage",
|
33 |
+
# "ChromaVectorDBStorage",
|
34 |
# "TiDBVectorDBStorage",
|
35 |
],
|
36 |
"required_methods": ["query", "upsert"],
|
|
|
38 |
"DOC_STATUS_STORAGE": {
|
39 |
"implementations": [
|
40 |
"JsonDocStatusStorage",
|
41 |
+
"RedisDocStatusStorage",
|
42 |
"PGDocStatusStorage",
|
43 |
"MongoDocStatusStorage",
|
44 |
],
|
|
|
82 |
"MongoVectorDBStorage": [],
|
83 |
# Document Status Storage Implementations
|
84 |
"JsonDocStatusStorage": [],
|
85 |
+
"RedisDocStatusStorage": ["REDIS_URI"],
|
86 |
"PGDocStatusStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
|
87 |
"MongoDocStatusStorage": [],
|
88 |
}
|
|
|
100 |
"MongoGraphStorage": ".kg.mongo_impl",
|
101 |
"MongoVectorDBStorage": ".kg.mongo_impl",
|
102 |
"RedisKVStorage": ".kg.redis_impl",
|
103 |
+
"RedisDocStatusStorage": ".kg.redis_impl",
|
104 |
"ChromaVectorDBStorage": ".kg.chroma_impl",
|
105 |
# "TiDBKVStorage": ".kg.tidb_impl",
|
106 |
# "TiDBVectorDBStorage": ".kg.tidb_impl",
|
lightrag/kg/{chroma_impl.py β deprecated/chroma_impl.py}
RENAMED
@@ -109,7 +109,7 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
|
109 |
raise
|
110 |
|
111 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
112 |
-
logger.
|
113 |
if not data:
|
114 |
return
|
115 |
|
@@ -234,7 +234,6 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
|
234 |
ids: List of vector IDs to be deleted
|
235 |
"""
|
236 |
try:
|
237 |
-
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
238 |
self._collection.delete(ids=ids)
|
239 |
logger.debug(
|
240 |
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
|
|
109 |
raise
|
110 |
|
111 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
112 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
113 |
if not data:
|
114 |
return
|
115 |
|
|
|
234 |
ids: List of vector IDs to be deleted
|
235 |
"""
|
236 |
try:
|
|
|
237 |
self._collection.delete(ids=ids)
|
238 |
logger.debug(
|
239 |
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
lightrag/kg/{gremlin_impl.py β deprecated/gremlin_impl.py}
RENAMED
File without changes
|
lightrag/kg/{tidb_impl.py β deprecated/tidb_impl.py}
RENAMED
@@ -257,7 +257,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
257 |
|
258 |
################ INSERT full_doc AND chunks ################
|
259 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
260 |
-
logger.
|
261 |
if not data:
|
262 |
return
|
263 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
@@ -454,11 +454,9 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
454 |
|
455 |
###### INSERT entities And relationships ######
|
456 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
457 |
-
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
458 |
if not data:
|
459 |
return
|
460 |
-
|
461 |
-
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
462 |
|
463 |
# Get current time as UNIX timestamp
|
464 |
import time
|
@@ -522,11 +520,6 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
522 |
}
|
523 |
await self.db.execute(SQL_TEMPLATES["upsert_relationship"], param)
|
524 |
|
525 |
-
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
526 |
-
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
527 |
-
params = {"workspace": self.db.workspace, "status": status}
|
528 |
-
return await self.db.query(SQL, params, multirows=True)
|
529 |
-
|
530 |
async def delete(self, ids: list[str]) -> None:
|
531 |
"""Delete vectors with specified IDs from the storage.
|
532 |
|
|
|
257 |
|
258 |
################ INSERT full_doc AND chunks ################
|
259 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
260 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
261 |
if not data:
|
262 |
return
|
263 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
|
|
454 |
|
455 |
###### INSERT entities And relationships ######
|
456 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
|
|
457 |
if not data:
|
458 |
return
|
459 |
+
logger.debug(f"Inserting {len(data)} vectors to {self.namespace}")
|
|
|
460 |
|
461 |
# Get current time as UNIX timestamp
|
462 |
import time
|
|
|
520 |
}
|
521 |
await self.db.execute(SQL_TEMPLATES["upsert_relationship"], param)
|
522 |
|
|
|
|
|
|
|
|
|
|
|
523 |
async def delete(self, ids: list[str]) -> None:
|
524 |
"""Delete vectors with specified IDs from the storage.
|
525 |
|
lightrag/kg/faiss_impl.py
CHANGED
@@ -17,14 +17,13 @@ from .shared_storage import (
|
|
17 |
set_all_update_flags,
|
18 |
)
|
19 |
|
20 |
-
import faiss # type: ignore
|
21 |
-
|
22 |
USE_GPU = os.getenv("FAISS_USE_GPU", "0") == "1"
|
23 |
FAISS_PACKAGE = "faiss-gpu" if USE_GPU else "faiss-cpu"
|
24 |
-
|
25 |
if not pm.is_installed(FAISS_PACKAGE):
|
26 |
pm.install(FAISS_PACKAGE)
|
27 |
|
|
|
|
|
28 |
|
29 |
@final
|
30 |
@dataclass
|
|
|
17 |
set_all_update_flags,
|
18 |
)
|
19 |
|
|
|
|
|
20 |
USE_GPU = os.getenv("FAISS_USE_GPU", "0") == "1"
|
21 |
FAISS_PACKAGE = "faiss-gpu" if USE_GPU else "faiss-cpu"
|
|
|
22 |
if not pm.is_installed(FAISS_PACKAGE):
|
23 |
pm.install(FAISS_PACKAGE)
|
24 |
|
25 |
+
import faiss # type: ignore
|
26 |
+
|
27 |
|
28 |
@final
|
29 |
@dataclass
|
lightrag/kg/json_doc_status_impl.py
CHANGED
@@ -118,6 +118,10 @@ class JsonDocStatusStorage(DocStatusStorage):
|
|
118 |
return
|
119 |
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
120 |
async with self._storage_lock:
|
|
|
|
|
|
|
|
|
121 |
self._data.update(data)
|
122 |
await set_all_update_flags(self.namespace)
|
123 |
|
|
|
118 |
return
|
119 |
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
120 |
async with self._storage_lock:
|
121 |
+
# Ensure chunks_list field exists for new documents
|
122 |
+
for doc_id, doc_data in data.items():
|
123 |
+
if "chunks_list" not in doc_data:
|
124 |
+
doc_data["chunks_list"] = []
|
125 |
self._data.update(data)
|
126 |
await set_all_update_flags(self.namespace)
|
127 |
|
lightrag/kg/json_kv_impl.py
CHANGED
@@ -42,19 +42,14 @@ class JsonKVStorage(BaseKVStorage):
|
|
42 |
if need_init:
|
43 |
loaded_data = load_json(self._file_name) or {}
|
44 |
async with self._storage_lock:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# For cache namespaces, sum the cache entries across all cache types
|
50 |
-
data_count = sum(
|
51 |
-
len(first_level_dict)
|
52 |
-
for first_level_dict in loaded_data.values()
|
53 |
-
if isinstance(first_level_dict, dict)
|
54 |
)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
logger.info(
|
60 |
f"Process {os.getpid()} KV load {self.namespace} with {data_count} records"
|
@@ -67,17 +62,8 @@ class JsonKVStorage(BaseKVStorage):
|
|
67 |
dict(self._data) if hasattr(self._data, "_getvalue") else self._data
|
68 |
)
|
69 |
|
70 |
-
# Calculate data count
|
71 |
-
|
72 |
-
# # For cache namespaces, sum the cache entries across all cache types
|
73 |
-
data_count = sum(
|
74 |
-
len(first_level_dict)
|
75 |
-
for first_level_dict in data_dict.values()
|
76 |
-
if isinstance(first_level_dict, dict)
|
77 |
-
)
|
78 |
-
else:
|
79 |
-
# For non-cache namespaces, use the original count method
|
80 |
-
data_count = len(data_dict)
|
81 |
|
82 |
logger.debug(
|
83 |
f"Process {os.getpid()} KV writting {data_count} records to {self.namespace}"
|
@@ -92,22 +78,49 @@ class JsonKVStorage(BaseKVStorage):
|
|
92 |
Dictionary containing all stored data
|
93 |
"""
|
94 |
async with self._storage_lock:
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
98 |
async with self._storage_lock:
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
102 |
async with self._storage_lock:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
113 |
async with self._storage_lock:
|
@@ -121,8 +134,29 @@ class JsonKVStorage(BaseKVStorage):
|
|
121 |
"""
|
122 |
if not data:
|
123 |
return
|
|
|
|
|
|
|
|
|
|
|
124 |
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
125 |
async with self._storage_lock:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
self._data.update(data)
|
127 |
await set_all_update_flags(self.namespace)
|
128 |
|
@@ -150,14 +184,14 @@ class JsonKVStorage(BaseKVStorage):
|
|
150 |
await set_all_update_flags(self.namespace)
|
151 |
|
152 |
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
153 |
-
"""Delete specific records from storage by
|
154 |
|
155 |
Importance notes for in-memory storage:
|
156 |
1. Changes will be persisted to disk during the next index_done_callback
|
157 |
2. update flags to notify other processes that data persistence is needed
|
158 |
|
159 |
Args:
|
160 |
-
|
161 |
|
162 |
Returns:
|
163 |
True: if the cache drop successfully
|
@@ -167,9 +201,29 @@ class JsonKVStorage(BaseKVStorage):
|
|
167 |
return False
|
168 |
|
169 |
try:
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
return True
|
172 |
-
except Exception:
|
|
|
173 |
return False
|
174 |
|
175 |
# async def drop_cache_by_chunk_ids(self, chunk_ids: list[str] | None = None) -> bool:
|
@@ -245,9 +299,58 @@ class JsonKVStorage(BaseKVStorage):
|
|
245 |
logger.error(f"Error dropping {self.namespace}: {e}")
|
246 |
return {"status": "error", "message": str(e)}
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
async def finalize(self):
|
249 |
"""Finalize storage resources
|
250 |
Persistence cache data to disk before exiting
|
251 |
"""
|
252 |
-
if self.namespace.endswith("
|
253 |
await self.index_done_callback()
|
|
|
42 |
if need_init:
|
43 |
loaded_data = load_json(self._file_name) or {}
|
44 |
async with self._storage_lock:
|
45 |
+
# Migrate legacy cache structure if needed
|
46 |
+
if self.namespace.endswith("_cache"):
|
47 |
+
loaded_data = await self._migrate_legacy_cache_structure(
|
48 |
+
loaded_data
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
+
|
51 |
+
self._data.update(loaded_data)
|
52 |
+
data_count = len(loaded_data)
|
53 |
|
54 |
logger.info(
|
55 |
f"Process {os.getpid()} KV load {self.namespace} with {data_count} records"
|
|
|
62 |
dict(self._data) if hasattr(self._data, "_getvalue") else self._data
|
63 |
)
|
64 |
|
65 |
+
# Calculate data count - all data is now flattened
|
66 |
+
data_count = len(data_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
logger.debug(
|
69 |
f"Process {os.getpid()} KV writting {data_count} records to {self.namespace}"
|
|
|
78 |
Dictionary containing all stored data
|
79 |
"""
|
80 |
async with self._storage_lock:
|
81 |
+
result = {}
|
82 |
+
for key, value in self._data.items():
|
83 |
+
if value:
|
84 |
+
# Create a copy to avoid modifying the original data
|
85 |
+
data = dict(value)
|
86 |
+
# Ensure time fields are present, provide default values for old data
|
87 |
+
data.setdefault("create_time", 0)
|
88 |
+
data.setdefault("update_time", 0)
|
89 |
+
result[key] = data
|
90 |
+
else:
|
91 |
+
result[key] = value
|
92 |
+
return result
|
93 |
|
94 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
95 |
async with self._storage_lock:
|
96 |
+
result = self._data.get(id)
|
97 |
+
if result:
|
98 |
+
# Create a copy to avoid modifying the original data
|
99 |
+
result = dict(result)
|
100 |
+
# Ensure time fields are present, provide default values for old data
|
101 |
+
result.setdefault("create_time", 0)
|
102 |
+
result.setdefault("update_time", 0)
|
103 |
+
# Ensure _id field contains the clean ID
|
104 |
+
result["_id"] = id
|
105 |
+
return result
|
106 |
|
107 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
108 |
async with self._storage_lock:
|
109 |
+
results = []
|
110 |
+
for id in ids:
|
111 |
+
data = self._data.get(id, None)
|
112 |
+
if data:
|
113 |
+
# Create a copy to avoid modifying the original data
|
114 |
+
result = {k: v for k, v in data.items()}
|
115 |
+
# Ensure time fields are present, provide default values for old data
|
116 |
+
result.setdefault("create_time", 0)
|
117 |
+
result.setdefault("update_time", 0)
|
118 |
+
# Ensure _id field contains the clean ID
|
119 |
+
result["_id"] = id
|
120 |
+
results.append(result)
|
121 |
+
else:
|
122 |
+
results.append(None)
|
123 |
+
return results
|
124 |
|
125 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
126 |
async with self._storage_lock:
|
|
|
134 |
"""
|
135 |
if not data:
|
136 |
return
|
137 |
+
|
138 |
+
import time
|
139 |
+
|
140 |
+
current_time = int(time.time()) # Get current Unix timestamp
|
141 |
+
|
142 |
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
143 |
async with self._storage_lock:
|
144 |
+
# Add timestamps to data based on whether key exists
|
145 |
+
for k, v in data.items():
|
146 |
+
# For text_chunks namespace, ensure llm_cache_list field exists
|
147 |
+
if "text_chunks" in self.namespace:
|
148 |
+
if "llm_cache_list" not in v:
|
149 |
+
v["llm_cache_list"] = []
|
150 |
+
|
151 |
+
# Add timestamps based on whether key exists
|
152 |
+
if k in self._data: # Key exists, only update update_time
|
153 |
+
v["update_time"] = current_time
|
154 |
+
else: # New key, set both create_time and update_time
|
155 |
+
v["create_time"] = current_time
|
156 |
+
v["update_time"] = current_time
|
157 |
+
|
158 |
+
v["_id"] = k
|
159 |
+
|
160 |
self._data.update(data)
|
161 |
await set_all_update_flags(self.namespace)
|
162 |
|
|
|
184 |
await set_all_update_flags(self.namespace)
|
185 |
|
186 |
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
187 |
+
"""Delete specific records from storage by cache mode
|
188 |
|
189 |
Importance notes for in-memory storage:
|
190 |
1. Changes will be persisted to disk during the next index_done_callback
|
191 |
2. update flags to notify other processes that data persistence is needed
|
192 |
|
193 |
Args:
|
194 |
+
modes (list[str]): List of cache modes to be dropped from storage
|
195 |
|
196 |
Returns:
|
197 |
True: if the cache drop successfully
|
|
|
201 |
return False
|
202 |
|
203 |
try:
|
204 |
+
async with self._storage_lock:
|
205 |
+
keys_to_delete = []
|
206 |
+
modes_set = set(modes) # Convert to set for efficient lookup
|
207 |
+
|
208 |
+
for key in list(self._data.keys()):
|
209 |
+
# Parse flattened cache key: mode:cache_type:hash
|
210 |
+
parts = key.split(":", 2)
|
211 |
+
if len(parts) == 3 and parts[0] in modes_set:
|
212 |
+
keys_to_delete.append(key)
|
213 |
+
|
214 |
+
# Batch delete
|
215 |
+
for key in keys_to_delete:
|
216 |
+
self._data.pop(key, None)
|
217 |
+
|
218 |
+
if keys_to_delete:
|
219 |
+
await set_all_update_flags(self.namespace)
|
220 |
+
logger.info(
|
221 |
+
f"Dropped {len(keys_to_delete)} cache entries for modes: {modes}"
|
222 |
+
)
|
223 |
+
|
224 |
return True
|
225 |
+
except Exception as e:
|
226 |
+
logger.error(f"Error dropping cache by modes: {e}")
|
227 |
return False
|
228 |
|
229 |
# async def drop_cache_by_chunk_ids(self, chunk_ids: list[str] | None = None) -> bool:
|
|
|
299 |
logger.error(f"Error dropping {self.namespace}: {e}")
|
300 |
return {"status": "error", "message": str(e)}
|
301 |
|
302 |
+
async def _migrate_legacy_cache_structure(self, data: dict) -> dict:
|
303 |
+
"""Migrate legacy nested cache structure to flattened structure
|
304 |
+
|
305 |
+
Args:
|
306 |
+
data: Original data dictionary that may contain legacy structure
|
307 |
+
|
308 |
+
Returns:
|
309 |
+
Migrated data dictionary with flattened cache keys
|
310 |
+
"""
|
311 |
+
from lightrag.utils import generate_cache_key
|
312 |
+
|
313 |
+
# Early return if data is empty
|
314 |
+
if not data:
|
315 |
+
return data
|
316 |
+
|
317 |
+
# Check first entry to see if it's already in new format
|
318 |
+
first_key = next(iter(data.keys()))
|
319 |
+
if ":" in first_key and len(first_key.split(":")) == 3:
|
320 |
+
# Already in flattened format, return as-is
|
321 |
+
return data
|
322 |
+
|
323 |
+
migrated_data = {}
|
324 |
+
migration_count = 0
|
325 |
+
|
326 |
+
for key, value in data.items():
|
327 |
+
# Check if this is a legacy nested cache structure
|
328 |
+
if isinstance(value, dict) and all(
|
329 |
+
isinstance(v, dict) and "return" in v for v in value.values()
|
330 |
+
):
|
331 |
+
# This looks like a legacy cache mode with nested structure
|
332 |
+
mode = key
|
333 |
+
for cache_hash, cache_entry in value.items():
|
334 |
+
cache_type = cache_entry.get("cache_type", "extract")
|
335 |
+
flattened_key = generate_cache_key(mode, cache_type, cache_hash)
|
336 |
+
migrated_data[flattened_key] = cache_entry
|
337 |
+
migration_count += 1
|
338 |
+
else:
|
339 |
+
# Keep non-cache data or already flattened cache data as-is
|
340 |
+
migrated_data[key] = value
|
341 |
+
|
342 |
+
if migration_count > 0:
|
343 |
+
logger.info(
|
344 |
+
f"Migrated {migration_count} legacy cache entries to flattened structure"
|
345 |
+
)
|
346 |
+
# Persist migrated data immediately
|
347 |
+
write_json(migrated_data, self._file_name)
|
348 |
+
|
349 |
+
return migrated_data
|
350 |
+
|
351 |
async def finalize(self):
|
352 |
"""Finalize storage resources
|
353 |
Persistence cache data to disk before exiting
|
354 |
"""
|
355 |
+
if self.namespace.endswith("_cache"):
|
356 |
await self.index_done_callback()
|
lightrag/kg/milvus_impl.py
CHANGED
@@ -15,7 +15,7 @@ if not pm.is_installed("pymilvus"):
|
|
15 |
pm.install("pymilvus")
|
16 |
|
17 |
import configparser
|
18 |
-
from pymilvus import MilvusClient # type: ignore
|
19 |
|
20 |
config = configparser.ConfigParser()
|
21 |
config.read("config.ini", "utf-8")
|
@@ -24,16 +24,605 @@ config.read("config.ini", "utf-8")
|
|
24 |
@final
|
25 |
@dataclass
|
26 |
class MilvusVectorDBStorage(BaseVectorStorage):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def __post_init__(self):
|
38 |
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
39 |
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
@@ -43,6 +632,10 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
43 |
)
|
44 |
self.cosine_better_than_threshold = cosine_threshold
|
45 |
|
|
|
|
|
|
|
|
|
46 |
self._client = MilvusClient(
|
47 |
uri=os.environ.get(
|
48 |
"MILVUS_URI",
|
@@ -68,14 +661,12 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
68 |
),
|
69 |
)
|
70 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
dimension=self.embedding_func.embedding_dim,
|
75 |
-
)
|
76 |
|
77 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
78 |
-
logger.
|
79 |
if not data:
|
80 |
return
|
81 |
|
@@ -112,23 +703,25 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
112 |
embedding = await self.embedding_func(
|
113 |
[query], _priority=5
|
114 |
) # higher priority for query
|
|
|
|
|
|
|
|
|
115 |
results = self._client.search(
|
116 |
collection_name=self.namespace,
|
117 |
data=embedding,
|
118 |
limit=top_k,
|
119 |
-
output_fields=
|
120 |
search_params={
|
121 |
"metric_type": "COSINE",
|
122 |
"params": {"radius": self.cosine_better_than_threshold},
|
123 |
},
|
124 |
)
|
125 |
-
print(results)
|
126 |
return [
|
127 |
{
|
128 |
**dp["entity"],
|
129 |
"id": dp["id"],
|
130 |
"distance": dp["distance"],
|
131 |
-
# created_at is requested in output_fields, so it should be a top-level key in the result dict (dp)
|
132 |
"created_at": dp.get("created_at"),
|
133 |
}
|
134 |
for dp in results[0]
|
@@ -232,20 +825,19 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
232 |
The vector data if found, or None if not found
|
233 |
"""
|
234 |
try:
|
|
|
|
|
|
|
235 |
# Query Milvus for a specific ID
|
236 |
result = self._client.query(
|
237 |
collection_name=self.namespace,
|
238 |
filter=f'id == "{id}"',
|
239 |
-
output_fields=
|
240 |
)
|
241 |
|
242 |
if not result or len(result) == 0:
|
243 |
return None
|
244 |
|
245 |
-
# Ensure the result contains created_at field
|
246 |
-
if "created_at" not in result[0]:
|
247 |
-
result[0]["created_at"] = None
|
248 |
-
|
249 |
return result[0]
|
250 |
except Exception as e:
|
251 |
logger.error(f"Error retrieving vector data for ID {id}: {e}")
|
@@ -264,6 +856,9 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
264 |
return []
|
265 |
|
266 |
try:
|
|
|
|
|
|
|
267 |
# Prepare the ID filter expression
|
268 |
id_list = '", "'.join(ids)
|
269 |
filter_expr = f'id in ["{id_list}"]'
|
@@ -272,14 +867,9 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
272 |
result = self._client.query(
|
273 |
collection_name=self.namespace,
|
274 |
filter=filter_expr,
|
275 |
-
output_fields=
|
276 |
)
|
277 |
|
278 |
-
# Ensure each result contains created_at field
|
279 |
-
for item in result:
|
280 |
-
if "created_at" not in item:
|
281 |
-
item["created_at"] = None
|
282 |
-
|
283 |
return result or []
|
284 |
except Exception as e:
|
285 |
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
@@ -301,11 +891,7 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|
301 |
self._client.drop_collection(self.namespace)
|
302 |
|
303 |
# Recreate the collection
|
304 |
-
|
305 |
-
self._client,
|
306 |
-
self.namespace,
|
307 |
-
dimension=self.embedding_func.embedding_dim,
|
308 |
-
)
|
309 |
|
310 |
logger.info(
|
311 |
f"Process {os.getpid()} drop Milvus collection {self.namespace}"
|
|
|
15 |
pm.install("pymilvus")
|
16 |
|
17 |
import configparser
|
18 |
+
from pymilvus import MilvusClient, DataType, CollectionSchema, FieldSchema # type: ignore
|
19 |
|
20 |
config = configparser.ConfigParser()
|
21 |
config.read("config.ini", "utf-8")
|
|
|
24 |
@final
|
25 |
@dataclass
|
26 |
class MilvusVectorDBStorage(BaseVectorStorage):
|
27 |
+
def _create_schema_for_namespace(self) -> CollectionSchema:
|
28 |
+
"""Create schema based on the current instance's namespace"""
|
29 |
+
|
30 |
+
# Get vector dimension from embedding_func
|
31 |
+
dimension = self.embedding_func.embedding_dim
|
32 |
+
|
33 |
+
# Base fields (common to all collections)
|
34 |
+
base_fields = [
|
35 |
+
FieldSchema(
|
36 |
+
name="id", dtype=DataType.VARCHAR, max_length=64, is_primary=True
|
37 |
+
),
|
38 |
+
FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=dimension),
|
39 |
+
FieldSchema(name="created_at", dtype=DataType.INT64),
|
40 |
+
]
|
41 |
+
|
42 |
+
# Determine specific fields based on namespace
|
43 |
+
if "entities" in self.namespace.lower():
|
44 |
+
specific_fields = [
|
45 |
+
FieldSchema(
|
46 |
+
name="entity_name",
|
47 |
+
dtype=DataType.VARCHAR,
|
48 |
+
max_length=256,
|
49 |
+
nullable=True,
|
50 |
+
),
|
51 |
+
FieldSchema(
|
52 |
+
name="entity_type",
|
53 |
+
dtype=DataType.VARCHAR,
|
54 |
+
max_length=64,
|
55 |
+
nullable=True,
|
56 |
+
),
|
57 |
+
FieldSchema(
|
58 |
+
name="file_path",
|
59 |
+
dtype=DataType.VARCHAR,
|
60 |
+
max_length=512,
|
61 |
+
nullable=True,
|
62 |
+
),
|
63 |
+
]
|
64 |
+
description = "LightRAG entities vector storage"
|
65 |
+
|
66 |
+
elif "relationships" in self.namespace.lower():
|
67 |
+
specific_fields = [
|
68 |
+
FieldSchema(
|
69 |
+
name="src_id", dtype=DataType.VARCHAR, max_length=256, nullable=True
|
70 |
+
),
|
71 |
+
FieldSchema(
|
72 |
+
name="tgt_id", dtype=DataType.VARCHAR, max_length=256, nullable=True
|
73 |
+
),
|
74 |
+
FieldSchema(name="weight", dtype=DataType.DOUBLE, nullable=True),
|
75 |
+
FieldSchema(
|
76 |
+
name="file_path",
|
77 |
+
dtype=DataType.VARCHAR,
|
78 |
+
max_length=512,
|
79 |
+
nullable=True,
|
80 |
+
),
|
81 |
+
]
|
82 |
+
description = "LightRAG relationships vector storage"
|
83 |
+
|
84 |
+
elif "chunks" in self.namespace.lower():
|
85 |
+
specific_fields = [
|
86 |
+
FieldSchema(
|
87 |
+
name="full_doc_id",
|
88 |
+
dtype=DataType.VARCHAR,
|
89 |
+
max_length=64,
|
90 |
+
nullable=True,
|
91 |
+
),
|
92 |
+
FieldSchema(
|
93 |
+
name="file_path",
|
94 |
+
dtype=DataType.VARCHAR,
|
95 |
+
max_length=512,
|
96 |
+
nullable=True,
|
97 |
+
),
|
98 |
+
]
|
99 |
+
description = "LightRAG chunks vector storage"
|
100 |
+
|
101 |
+
else:
|
102 |
+
# Default generic schema (backward compatibility)
|
103 |
+
specific_fields = [
|
104 |
+
FieldSchema(
|
105 |
+
name="file_path",
|
106 |
+
dtype=DataType.VARCHAR,
|
107 |
+
max_length=512,
|
108 |
+
nullable=True,
|
109 |
+
),
|
110 |
+
]
|
111 |
+
description = "LightRAG generic vector storage"
|
112 |
+
|
113 |
+
# Merge all fields
|
114 |
+
all_fields = base_fields + specific_fields
|
115 |
+
|
116 |
+
return CollectionSchema(
|
117 |
+
fields=all_fields,
|
118 |
+
description=description,
|
119 |
+
enable_dynamic_field=True, # Support dynamic fields
|
120 |
+
)
|
121 |
+
|
122 |
+
def _get_index_params(self):
|
123 |
+
"""Get IndexParams in a version-compatible way"""
|
124 |
+
try:
|
125 |
+
# Try to use client's prepare_index_params method (most common)
|
126 |
+
if hasattr(self._client, "prepare_index_params"):
|
127 |
+
return self._client.prepare_index_params()
|
128 |
+
except Exception:
|
129 |
+
pass
|
130 |
+
|
131 |
+
try:
|
132 |
+
# Try to import IndexParams from different possible locations
|
133 |
+
from pymilvus.client.prepare import IndexParams
|
134 |
+
|
135 |
+
return IndexParams()
|
136 |
+
except ImportError:
|
137 |
+
pass
|
138 |
+
|
139 |
+
try:
|
140 |
+
from pymilvus.client.types import IndexParams
|
141 |
+
|
142 |
+
return IndexParams()
|
143 |
+
except ImportError:
|
144 |
+
pass
|
145 |
+
|
146 |
+
try:
|
147 |
+
from pymilvus import IndexParams
|
148 |
+
|
149 |
+
return IndexParams()
|
150 |
+
except ImportError:
|
151 |
+
pass
|
152 |
+
|
153 |
+
# If all else fails, return None to use fallback method
|
154 |
+
return None
|
155 |
+
|
156 |
+
def _create_vector_index_fallback(self):
|
157 |
+
"""Fallback method to create vector index using direct API"""
|
158 |
+
try:
|
159 |
+
self._client.create_index(
|
160 |
+
collection_name=self.namespace,
|
161 |
+
field_name="vector",
|
162 |
+
index_params={
|
163 |
+
"index_type": "HNSW",
|
164 |
+
"metric_type": "COSINE",
|
165 |
+
"params": {"M": 16, "efConstruction": 256},
|
166 |
+
},
|
167 |
+
)
|
168 |
+
logger.debug("Created vector index using fallback method")
|
169 |
+
except Exception as e:
|
170 |
+
logger.warning(f"Failed to create vector index using fallback method: {e}")
|
171 |
+
|
172 |
+
def _create_scalar_index_fallback(self, field_name: str, index_type: str):
|
173 |
+
"""Fallback method to create scalar index using direct API"""
|
174 |
+
# Skip unsupported index types
|
175 |
+
if index_type == "SORTED":
|
176 |
+
logger.info(
|
177 |
+
f"Skipping SORTED index for {field_name} (not supported in this Milvus version)"
|
178 |
+
)
|
179 |
return
|
180 |
+
|
181 |
+
try:
|
182 |
+
self._client.create_index(
|
183 |
+
collection_name=self.namespace,
|
184 |
+
field_name=field_name,
|
185 |
+
index_params={"index_type": index_type},
|
186 |
+
)
|
187 |
+
logger.debug(f"Created {field_name} index using fallback method")
|
188 |
+
except Exception as e:
|
189 |
+
logger.info(
|
190 |
+
f"Could not create {field_name} index using fallback method: {e}"
|
191 |
+
)
|
192 |
+
|
193 |
+
def _create_indexes_after_collection(self):
|
194 |
+
"""Create indexes after collection is created"""
|
195 |
+
try:
|
196 |
+
# Try to get IndexParams in a version-compatible way
|
197 |
+
IndexParamsClass = self._get_index_params()
|
198 |
+
|
199 |
+
if IndexParamsClass is not None:
|
200 |
+
# Use IndexParams approach if available
|
201 |
+
try:
|
202 |
+
# Create vector index first (required for most operations)
|
203 |
+
vector_index = IndexParamsClass
|
204 |
+
vector_index.add_index(
|
205 |
+
field_name="vector",
|
206 |
+
index_type="HNSW",
|
207 |
+
metric_type="COSINE",
|
208 |
+
params={"M": 16, "efConstruction": 256},
|
209 |
+
)
|
210 |
+
self._client.create_index(
|
211 |
+
collection_name=self.namespace, index_params=vector_index
|
212 |
+
)
|
213 |
+
logger.debug("Created vector index using IndexParams")
|
214 |
+
except Exception as e:
|
215 |
+
logger.debug(f"IndexParams method failed for vector index: {e}")
|
216 |
+
self._create_vector_index_fallback()
|
217 |
+
|
218 |
+
# Create scalar indexes based on namespace
|
219 |
+
if "entities" in self.namespace.lower():
|
220 |
+
# Create indexes for entity fields
|
221 |
+
try:
|
222 |
+
entity_name_index = self._get_index_params()
|
223 |
+
entity_name_index.add_index(
|
224 |
+
field_name="entity_name", index_type="INVERTED"
|
225 |
+
)
|
226 |
+
self._client.create_index(
|
227 |
+
collection_name=self.namespace,
|
228 |
+
index_params=entity_name_index,
|
229 |
+
)
|
230 |
+
except Exception as e:
|
231 |
+
logger.debug(f"IndexParams method failed for entity_name: {e}")
|
232 |
+
self._create_scalar_index_fallback("entity_name", "INVERTED")
|
233 |
+
|
234 |
+
try:
|
235 |
+
entity_type_index = self._get_index_params()
|
236 |
+
entity_type_index.add_index(
|
237 |
+
field_name="entity_type", index_type="INVERTED"
|
238 |
+
)
|
239 |
+
self._client.create_index(
|
240 |
+
collection_name=self.namespace,
|
241 |
+
index_params=entity_type_index,
|
242 |
+
)
|
243 |
+
except Exception as e:
|
244 |
+
logger.debug(f"IndexParams method failed for entity_type: {e}")
|
245 |
+
self._create_scalar_index_fallback("entity_type", "INVERTED")
|
246 |
+
|
247 |
+
elif "relationships" in self.namespace.lower():
|
248 |
+
# Create indexes for relationship fields
|
249 |
+
try:
|
250 |
+
src_id_index = self._get_index_params()
|
251 |
+
src_id_index.add_index(
|
252 |
+
field_name="src_id", index_type="INVERTED"
|
253 |
+
)
|
254 |
+
self._client.create_index(
|
255 |
+
collection_name=self.namespace, index_params=src_id_index
|
256 |
+
)
|
257 |
+
except Exception as e:
|
258 |
+
logger.debug(f"IndexParams method failed for src_id: {e}")
|
259 |
+
self._create_scalar_index_fallback("src_id", "INVERTED")
|
260 |
+
|
261 |
+
try:
|
262 |
+
tgt_id_index = self._get_index_params()
|
263 |
+
tgt_id_index.add_index(
|
264 |
+
field_name="tgt_id", index_type="INVERTED"
|
265 |
+
)
|
266 |
+
self._client.create_index(
|
267 |
+
collection_name=self.namespace, index_params=tgt_id_index
|
268 |
+
)
|
269 |
+
except Exception as e:
|
270 |
+
logger.debug(f"IndexParams method failed for tgt_id: {e}")
|
271 |
+
self._create_scalar_index_fallback("tgt_id", "INVERTED")
|
272 |
+
|
273 |
+
elif "chunks" in self.namespace.lower():
|
274 |
+
# Create indexes for chunk fields
|
275 |
+
try:
|
276 |
+
doc_id_index = self._get_index_params()
|
277 |
+
doc_id_index.add_index(
|
278 |
+
field_name="full_doc_id", index_type="INVERTED"
|
279 |
+
)
|
280 |
+
self._client.create_index(
|
281 |
+
collection_name=self.namespace, index_params=doc_id_index
|
282 |
+
)
|
283 |
+
except Exception as e:
|
284 |
+
logger.debug(f"IndexParams method failed for full_doc_id: {e}")
|
285 |
+
self._create_scalar_index_fallback("full_doc_id", "INVERTED")
|
286 |
+
|
287 |
+
# No common indexes needed
|
288 |
+
|
289 |
+
else:
|
290 |
+
# Fallback to direct API calls if IndexParams is not available
|
291 |
+
logger.info(
|
292 |
+
f"IndexParams not available, using fallback methods for {self.namespace}"
|
293 |
+
)
|
294 |
+
|
295 |
+
# Create vector index using fallback
|
296 |
+
self._create_vector_index_fallback()
|
297 |
+
|
298 |
+
# Create scalar indexes using fallback
|
299 |
+
if "entities" in self.namespace.lower():
|
300 |
+
self._create_scalar_index_fallback("entity_name", "INVERTED")
|
301 |
+
self._create_scalar_index_fallback("entity_type", "INVERTED")
|
302 |
+
elif "relationships" in self.namespace.lower():
|
303 |
+
self._create_scalar_index_fallback("src_id", "INVERTED")
|
304 |
+
self._create_scalar_index_fallback("tgt_id", "INVERTED")
|
305 |
+
elif "chunks" in self.namespace.lower():
|
306 |
+
self._create_scalar_index_fallback("full_doc_id", "INVERTED")
|
307 |
+
|
308 |
+
logger.info(f"Created indexes for collection: {self.namespace}")
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
logger.warning(f"Failed to create some indexes for {self.namespace}: {e}")
|
312 |
+
|
313 |
+
def _get_required_fields_for_namespace(self) -> dict:
|
314 |
+
"""Get required core field definitions for current namespace"""
|
315 |
+
|
316 |
+
# Base fields (common to all types)
|
317 |
+
base_fields = {
|
318 |
+
"id": {"type": "VarChar", "is_primary": True},
|
319 |
+
"vector": {"type": "FloatVector"},
|
320 |
+
"created_at": {"type": "Int64"},
|
321 |
+
}
|
322 |
+
|
323 |
+
# Add specific fields based on namespace
|
324 |
+
if "entities" in self.namespace.lower():
|
325 |
+
specific_fields = {
|
326 |
+
"entity_name": {"type": "VarChar"},
|
327 |
+
"entity_type": {"type": "VarChar"},
|
328 |
+
"file_path": {"type": "VarChar"},
|
329 |
+
}
|
330 |
+
elif "relationships" in self.namespace.lower():
|
331 |
+
specific_fields = {
|
332 |
+
"src_id": {"type": "VarChar"},
|
333 |
+
"tgt_id": {"type": "VarChar"},
|
334 |
+
"weight": {"type": "Double"},
|
335 |
+
"file_path": {"type": "VarChar"},
|
336 |
+
}
|
337 |
+
elif "chunks" in self.namespace.lower():
|
338 |
+
specific_fields = {
|
339 |
+
"full_doc_id": {"type": "VarChar"},
|
340 |
+
"file_path": {"type": "VarChar"},
|
341 |
+
}
|
342 |
+
else:
|
343 |
+
specific_fields = {
|
344 |
+
"file_path": {"type": "VarChar"},
|
345 |
+
}
|
346 |
+
|
347 |
+
return {**base_fields, **specific_fields}
|
348 |
+
|
349 |
+
def _is_field_compatible(self, existing_field: dict, expected_config: dict) -> bool:
|
350 |
+
"""Check compatibility of a single field"""
|
351 |
+
field_name = existing_field.get("name", "unknown")
|
352 |
+
existing_type = existing_field.get("type")
|
353 |
+
expected_type = expected_config.get("type")
|
354 |
+
|
355 |
+
logger.debug(
|
356 |
+
f"Checking field '{field_name}': existing_type={existing_type} (type={type(existing_type)}), expected_type={expected_type}"
|
357 |
+
)
|
358 |
+
|
359 |
+
# Convert DataType enum values to string names if needed
|
360 |
+
original_existing_type = existing_type
|
361 |
+
if hasattr(existing_type, "name"):
|
362 |
+
existing_type = existing_type.name
|
363 |
+
logger.debug(
|
364 |
+
f"Converted enum to name: {original_existing_type} -> {existing_type}"
|
365 |
+
)
|
366 |
+
elif isinstance(existing_type, int):
|
367 |
+
# Map common Milvus internal type codes to type names for backward compatibility
|
368 |
+
type_mapping = {
|
369 |
+
21: "VarChar",
|
370 |
+
101: "FloatVector",
|
371 |
+
5: "Int64",
|
372 |
+
9: "Double",
|
373 |
+
}
|
374 |
+
mapped_type = type_mapping.get(existing_type, str(existing_type))
|
375 |
+
logger.debug(f"Mapped numeric type: {existing_type} -> {mapped_type}")
|
376 |
+
existing_type = mapped_type
|
377 |
+
|
378 |
+
# Normalize type names for comparison
|
379 |
+
type_aliases = {
|
380 |
+
"VARCHAR": "VarChar",
|
381 |
+
"String": "VarChar",
|
382 |
+
"FLOAT_VECTOR": "FloatVector",
|
383 |
+
"INT64": "Int64",
|
384 |
+
"BigInt": "Int64",
|
385 |
+
"DOUBLE": "Double",
|
386 |
+
"Float": "Double",
|
387 |
+
}
|
388 |
+
|
389 |
+
original_existing = existing_type
|
390 |
+
original_expected = expected_type
|
391 |
+
existing_type = type_aliases.get(existing_type, existing_type)
|
392 |
+
expected_type = type_aliases.get(expected_type, expected_type)
|
393 |
+
|
394 |
+
if original_existing != existing_type or original_expected != expected_type:
|
395 |
+
logger.debug(
|
396 |
+
f"Applied aliases: {original_existing} -> {existing_type}, {original_expected} -> {expected_type}"
|
397 |
+
)
|
398 |
+
|
399 |
+
# Basic type compatibility check
|
400 |
+
type_compatible = existing_type == expected_type
|
401 |
+
logger.debug(
|
402 |
+
f"Type compatibility for '{field_name}': {existing_type} == {expected_type} -> {type_compatible}"
|
403 |
)
|
404 |
|
405 |
+
if not type_compatible:
|
406 |
+
logger.warning(
|
407 |
+
f"Type mismatch for field '{field_name}': expected {expected_type}, got {existing_type}"
|
408 |
+
)
|
409 |
+
return False
|
410 |
+
|
411 |
+
# Primary key check - be more flexible about primary key detection
|
412 |
+
if expected_config.get("is_primary"):
|
413 |
+
# Check multiple possible field names for primary key status
|
414 |
+
is_primary = (
|
415 |
+
existing_field.get("is_primary_key", False)
|
416 |
+
or existing_field.get("is_primary", False)
|
417 |
+
or existing_field.get("primary_key", False)
|
418 |
+
)
|
419 |
+
logger.debug(
|
420 |
+
f"Primary key check for '{field_name}': expected=True, actual={is_primary}"
|
421 |
+
)
|
422 |
+
logger.debug(f"Raw field data for '{field_name}': {existing_field}")
|
423 |
+
|
424 |
+
# For ID field, be more lenient - if it's the ID field, assume it should be primary
|
425 |
+
if field_name == "id" and not is_primary:
|
426 |
+
logger.info(
|
427 |
+
f"ID field '{field_name}' not marked as primary in existing collection, but treating as compatible"
|
428 |
+
)
|
429 |
+
# Don't fail for ID field primary key mismatch
|
430 |
+
elif not is_primary:
|
431 |
+
logger.warning(
|
432 |
+
f"Primary key mismatch for field '{field_name}': expected primary key, but field is not primary"
|
433 |
+
)
|
434 |
+
return False
|
435 |
+
|
436 |
+
logger.debug(f"Field '{field_name}' is compatible")
|
437 |
+
return True
|
438 |
+
|
439 |
+
def _check_vector_dimension(self, collection_info: dict):
|
440 |
+
"""Check vector dimension compatibility"""
|
441 |
+
current_dimension = self.embedding_func.embedding_dim
|
442 |
+
|
443 |
+
# Find vector field dimension
|
444 |
+
for field in collection_info.get("fields", []):
|
445 |
+
if field.get("name") == "vector":
|
446 |
+
field_type = field.get("type")
|
447 |
+
if field_type in ["FloatVector", "FLOAT_VECTOR"]:
|
448 |
+
existing_dimension = field.get("params", {}).get("dim")
|
449 |
+
|
450 |
+
if existing_dimension != current_dimension:
|
451 |
+
raise ValueError(
|
452 |
+
f"Vector dimension mismatch for collection '{self.namespace}': "
|
453 |
+
f"existing={existing_dimension}, current={current_dimension}"
|
454 |
+
)
|
455 |
+
|
456 |
+
logger.debug(f"Vector dimension check passed: {current_dimension}")
|
457 |
+
return
|
458 |
+
|
459 |
+
# If no vector field found, this might be an old collection created with simple schema
|
460 |
+
logger.warning(
|
461 |
+
f"Vector field not found in collection '{self.namespace}'. This might be an old collection created with simple schema."
|
462 |
+
)
|
463 |
+
logger.warning("Consider recreating the collection for optimal performance.")
|
464 |
+
return
|
465 |
+
|
466 |
+
def _check_schema_compatibility(self, collection_info: dict):
|
467 |
+
"""Check schema field compatibility"""
|
468 |
+
existing_fields = {
|
469 |
+
field["name"]: field for field in collection_info.get("fields", [])
|
470 |
+
}
|
471 |
+
|
472 |
+
# Check if this is an old collection created with simple schema
|
473 |
+
has_vector_field = any(
|
474 |
+
field.get("name") == "vector" for field in collection_info.get("fields", [])
|
475 |
+
)
|
476 |
+
|
477 |
+
if not has_vector_field:
|
478 |
+
logger.warning(
|
479 |
+
f"Collection {self.namespace} appears to be created with old simple schema (no vector field)"
|
480 |
+
)
|
481 |
+
logger.warning(
|
482 |
+
"This collection will work but may have suboptimal performance"
|
483 |
+
)
|
484 |
+
logger.warning("Consider recreating the collection for optimal performance")
|
485 |
+
return
|
486 |
+
|
487 |
+
# For collections with vector field, check basic compatibility
|
488 |
+
# Only check for critical incompatibilities, not missing optional fields
|
489 |
+
critical_fields = {"id": {"type": "VarChar", "is_primary": True}}
|
490 |
+
|
491 |
+
incompatible_fields = []
|
492 |
+
|
493 |
+
for field_name, expected_config in critical_fields.items():
|
494 |
+
if field_name in existing_fields:
|
495 |
+
existing_field = existing_fields[field_name]
|
496 |
+
if not self._is_field_compatible(existing_field, expected_config):
|
497 |
+
incompatible_fields.append(
|
498 |
+
f"{field_name}: expected {expected_config['type']}, "
|
499 |
+
f"got {existing_field.get('type')}"
|
500 |
+
)
|
501 |
+
|
502 |
+
if incompatible_fields:
|
503 |
+
raise ValueError(
|
504 |
+
f"Critical schema incompatibility in collection '{self.namespace}': {incompatible_fields}"
|
505 |
+
)
|
506 |
+
|
507 |
+
# Get all expected fields for informational purposes
|
508 |
+
expected_fields = self._get_required_fields_for_namespace()
|
509 |
+
missing_fields = [
|
510 |
+
field for field in expected_fields if field not in existing_fields
|
511 |
+
]
|
512 |
+
|
513 |
+
if missing_fields:
|
514 |
+
logger.info(
|
515 |
+
f"Collection {self.namespace} missing optional fields: {missing_fields}"
|
516 |
+
)
|
517 |
+
logger.info(
|
518 |
+
"These fields would be available in a newly created collection for better performance"
|
519 |
+
)
|
520 |
+
|
521 |
+
logger.debug(f"Schema compatibility check passed for {self.namespace}")
|
522 |
+
|
523 |
+
def _validate_collection_compatibility(self):
|
524 |
+
"""Validate existing collection's dimension and schema compatibility"""
|
525 |
+
try:
|
526 |
+
collection_info = self._client.describe_collection(self.namespace)
|
527 |
+
|
528 |
+
# 1. Check vector dimension
|
529 |
+
self._check_vector_dimension(collection_info)
|
530 |
+
|
531 |
+
# 2. Check schema compatibility
|
532 |
+
self._check_schema_compatibility(collection_info)
|
533 |
+
|
534 |
+
logger.info(f"Collection {self.namespace} compatibility validation passed")
|
535 |
+
|
536 |
+
except Exception as e:
|
537 |
+
logger.error(
|
538 |
+
f"Collection compatibility validation failed for {self.namespace}: {e}"
|
539 |
+
)
|
540 |
+
raise
|
541 |
+
|
542 |
+
def _create_collection_if_not_exist(self):
|
543 |
+
"""Create collection if not exists and check existing collection compatibility"""
|
544 |
+
|
545 |
+
try:
|
546 |
+
# First, list all collections to see what actually exists
|
547 |
+
try:
|
548 |
+
all_collections = self._client.list_collections()
|
549 |
+
logger.debug(f"All collections in database: {all_collections}")
|
550 |
+
except Exception as list_error:
|
551 |
+
logger.warning(f"Could not list collections: {list_error}")
|
552 |
+
all_collections = []
|
553 |
+
|
554 |
+
# Check if our specific collection exists
|
555 |
+
collection_exists = self._client.has_collection(self.namespace)
|
556 |
+
logger.info(
|
557 |
+
f"Collection '{self.namespace}' exists check: {collection_exists}"
|
558 |
+
)
|
559 |
+
|
560 |
+
if collection_exists:
|
561 |
+
# Double-check by trying to describe the collection
|
562 |
+
try:
|
563 |
+
self._client.describe_collection(self.namespace)
|
564 |
+
logger.info(
|
565 |
+
f"Collection '{self.namespace}' confirmed to exist, validating compatibility..."
|
566 |
+
)
|
567 |
+
self._validate_collection_compatibility()
|
568 |
+
return
|
569 |
+
except Exception as describe_error:
|
570 |
+
logger.warning(
|
571 |
+
f"Collection '{self.namespace}' exists but cannot be described: {describe_error}"
|
572 |
+
)
|
573 |
+
logger.info(
|
574 |
+
"Treating as if collection doesn't exist and creating new one..."
|
575 |
+
)
|
576 |
+
# Fall through to creation logic
|
577 |
+
|
578 |
+
# Collection doesn't exist, create new collection
|
579 |
+
logger.info(f"Creating new collection: {self.namespace}")
|
580 |
+
schema = self._create_schema_for_namespace()
|
581 |
+
|
582 |
+
# Create collection with schema only first
|
583 |
+
self._client.create_collection(
|
584 |
+
collection_name=self.namespace, schema=schema
|
585 |
+
)
|
586 |
+
|
587 |
+
# Then create indexes
|
588 |
+
self._create_indexes_after_collection()
|
589 |
+
|
590 |
+
logger.info(f"Successfully created Milvus collection: {self.namespace}")
|
591 |
+
|
592 |
+
except Exception as e:
|
593 |
+
logger.error(
|
594 |
+
f"Error in _create_collection_if_not_exist for {self.namespace}: {e}"
|
595 |
+
)
|
596 |
+
|
597 |
+
# If there's any error, try to force create the collection
|
598 |
+
logger.info(f"Attempting to force create collection {self.namespace}...")
|
599 |
+
try:
|
600 |
+
# Try to drop the collection first if it exists in a bad state
|
601 |
+
try:
|
602 |
+
if self._client.has_collection(self.namespace):
|
603 |
+
logger.info(
|
604 |
+
f"Dropping potentially corrupted collection {self.namespace}"
|
605 |
+
)
|
606 |
+
self._client.drop_collection(self.namespace)
|
607 |
+
except Exception as drop_error:
|
608 |
+
logger.warning(
|
609 |
+
f"Could not drop collection {self.namespace}: {drop_error}"
|
610 |
+
)
|
611 |
+
|
612 |
+
# Create fresh collection
|
613 |
+
schema = self._create_schema_for_namespace()
|
614 |
+
self._client.create_collection(
|
615 |
+
collection_name=self.namespace, schema=schema
|
616 |
+
)
|
617 |
+
self._create_indexes_after_collection()
|
618 |
+
logger.info(f"Successfully force-created collection {self.namespace}")
|
619 |
+
|
620 |
+
except Exception as create_error:
|
621 |
+
logger.error(
|
622 |
+
f"Failed to force-create collection {self.namespace}: {create_error}"
|
623 |
+
)
|
624 |
+
raise
|
625 |
+
|
626 |
def __post_init__(self):
|
627 |
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
628 |
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
|
|
632 |
)
|
633 |
self.cosine_better_than_threshold = cosine_threshold
|
634 |
|
635 |
+
# Ensure created_at is in meta_fields
|
636 |
+
if "created_at" not in self.meta_fields:
|
637 |
+
self.meta_fields.add("created_at")
|
638 |
+
|
639 |
self._client = MilvusClient(
|
640 |
uri=os.environ.get(
|
641 |
"MILVUS_URI",
|
|
|
661 |
),
|
662 |
)
|
663 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
664 |
+
|
665 |
+
# Create collection and check compatibility
|
666 |
+
self._create_collection_if_not_exist()
|
|
|
|
|
667 |
|
668 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
669 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
670 |
if not data:
|
671 |
return
|
672 |
|
|
|
703 |
embedding = await self.embedding_func(
|
704 |
[query], _priority=5
|
705 |
) # higher priority for query
|
706 |
+
|
707 |
+
# Include all meta_fields (created_at is now always included)
|
708 |
+
output_fields = list(self.meta_fields)
|
709 |
+
|
710 |
results = self._client.search(
|
711 |
collection_name=self.namespace,
|
712 |
data=embedding,
|
713 |
limit=top_k,
|
714 |
+
output_fields=output_fields,
|
715 |
search_params={
|
716 |
"metric_type": "COSINE",
|
717 |
"params": {"radius": self.cosine_better_than_threshold},
|
718 |
},
|
719 |
)
|
|
|
720 |
return [
|
721 |
{
|
722 |
**dp["entity"],
|
723 |
"id": dp["id"],
|
724 |
"distance": dp["distance"],
|
|
|
725 |
"created_at": dp.get("created_at"),
|
726 |
}
|
727 |
for dp in results[0]
|
|
|
825 |
The vector data if found, or None if not found
|
826 |
"""
|
827 |
try:
|
828 |
+
# Include all meta_fields (created_at is now always included) plus id
|
829 |
+
output_fields = list(self.meta_fields) + ["id"]
|
830 |
+
|
831 |
# Query Milvus for a specific ID
|
832 |
result = self._client.query(
|
833 |
collection_name=self.namespace,
|
834 |
filter=f'id == "{id}"',
|
835 |
+
output_fields=output_fields,
|
836 |
)
|
837 |
|
838 |
if not result or len(result) == 0:
|
839 |
return None
|
840 |
|
|
|
|
|
|
|
|
|
841 |
return result[0]
|
842 |
except Exception as e:
|
843 |
logger.error(f"Error retrieving vector data for ID {id}: {e}")
|
|
|
856 |
return []
|
857 |
|
858 |
try:
|
859 |
+
# Include all meta_fields (created_at is now always included) plus id
|
860 |
+
output_fields = list(self.meta_fields) + ["id"]
|
861 |
+
|
862 |
# Prepare the ID filter expression
|
863 |
id_list = '", "'.join(ids)
|
864 |
filter_expr = f'id in ["{id_list}"]'
|
|
|
867 |
result = self._client.query(
|
868 |
collection_name=self.namespace,
|
869 |
filter=filter_expr,
|
870 |
+
output_fields=output_fields,
|
871 |
)
|
872 |
|
|
|
|
|
|
|
|
|
|
|
873 |
return result or []
|
874 |
except Exception as e:
|
875 |
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
|
|
891 |
self._client.drop_collection(self.namespace)
|
892 |
|
893 |
# Recreate the collection
|
894 |
+
self._create_collection_if_not_exist()
|
|
|
|
|
|
|
|
|
895 |
|
896 |
logger.info(
|
897 |
f"Process {os.getpid()} drop Milvus collection {self.namespace}"
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
from dataclasses import dataclass, field
|
3 |
import numpy as np
|
4 |
import configparser
|
@@ -14,7 +15,6 @@ from ..base import (
|
|
14 |
DocStatus,
|
15 |
DocStatusStorage,
|
16 |
)
|
17 |
-
from ..namespace import NameSpace, is_namespace
|
18 |
from ..utils import logger, compute_mdhash_id
|
19 |
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
20 |
from ..constants import GRAPH_FIELD_SEP
|
@@ -35,6 +35,7 @@ config.read("config.ini", "utf-8")
|
|
35 |
|
36 |
# Get maximum number of graph nodes from environment variable, default is 1000
|
37 |
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
|
|
38 |
|
39 |
|
40 |
class ClientManager:
|
@@ -96,11 +97,22 @@ class MongoKVStorage(BaseKVStorage):
|
|
96 |
self._data = None
|
97 |
|
98 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
102 |
cursor = self._data.find({"_id": {"$in": ids}})
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
106 |
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
|
@@ -117,47 +129,53 @@ class MongoKVStorage(BaseKVStorage):
|
|
117 |
result = {}
|
118 |
async for doc in cursor:
|
119 |
doc_id = doc.pop("_id")
|
|
|
|
|
|
|
120 |
result[doc_id] = doc
|
121 |
return result
|
122 |
|
123 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
124 |
-
logger.
|
125 |
if not data:
|
126 |
return
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
)
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
res = {}
|
152 |
-
v = await self._data.find_one({"_id": mode + "_" + id})
|
153 |
-
if v:
|
154 |
-
res[id] = v
|
155 |
-
logger.debug(f"llm_response_cache find one by:{id}")
|
156 |
-
return res
|
157 |
-
else:
|
158 |
-
return None
|
159 |
-
else:
|
160 |
-
return None
|
161 |
|
162 |
async def index_done_callback(self) -> None:
|
163 |
# Mongo handles persistence automatically
|
@@ -197,8 +215,8 @@ class MongoKVStorage(BaseKVStorage):
|
|
197 |
return False
|
198 |
|
199 |
try:
|
200 |
-
# Build regex pattern to match
|
201 |
-
pattern = f"^({'|'.join(modes)})
|
202 |
result = await self._data.delete_many({"_id": {"$regex": pattern}})
|
203 |
logger.info(f"Deleted {result.deleted_count} documents by modes: {modes}")
|
204 |
return True
|
@@ -262,11 +280,14 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|
262 |
return data - existing_ids
|
263 |
|
264 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
265 |
-
logger.
|
266 |
if not data:
|
267 |
return
|
268 |
update_tasks: list[Any] = []
|
269 |
for k, v in data.items():
|
|
|
|
|
|
|
270 |
data[k]["_id"] = k
|
271 |
update_tasks.append(
|
272 |
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
@@ -299,6 +320,7 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|
299 |
updated_at=doc.get("updated_at"),
|
300 |
chunks_count=doc.get("chunks_count", -1),
|
301 |
file_path=doc.get("file_path", doc["_id"]),
|
|
|
302 |
)
|
303 |
for doc in result
|
304 |
}
|
@@ -417,11 +439,21 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
417 |
|
418 |
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
419 |
"""
|
420 |
-
Check if there's a direct single-hop edge
|
421 |
"""
|
422 |
-
# Direct check if the target_node appears among the edges array.
|
423 |
doc = await self.edge_collection.find_one(
|
424 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
{"_id": 1},
|
426 |
)
|
427 |
return doc is not None
|
@@ -651,7 +683,7 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
651 |
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
652 |
) -> None:
|
653 |
"""
|
654 |
-
Upsert an edge
|
655 |
If an edge with the same target exists, we remove it and re-insert with updated data.
|
656 |
"""
|
657 |
# Ensure source node exists
|
@@ -663,8 +695,22 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
663 |
GRAPH_FIELD_SEP
|
664 |
)
|
665 |
|
|
|
|
|
|
|
666 |
await self.edge_collection.update_one(
|
667 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
update_doc,
|
669 |
upsert=True,
|
670 |
)
|
@@ -678,7 +724,7 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
678 |
async def delete_node(self, node_id: str) -> None:
|
679 |
"""
|
680 |
1) Remove node's doc entirely.
|
681 |
-
2) Remove inbound edges from any doc that references node_id.
|
682 |
"""
|
683 |
# Remove all edges
|
684 |
await self.edge_collection.delete_many(
|
@@ -709,141 +755,369 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
709 |
labels.append(doc["_id"])
|
710 |
return labels
|
711 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
async def get_knowledge_graph(
|
713 |
self,
|
714 |
node_label: str,
|
715 |
-
max_depth: int =
|
716 |
max_nodes: int = MAX_GRAPH_NODES,
|
717 |
) -> KnowledgeGraph:
|
718 |
"""
|
719 |
-
|
720 |
|
721 |
Args:
|
722 |
-
node_label: Label of the
|
723 |
-
max_depth: Maximum depth of
|
|
|
724 |
|
725 |
Returns:
|
726 |
-
KnowledgeGraph object containing nodes and edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
"""
|
728 |
-
label = node_label
|
729 |
result = KnowledgeGraph()
|
730 |
-
|
731 |
-
seen_edges = set()
|
732 |
-
node_edges = []
|
733 |
|
734 |
try:
|
735 |
# Optimize pipeline to avoid memory issues with large datasets
|
736 |
-
if
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
"connectFromField": "target_node_id",
|
745 |
-
"connectToField": "source_node_id",
|
746 |
-
"maxDepth": max_depth,
|
747 |
-
"depthField": "depth",
|
748 |
-
"as": "connected_edges",
|
749 |
-
},
|
750 |
-
},
|
751 |
-
]
|
752 |
-
|
753 |
-
# Check if we need to set truncation flag
|
754 |
-
all_node_count = await self.collection.count_documents({})
|
755 |
-
result.is_truncated = all_node_count > max_nodes
|
756 |
else:
|
757 |
-
|
758 |
-
|
759 |
-
if not start_node:
|
760 |
-
logger.warning(f"Starting node with label {label} does not exist!")
|
761 |
-
return result
|
762 |
-
|
763 |
-
# For specific node queries, use the original pipeline but optimized
|
764 |
-
pipeline = [
|
765 |
-
{"$match": {"_id": label}},
|
766 |
-
{
|
767 |
-
"$graphLookup": {
|
768 |
-
"from": self._edge_collection_name,
|
769 |
-
"startWith": "$_id",
|
770 |
-
"connectFromField": "target_node_id",
|
771 |
-
"connectToField": "source_node_id",
|
772 |
-
"maxDepth": max_depth,
|
773 |
-
"depthField": "depth",
|
774 |
-
"as": "connected_edges",
|
775 |
-
},
|
776 |
-
},
|
777 |
-
{"$addFields": {"edge_count": {"$size": "$connected_edges"}}},
|
778 |
-
{"$sort": {"edge_count": -1}},
|
779 |
-
{"$limit": max_nodes},
|
780 |
-
]
|
781 |
-
|
782 |
-
cursor = await self.collection.aggregate(pipeline, allowDiskUse=True)
|
783 |
-
nodes_processed = 0
|
784 |
-
|
785 |
-
async for doc in cursor:
|
786 |
-
# Add the start node
|
787 |
-
node_id = str(doc["_id"])
|
788 |
-
result.nodes.append(
|
789 |
-
KnowledgeGraphNode(
|
790 |
-
id=node_id,
|
791 |
-
labels=[node_id],
|
792 |
-
properties={
|
793 |
-
k: v
|
794 |
-
for k, v in doc.items()
|
795 |
-
if k
|
796 |
-
not in [
|
797 |
-
"_id",
|
798 |
-
"connected_edges",
|
799 |
-
"edge_count",
|
800 |
-
]
|
801 |
-
},
|
802 |
-
)
|
803 |
)
|
804 |
-
seen_nodes.add(node_id)
|
805 |
-
if doc.get("connected_edges", []):
|
806 |
-
node_edges.extend(doc.get("connected_edges"))
|
807 |
|
808 |
-
|
809 |
-
|
810 |
-
# Additional safety check to prevent memory issues
|
811 |
-
if nodes_processed >= max_nodes:
|
812 |
-
result.is_truncated = True
|
813 |
-
break
|
814 |
-
|
815 |
-
for edge in node_edges:
|
816 |
-
if (
|
817 |
-
edge["source_node_id"] not in seen_nodes
|
818 |
-
or edge["target_node_id"] not in seen_nodes
|
819 |
-
):
|
820 |
-
continue
|
821 |
-
|
822 |
-
edge_id = f"{edge['source_node_id']}-{edge['target_node_id']}"
|
823 |
-
if edge_id not in seen_edges:
|
824 |
-
result.edges.append(
|
825 |
-
KnowledgeGraphEdge(
|
826 |
-
id=edge_id,
|
827 |
-
type=edge.get("relationship", ""),
|
828 |
-
source=edge["source_node_id"],
|
829 |
-
target=edge["target_node_id"],
|
830 |
-
properties={
|
831 |
-
k: v
|
832 |
-
for k, v in edge.items()
|
833 |
-
if k
|
834 |
-
not in [
|
835 |
-
"_id",
|
836 |
-
"source_node_id",
|
837 |
-
"target_node_id",
|
838 |
-
"relationship",
|
839 |
-
]
|
840 |
-
},
|
841 |
-
)
|
842 |
-
)
|
843 |
-
seen_edges.add(edge_id)
|
844 |
|
845 |
logger.info(
|
846 |
-
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)} | Truncated: {result.is_truncated}"
|
847 |
)
|
848 |
|
849 |
except PyMongoError as e:
|
@@ -856,13 +1130,8 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
856 |
try:
|
857 |
simple_cursor = self.collection.find({}).limit(max_nodes)
|
858 |
async for doc in simple_cursor:
|
859 |
-
node_id = str(doc["_id"])
|
860 |
result.nodes.append(
|
861 |
-
|
862 |
-
id=node_id,
|
863 |
-
labels=[node_id],
|
864 |
-
properties={k: v for k, v in doc.items() if k != "_id"},
|
865 |
-
)
|
866 |
)
|
867 |
result.is_truncated = True
|
868 |
logger.info(
|
@@ -1023,13 +1292,11 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
1023 |
logger.debug("vector index already exist")
|
1024 |
|
1025 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
1026 |
-
logger.
|
1027 |
if not data:
|
1028 |
return
|
1029 |
|
1030 |
# Add current time as Unix timestamp
|
1031 |
-
import time
|
1032 |
-
|
1033 |
current_time = int(time.time())
|
1034 |
|
1035 |
list_data = [
|
@@ -1114,7 +1381,7 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
1114 |
Args:
|
1115 |
ids: List of vector IDs to be deleted
|
1116 |
"""
|
1117 |
-
logger.
|
1118 |
if not ids:
|
1119 |
return
|
1120 |
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
from dataclasses import dataclass, field
|
4 |
import numpy as np
|
5 |
import configparser
|
|
|
15 |
DocStatus,
|
16 |
DocStatusStorage,
|
17 |
)
|
|
|
18 |
from ..utils import logger, compute_mdhash_id
|
19 |
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
20 |
from ..constants import GRAPH_FIELD_SEP
|
|
|
35 |
|
36 |
# Get maximum number of graph nodes from environment variable, default is 1000
|
37 |
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
38 |
+
GRAPH_BFS_MODE = os.getenv("MONGO_GRAPH_BFS_MODE", "bidirectional")
|
39 |
|
40 |
|
41 |
class ClientManager:
|
|
|
97 |
self._data = None
|
98 |
|
99 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
100 |
+
# Unified handling for flattened keys
|
101 |
+
doc = await self._data.find_one({"_id": id})
|
102 |
+
if doc:
|
103 |
+
# Ensure time fields are present, provide default values for old data
|
104 |
+
doc.setdefault("create_time", 0)
|
105 |
+
doc.setdefault("update_time", 0)
|
106 |
+
return doc
|
107 |
|
108 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
109 |
cursor = self._data.find({"_id": {"$in": ids}})
|
110 |
+
docs = await cursor.to_list()
|
111 |
+
# Ensure time fields are present for all documents
|
112 |
+
for doc in docs:
|
113 |
+
doc.setdefault("create_time", 0)
|
114 |
+
doc.setdefault("update_time", 0)
|
115 |
+
return docs
|
116 |
|
117 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
118 |
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
|
|
|
129 |
result = {}
|
130 |
async for doc in cursor:
|
131 |
doc_id = doc.pop("_id")
|
132 |
+
# Ensure time fields are present for all documents
|
133 |
+
doc.setdefault("create_time", 0)
|
134 |
+
doc.setdefault("update_time", 0)
|
135 |
result[doc_id] = doc
|
136 |
return result
|
137 |
|
138 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
139 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
140 |
if not data:
|
141 |
return
|
142 |
|
143 |
+
# Unified handling for all namespaces with flattened keys
|
144 |
+
# Use bulk_write for better performance
|
145 |
+
from pymongo import UpdateOne
|
146 |
+
|
147 |
+
operations = []
|
148 |
+
current_time = int(time.time()) # Get current Unix timestamp
|
149 |
+
|
150 |
+
for k, v in data.items():
|
151 |
+
# For text_chunks namespace, ensure llm_cache_list field exists
|
152 |
+
if self.namespace.endswith("text_chunks"):
|
153 |
+
if "llm_cache_list" not in v:
|
154 |
+
v["llm_cache_list"] = []
|
155 |
+
|
156 |
+
# Create a copy of v for $set operation, excluding create_time to avoid conflicts
|
157 |
+
v_for_set = v.copy()
|
158 |
+
v_for_set["_id"] = k # Use flattened key as _id
|
159 |
+
v_for_set["update_time"] = current_time # Always update update_time
|
160 |
+
|
161 |
+
# Remove create_time from $set to avoid conflict with $setOnInsert
|
162 |
+
v_for_set.pop("create_time", None)
|
163 |
+
|
164 |
+
operations.append(
|
165 |
+
UpdateOne(
|
166 |
+
{"_id": k},
|
167 |
+
{
|
168 |
+
"$set": v_for_set, # Update all fields except create_time
|
169 |
+
"$setOnInsert": {
|
170 |
+
"create_time": current_time
|
171 |
+
}, # Set create_time only on insert
|
172 |
+
},
|
173 |
+
upsert=True,
|
174 |
)
|
175 |
+
)
|
176 |
+
|
177 |
+
if operations:
|
178 |
+
await self._data.bulk_write(operations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
async def index_done_callback(self) -> None:
|
181 |
# Mongo handles persistence automatically
|
|
|
215 |
return False
|
216 |
|
217 |
try:
|
218 |
+
# Build regex pattern to match flattened key format: mode:cache_type:hash
|
219 |
+
pattern = f"^({'|'.join(modes)}):"
|
220 |
result = await self._data.delete_many({"_id": {"$regex": pattern}})
|
221 |
logger.info(f"Deleted {result.deleted_count} documents by modes: {modes}")
|
222 |
return True
|
|
|
280 |
return data - existing_ids
|
281 |
|
282 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
283 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
284 |
if not data:
|
285 |
return
|
286 |
update_tasks: list[Any] = []
|
287 |
for k, v in data.items():
|
288 |
+
# Ensure chunks_list field exists and is an array
|
289 |
+
if "chunks_list" not in v:
|
290 |
+
v["chunks_list"] = []
|
291 |
data[k]["_id"] = k
|
292 |
update_tasks.append(
|
293 |
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
|
|
320 |
updated_at=doc.get("updated_at"),
|
321 |
chunks_count=doc.get("chunks_count", -1),
|
322 |
file_path=doc.get("file_path", doc["_id"]),
|
323 |
+
chunks_list=doc.get("chunks_list", []),
|
324 |
)
|
325 |
for doc in result
|
326 |
}
|
|
|
439 |
|
440 |
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
441 |
"""
|
442 |
+
Check if there's a direct single-hop edge between source_node_id and target_node_id.
|
443 |
"""
|
|
|
444 |
doc = await self.edge_collection.find_one(
|
445 |
+
{
|
446 |
+
"$or": [
|
447 |
+
{
|
448 |
+
"source_node_id": source_node_id,
|
449 |
+
"target_node_id": target_node_id,
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"source_node_id": target_node_id,
|
453 |
+
"target_node_id": source_node_id,
|
454 |
+
},
|
455 |
+
]
|
456 |
+
},
|
457 |
{"_id": 1},
|
458 |
)
|
459 |
return doc is not None
|
|
|
683 |
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
684 |
) -> None:
|
685 |
"""
|
686 |
+
Upsert an edge between source_node_id and target_node_id with optional 'relation'.
|
687 |
If an edge with the same target exists, we remove it and re-insert with updated data.
|
688 |
"""
|
689 |
# Ensure source node exists
|
|
|
695 |
GRAPH_FIELD_SEP
|
696 |
)
|
697 |
|
698 |
+
edge_data["source_node_id"] = source_node_id
|
699 |
+
edge_data["target_node_id"] = target_node_id
|
700 |
+
|
701 |
await self.edge_collection.update_one(
|
702 |
+
{
|
703 |
+
"$or": [
|
704 |
+
{
|
705 |
+
"source_node_id": source_node_id,
|
706 |
+
"target_node_id": target_node_id,
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"source_node_id": target_node_id,
|
710 |
+
"target_node_id": source_node_id,
|
711 |
+
},
|
712 |
+
]
|
713 |
+
},
|
714 |
update_doc,
|
715 |
upsert=True,
|
716 |
)
|
|
|
724 |
async def delete_node(self, node_id: str) -> None:
|
725 |
"""
|
726 |
1) Remove node's doc entirely.
|
727 |
+
2) Remove inbound & outbound edges from any doc that references node_id.
|
728 |
"""
|
729 |
# Remove all edges
|
730 |
await self.edge_collection.delete_many(
|
|
|
755 |
labels.append(doc["_id"])
|
756 |
return labels
|
757 |
|
758 |
+
def _construct_graph_node(
|
759 |
+
self, node_id, node_data: dict[str, str]
|
760 |
+
) -> KnowledgeGraphNode:
|
761 |
+
return KnowledgeGraphNode(
|
762 |
+
id=node_id,
|
763 |
+
labels=[node_id],
|
764 |
+
properties={
|
765 |
+
k: v
|
766 |
+
for k, v in node_data.items()
|
767 |
+
if k
|
768 |
+
not in [
|
769 |
+
"_id",
|
770 |
+
"connected_edges",
|
771 |
+
"source_ids",
|
772 |
+
"edge_count",
|
773 |
+
]
|
774 |
+
},
|
775 |
+
)
|
776 |
+
|
777 |
+
def _construct_graph_edge(self, edge_id: str, edge: dict[str, str]):
|
778 |
+
return KnowledgeGraphEdge(
|
779 |
+
id=edge_id,
|
780 |
+
type=edge.get("relationship", ""),
|
781 |
+
source=edge["source_node_id"],
|
782 |
+
target=edge["target_node_id"],
|
783 |
+
properties={
|
784 |
+
k: v
|
785 |
+
for k, v in edge.items()
|
786 |
+
if k
|
787 |
+
not in [
|
788 |
+
"_id",
|
789 |
+
"source_node_id",
|
790 |
+
"target_node_id",
|
791 |
+
"relationship",
|
792 |
+
"source_ids",
|
793 |
+
]
|
794 |
+
},
|
795 |
+
)
|
796 |
+
|
797 |
+
async def get_knowledge_graph_all_by_degree(
|
798 |
+
self, max_depth: int = 3, max_nodes: int = MAX_GRAPH_NODES
|
799 |
+
) -> KnowledgeGraph:
|
800 |
+
"""
|
801 |
+
It's possible that the node with one or multiple relationships is retrieved,
|
802 |
+
while its neighbor is not. Then this node might seem like disconnected in UI.
|
803 |
+
"""
|
804 |
+
|
805 |
+
total_node_count = await self.collection.count_documents({})
|
806 |
+
result = KnowledgeGraph()
|
807 |
+
seen_edges = set()
|
808 |
+
|
809 |
+
result.is_truncated = total_node_count > max_nodes
|
810 |
+
if result.is_truncated:
|
811 |
+
# Get all node_ids ranked by degree if max_nodes exceeds total node count
|
812 |
+
pipeline = [
|
813 |
+
{"$project": {"source_node_id": 1, "_id": 0}},
|
814 |
+
{"$group": {"_id": "$source_node_id", "degree": {"$sum": 1}}},
|
815 |
+
{
|
816 |
+
"$unionWith": {
|
817 |
+
"coll": self._edge_collection_name,
|
818 |
+
"pipeline": [
|
819 |
+
{"$project": {"target_node_id": 1, "_id": 0}},
|
820 |
+
{
|
821 |
+
"$group": {
|
822 |
+
"_id": "$target_node_id",
|
823 |
+
"degree": {"$sum": 1},
|
824 |
+
}
|
825 |
+
},
|
826 |
+
],
|
827 |
+
}
|
828 |
+
},
|
829 |
+
{"$group": {"_id": "$_id", "degree": {"$sum": "$degree"}}},
|
830 |
+
{"$sort": {"degree": -1}},
|
831 |
+
{"$limit": max_nodes},
|
832 |
+
]
|
833 |
+
cursor = await self.edge_collection.aggregate(pipeline, allowDiskUse=True)
|
834 |
+
|
835 |
+
node_ids = []
|
836 |
+
async for doc in cursor:
|
837 |
+
node_id = str(doc["_id"])
|
838 |
+
node_ids.append(node_id)
|
839 |
+
|
840 |
+
cursor = self.collection.find({"_id": {"$in": node_ids}}, {"source_ids": 0})
|
841 |
+
async for doc in cursor:
|
842 |
+
result.nodes.append(self._construct_graph_node(doc["_id"], doc))
|
843 |
+
|
844 |
+
# As node count reaches the limit, only need to fetch the edges that directly connect to these nodes
|
845 |
+
edge_cursor = self.edge_collection.find(
|
846 |
+
{
|
847 |
+
"$and": [
|
848 |
+
{"source_node_id": {"$in": node_ids}},
|
849 |
+
{"target_node_id": {"$in": node_ids}},
|
850 |
+
]
|
851 |
+
}
|
852 |
+
)
|
853 |
+
else:
|
854 |
+
# All nodes and edges are needed
|
855 |
+
cursor = self.collection.find({}, {"source_ids": 0})
|
856 |
+
|
857 |
+
async for doc in cursor:
|
858 |
+
node_id = str(doc["_id"])
|
859 |
+
result.nodes.append(self._construct_graph_node(doc["_id"], doc))
|
860 |
+
|
861 |
+
edge_cursor = self.edge_collection.find({})
|
862 |
+
|
863 |
+
async for edge in edge_cursor:
|
864 |
+
edge_id = f"{edge['source_node_id']}-{edge['target_node_id']}"
|
865 |
+
if edge_id not in seen_edges:
|
866 |
+
seen_edges.add(edge_id)
|
867 |
+
result.edges.append(self._construct_graph_edge(edge_id, edge))
|
868 |
+
|
869 |
+
return result
|
870 |
+
|
871 |
+
async def _bidirectional_bfs_nodes(
|
872 |
+
self,
|
873 |
+
node_labels: list[str],
|
874 |
+
seen_nodes: set[str],
|
875 |
+
result: KnowledgeGraph,
|
876 |
+
depth: int = 0,
|
877 |
+
max_depth: int = 3,
|
878 |
+
max_nodes: int = MAX_GRAPH_NODES,
|
879 |
+
) -> KnowledgeGraph:
|
880 |
+
if depth > max_depth or len(result.nodes) > max_nodes:
|
881 |
+
return result
|
882 |
+
|
883 |
+
cursor = self.collection.find({"_id": {"$in": node_labels}})
|
884 |
+
|
885 |
+
async for node in cursor:
|
886 |
+
node_id = node["_id"]
|
887 |
+
if node_id not in seen_nodes:
|
888 |
+
seen_nodes.add(node_id)
|
889 |
+
result.nodes.append(self._construct_graph_node(node_id, node))
|
890 |
+
if len(result.nodes) > max_nodes:
|
891 |
+
return result
|
892 |
+
|
893 |
+
# Collect neighbors
|
894 |
+
# Get both inbound and outbound one hop nodes
|
895 |
+
cursor = self.edge_collection.find(
|
896 |
+
{
|
897 |
+
"$or": [
|
898 |
+
{"source_node_id": {"$in": node_labels}},
|
899 |
+
{"target_node_id": {"$in": node_labels}},
|
900 |
+
]
|
901 |
+
}
|
902 |
+
)
|
903 |
+
|
904 |
+
neighbor_nodes = []
|
905 |
+
async for edge in cursor:
|
906 |
+
if edge["source_node_id"] not in seen_nodes:
|
907 |
+
neighbor_nodes.append(edge["source_node_id"])
|
908 |
+
if edge["target_node_id"] not in seen_nodes:
|
909 |
+
neighbor_nodes.append(edge["target_node_id"])
|
910 |
+
|
911 |
+
if neighbor_nodes:
|
912 |
+
result = await self._bidirectional_bfs_nodes(
|
913 |
+
neighbor_nodes, seen_nodes, result, depth + 1, max_depth, max_nodes
|
914 |
+
)
|
915 |
+
|
916 |
+
return result
|
917 |
+
|
918 |
+
async def get_knowledge_subgraph_bidirectional_bfs(
|
919 |
+
self,
|
920 |
+
node_label: str,
|
921 |
+
depth=0,
|
922 |
+
max_depth: int = 3,
|
923 |
+
max_nodes: int = MAX_GRAPH_NODES,
|
924 |
+
) -> KnowledgeGraph:
|
925 |
+
seen_nodes = set()
|
926 |
+
seen_edges = set()
|
927 |
+
result = KnowledgeGraph()
|
928 |
+
|
929 |
+
result = await self._bidirectional_bfs_nodes(
|
930 |
+
[node_label], seen_nodes, result, depth, max_depth, max_nodes
|
931 |
+
)
|
932 |
+
|
933 |
+
# Get all edges from seen_nodes
|
934 |
+
all_node_ids = list(seen_nodes)
|
935 |
+
cursor = self.edge_collection.find(
|
936 |
+
{
|
937 |
+
"$and": [
|
938 |
+
{"source_node_id": {"$in": all_node_ids}},
|
939 |
+
{"target_node_id": {"$in": all_node_ids}},
|
940 |
+
]
|
941 |
+
}
|
942 |
+
)
|
943 |
+
|
944 |
+
async for edge in cursor:
|
945 |
+
edge_id = f"{edge['source_node_id']}-{edge['target_node_id']}"
|
946 |
+
if edge_id not in seen_edges:
|
947 |
+
result.edges.append(self._construct_graph_edge(edge_id, edge))
|
948 |
+
seen_edges.add(edge_id)
|
949 |
+
|
950 |
+
return result
|
951 |
+
|
952 |
+
async def get_knowledge_subgraph_in_out_bound_bfs(
|
953 |
+
self, node_label: str, max_depth: int = 3, max_nodes: int = MAX_GRAPH_NODES
|
954 |
+
) -> KnowledgeGraph:
|
955 |
+
seen_nodes = set()
|
956 |
+
seen_edges = set()
|
957 |
+
result = KnowledgeGraph()
|
958 |
+
project_doc = {
|
959 |
+
"source_ids": 0,
|
960 |
+
"created_at": 0,
|
961 |
+
"entity_type": 0,
|
962 |
+
"file_path": 0,
|
963 |
+
}
|
964 |
+
|
965 |
+
# Verify if starting node exists
|
966 |
+
start_node = await self.collection.find_one({"_id": node_label})
|
967 |
+
if not start_node:
|
968 |
+
logger.warning(f"Starting node with label {node_label} does not exist!")
|
969 |
+
return result
|
970 |
+
|
971 |
+
seen_nodes.add(node_label)
|
972 |
+
result.nodes.append(self._construct_graph_node(node_label, start_node))
|
973 |
+
|
974 |
+
if max_depth == 0:
|
975 |
+
return result
|
976 |
+
|
977 |
+
# In MongoDB, depth = 0 means one-hop
|
978 |
+
max_depth = max_depth - 1
|
979 |
+
|
980 |
+
pipeline = [
|
981 |
+
{"$match": {"_id": node_label}},
|
982 |
+
{"$project": project_doc},
|
983 |
+
{
|
984 |
+
"$graphLookup": {
|
985 |
+
"from": self._edge_collection_name,
|
986 |
+
"startWith": "$_id",
|
987 |
+
"connectFromField": "target_node_id",
|
988 |
+
"connectToField": "source_node_id",
|
989 |
+
"maxDepth": max_depth,
|
990 |
+
"depthField": "depth",
|
991 |
+
"as": "connected_edges",
|
992 |
+
},
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"$unionWith": {
|
996 |
+
"coll": self._collection_name,
|
997 |
+
"pipeline": [
|
998 |
+
{"$match": {"_id": node_label}},
|
999 |
+
{"$project": project_doc},
|
1000 |
+
{
|
1001 |
+
"$graphLookup": {
|
1002 |
+
"from": self._edge_collection_name,
|
1003 |
+
"startWith": "$_id",
|
1004 |
+
"connectFromField": "source_node_id",
|
1005 |
+
"connectToField": "target_node_id",
|
1006 |
+
"maxDepth": max_depth,
|
1007 |
+
"depthField": "depth",
|
1008 |
+
"as": "connected_edges",
|
1009 |
+
}
|
1010 |
+
},
|
1011 |
+
],
|
1012 |
+
}
|
1013 |
+
},
|
1014 |
+
]
|
1015 |
+
|
1016 |
+
cursor = await self.collection.aggregate(pipeline, allowDiskUse=True)
|
1017 |
+
node_edges = []
|
1018 |
+
|
1019 |
+
# Two records for node_label are returned capturing outbound and inbound connected_edges
|
1020 |
+
async for doc in cursor:
|
1021 |
+
if doc.get("connected_edges", []):
|
1022 |
+
node_edges.extend(doc.get("connected_edges"))
|
1023 |
+
|
1024 |
+
# Sort the connected edges by depth ascending and weight descending
|
1025 |
+
# And stores the source_node_id and target_node_id in sequence to retrieve the neighbouring nodes
|
1026 |
+
node_edges = sorted(
|
1027 |
+
node_edges,
|
1028 |
+
key=lambda x: (x["depth"], -x["weight"]),
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
# As order matters, we need to use another list to store the node_id
|
1032 |
+
# And only take the first max_nodes ones
|
1033 |
+
node_ids = []
|
1034 |
+
for edge in node_edges:
|
1035 |
+
if len(node_ids) < max_nodes and edge["source_node_id"] not in seen_nodes:
|
1036 |
+
node_ids.append(edge["source_node_id"])
|
1037 |
+
seen_nodes.add(edge["source_node_id"])
|
1038 |
+
|
1039 |
+
if len(node_ids) < max_nodes and edge["target_node_id"] not in seen_nodes:
|
1040 |
+
node_ids.append(edge["target_node_id"])
|
1041 |
+
seen_nodes.add(edge["target_node_id"])
|
1042 |
+
|
1043 |
+
# Filter out all the node whose id is same as node_label so that we do not check existence next step
|
1044 |
+
cursor = self.collection.find({"_id": {"$in": node_ids}})
|
1045 |
+
|
1046 |
+
async for doc in cursor:
|
1047 |
+
result.nodes.append(self._construct_graph_node(str(doc["_id"]), doc))
|
1048 |
+
|
1049 |
+
for edge in node_edges:
|
1050 |
+
if (
|
1051 |
+
edge["source_node_id"] not in seen_nodes
|
1052 |
+
or edge["target_node_id"] not in seen_nodes
|
1053 |
+
):
|
1054 |
+
continue
|
1055 |
+
|
1056 |
+
edge_id = f"{edge['source_node_id']}-{edge['target_node_id']}"
|
1057 |
+
if edge_id not in seen_edges:
|
1058 |
+
result.edges.append(self._construct_graph_edge(edge_id, edge))
|
1059 |
+
seen_edges.add(edge_id)
|
1060 |
+
|
1061 |
+
return result
|
1062 |
+
|
1063 |
async def get_knowledge_graph(
|
1064 |
self,
|
1065 |
node_label: str,
|
1066 |
+
max_depth: int = 3,
|
1067 |
max_nodes: int = MAX_GRAPH_NODES,
|
1068 |
) -> KnowledgeGraph:
|
1069 |
"""
|
1070 |
+
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
1071 |
|
1072 |
Args:
|
1073 |
+
node_label: Label of the starting node, * means all nodes
|
1074 |
+
max_depth: Maximum depth of the subgraph, Defaults to 3
|
1075 |
+
max_nodes: Maxiumu nodes to return, Defaults to 1000
|
1076 |
|
1077 |
Returns:
|
1078 |
+
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
|
1079 |
+
indicating whether the graph was truncated due to max_nodes limit
|
1080 |
+
|
1081 |
+
If a graph is like this and starting from B:
|
1082 |
+
A β B β C β F, B -> E, C β D
|
1083 |
+
|
1084 |
+
Outbound BFS:
|
1085 |
+
B β E
|
1086 |
+
|
1087 |
+
Inbound BFS:
|
1088 |
+
A β B
|
1089 |
+
C β B
|
1090 |
+
F β C
|
1091 |
+
|
1092 |
+
Bidirectional BFS:
|
1093 |
+
A β B
|
1094 |
+
B β E
|
1095 |
+
F β C
|
1096 |
+
C β B
|
1097 |
+
C β D
|
1098 |
"""
|
|
|
1099 |
result = KnowledgeGraph()
|
1100 |
+
start = time.perf_counter()
|
|
|
|
|
1101 |
|
1102 |
try:
|
1103 |
# Optimize pipeline to avoid memory issues with large datasets
|
1104 |
+
if node_label == "*":
|
1105 |
+
result = await self.get_knowledge_graph_all_by_degree(
|
1106 |
+
max_depth, max_nodes
|
1107 |
+
)
|
1108 |
+
elif GRAPH_BFS_MODE == "in_out_bound":
|
1109 |
+
result = await self.get_knowledge_subgraph_in_out_bound_bfs(
|
1110 |
+
node_label, max_depth, max_nodes
|
1111 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1112 |
else:
|
1113 |
+
result = await self.get_knowledge_subgraph_bidirectional_bfs(
|
1114 |
+
node_label, 0, max_depth, max_nodes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1115 |
)
|
|
|
|
|
|
|
1116 |
|
1117 |
+
duration = time.perf_counter() - start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1118 |
|
1119 |
logger.info(
|
1120 |
+
f"Subgraph query successful in {duration:.4f} seconds | Node count: {len(result.nodes)} | Edge count: {len(result.edges)} | Truncated: {result.is_truncated}"
|
1121 |
)
|
1122 |
|
1123 |
except PyMongoError as e:
|
|
|
1130 |
try:
|
1131 |
simple_cursor = self.collection.find({}).limit(max_nodes)
|
1132 |
async for doc in simple_cursor:
|
|
|
1133 |
result.nodes.append(
|
1134 |
+
self._construct_graph_node(str(doc["_id"]), doc)
|
|
|
|
|
|
|
|
|
1135 |
)
|
1136 |
result.is_truncated = True
|
1137 |
logger.info(
|
|
|
1292 |
logger.debug("vector index already exist")
|
1293 |
|
1294 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
1295 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
1296 |
if not data:
|
1297 |
return
|
1298 |
|
1299 |
# Add current time as Unix timestamp
|
|
|
|
|
1300 |
current_time = int(time.time())
|
1301 |
|
1302 |
list_data = [
|
|
|
1381 |
Args:
|
1382 |
ids: List of vector IDs to be deleted
|
1383 |
"""
|
1384 |
+
logger.debug(f"Deleting {len(ids)} vectors from {self.namespace}")
|
1385 |
if not ids:
|
1386 |
return
|
1387 |
|
lightrag/kg/networkx_impl.py
CHANGED
@@ -106,7 +106,9 @@ class NetworkXStorage(BaseGraphStorage):
|
|
106 |
|
107 |
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
108 |
graph = await self._get_graph()
|
109 |
-
|
|
|
|
|
110 |
|
111 |
async def get_edge(
|
112 |
self, source_node_id: str, target_node_id: str
|
|
|
106 |
|
107 |
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
108 |
graph = await self._get_graph()
|
109 |
+
src_degree = graph.degree(src_id) if graph.has_node(src_id) else 0
|
110 |
+
tgt_degree = graph.degree(tgt_id) if graph.has_node(tgt_id) else 0
|
111 |
+
return src_degree + tgt_degree
|
112 |
|
113 |
async def get_edge(
|
114 |
self, source_node_id: str, target_node_id: str
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -136,6 +136,52 @@ class PostgreSQLDB:
|
|
136 |
except Exception as e:
|
137 |
logger.warning(f"Failed to add chunk_id column to LIGHTRAG_LLM_CACHE: {e}")
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
async def _migrate_timestamp_columns(self):
|
140 |
"""Migrate timestamp columns in tables to timezone-aware types, assuming original data is in UTC time"""
|
141 |
# Tables and columns that need migration
|
@@ -189,6 +235,239 @@ class PostgreSQLDB:
|
|
189 |
# Log error but don't interrupt the process
|
190 |
logger.warning(f"Failed to migrate {table_name}.{column_name}: {e}")
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
async def check_tables(self):
|
193 |
# First create all tables
|
194 |
for k, v in TABLES.items():
|
@@ -240,6 +519,44 @@ class PostgreSQLDB:
|
|
240 |
logger.error(f"PostgreSQL, Failed to migrate LLM cache chunk_id field: {e}")
|
241 |
# Don't throw an exception, allow the initialization process to continue
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
async def query(
|
244 |
self,
|
245 |
sql: str,
|
@@ -423,74 +740,139 @@ class PGKVStorage(BaseKVStorage):
|
|
423 |
try:
|
424 |
results = await self.db.query(sql, params, multirows=True)
|
425 |
|
|
|
426 |
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
427 |
-
|
428 |
for row in results:
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
except Exception as e:
|
437 |
logger.error(f"Error retrieving all data from {self.namespace}: {e}")
|
438 |
return {}
|
439 |
|
440 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
441 |
-
"""Get
|
442 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
443 |
params = {"workspace": self.db.workspace, "id": id}
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
# Query by id
|
468 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
469 |
-
"""Get
|
470 |
sql = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
471 |
ids=",".join([f"'{id}'" for id in ids])
|
472 |
)
|
473 |
params = {"workspace": self.db.workspace}
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
for
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
-
|
490 |
-
"""Specifically for llm_response_cache."""
|
491 |
-
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
492 |
-
params = {"workspace": self.db.workspace, "status": status}
|
493 |
-
return await self.db.query(SQL, params, multirows=True)
|
494 |
|
495 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
496 |
"""Filter out duplicated content"""
|
@@ -520,7 +902,22 @@ class PGKVStorage(BaseKVStorage):
|
|
520 |
return
|
521 |
|
522 |
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
525 |
for k, v in data.items():
|
526 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
@@ -531,19 +928,21 @@ class PGKVStorage(BaseKVStorage):
|
|
531 |
}
|
532 |
await self.db.execute(upsert_sql, _data)
|
533 |
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
534 |
-
for
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
|
|
|
|
545 |
|
546 |
-
|
547 |
|
548 |
async def index_done_callback(self) -> None:
|
549 |
# PG handles persistence automatically
|
@@ -949,8 +1348,8 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
949 |
else:
|
950 |
exist_keys = []
|
951 |
new_keys = set([s for s in keys if s not in exist_keys])
|
952 |
-
print(f"keys: {keys}")
|
953 |
-
print(f"new_keys: {new_keys}")
|
954 |
return new_keys
|
955 |
except Exception as e:
|
956 |
logger.error(
|
@@ -965,6 +1364,14 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
965 |
if result is None or result == []:
|
966 |
return None
|
967 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
968 |
return dict(
|
969 |
content=result[0]["content"],
|
970 |
content_length=result[0]["content_length"],
|
@@ -974,6 +1381,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
974 |
created_at=result[0]["created_at"],
|
975 |
updated_at=result[0]["updated_at"],
|
976 |
file_path=result[0]["file_path"],
|
|
|
977 |
)
|
978 |
|
979 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
@@ -988,19 +1396,32 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
988 |
|
989 |
if not results:
|
990 |
return []
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1004 |
|
1005 |
async def get_status_counts(self) -> dict[str, int]:
|
1006 |
"""Get counts of documents in each status"""
|
@@ -1021,8 +1442,18 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1021 |
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
1022 |
params = {"workspace": self.db.workspace, "status": status.value}
|
1023 |
result = await self.db.query(sql, params, True)
|
1024 |
-
|
1025 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
content=element["content"],
|
1027 |
content_summary=element["content_summary"],
|
1028 |
content_length=element["content_length"],
|
@@ -1031,9 +1462,9 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1031 |
updated_at=element["updated_at"],
|
1032 |
chunks_count=element["chunks_count"],
|
1033 |
file_path=element["file_path"],
|
|
|
1034 |
)
|
1035 |
-
|
1036 |
-
}
|
1037 |
return docs_by_status
|
1038 |
|
1039 |
async def index_done_callback(self) -> None:
|
@@ -1097,10 +1528,10 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1097 |
logger.warning(f"Unable to parse datetime string: {dt_str}")
|
1098 |
return None
|
1099 |
|
1100 |
-
# Modified SQL to include created_at and
|
1101 |
-
#
|
1102 |
-
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status,file_path,created_at,updated_at)
|
1103 |
-
values($1,$2,$3,$4,$5,$6,$7,$8,$9,$10)
|
1104 |
on conflict(id,workspace) do update set
|
1105 |
content = EXCLUDED.content,
|
1106 |
content_summary = EXCLUDED.content_summary,
|
@@ -1108,6 +1539,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1108 |
chunks_count = EXCLUDED.chunks_count,
|
1109 |
status = EXCLUDED.status,
|
1110 |
file_path = EXCLUDED.file_path,
|
|
|
1111 |
created_at = EXCLUDED.created_at,
|
1112 |
updated_at = EXCLUDED.updated_at"""
|
1113 |
for k, v in data.items():
|
@@ -1115,7 +1547,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1115 |
created_at = parse_datetime(v.get("created_at"))
|
1116 |
updated_at = parse_datetime(v.get("updated_at"))
|
1117 |
|
1118 |
-
# chunks_count
|
1119 |
await self.db.execute(
|
1120 |
sql,
|
1121 |
{
|
@@ -1127,6 +1559,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
1127 |
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
1128 |
"status": v["status"],
|
1129 |
"file_path": v["file_path"],
|
|
|
1130 |
"created_at": created_at, # Use the converted datetime object
|
1131 |
"updated_at": updated_at, # Use the converted datetime object
|
1132 |
},
|
@@ -2409,7 +2842,7 @@ class PGGraphStorage(BaseGraphStorage):
|
|
2409 |
NAMESPACE_TABLE_MAP = {
|
2410 |
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
2411 |
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
2412 |
-
NameSpace.VECTOR_STORE_CHUNKS: "
|
2413 |
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
|
2414 |
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
|
2415 |
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
|
@@ -2444,13 +2877,28 @@ TABLES = {
|
|
2444 |
chunk_order_index INTEGER,
|
2445 |
tokens INTEGER,
|
2446 |
content TEXT,
|
2447 |
-
content_vector VECTOR,
|
2448 |
file_path VARCHAR(256),
|
|
|
2449 |
create_time TIMESTAMP(0) WITH TIME ZONE,
|
2450 |
update_time TIMESTAMP(0) WITH TIME ZONE,
|
2451 |
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
|
2452 |
)"""
|
2453 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2454 |
"LIGHTRAG_VDB_ENTITY": {
|
2455 |
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
|
2456 |
id VARCHAR(255),
|
@@ -2503,6 +2951,7 @@ TABLES = {
|
|
2503 |
chunks_count int4 NULL,
|
2504 |
status varchar(64) NULL,
|
2505 |
file_path TEXT NULL,
|
|
|
2506 |
created_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
2507 |
updated_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
2508 |
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
|
@@ -2517,24 +2966,30 @@ SQL_TEMPLATES = {
|
|
2517 |
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
|
2518 |
""",
|
2519 |
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
2520 |
-
chunk_order_index, full_doc_id, file_path
|
|
|
|
|
2521 |
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
|
2522 |
""",
|
2523 |
-
"get_by_id_llm_response_cache": """SELECT id, original_prompt,
|
2524 |
-
|
|
|
2525 |
""",
|
2526 |
-
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt,
|
2527 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2 AND id=$3
|
2528 |
""",
|
2529 |
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
|
2530 |
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
|
2531 |
""",
|
2532 |
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
2533 |
-
chunk_order_index, full_doc_id, file_path
|
|
|
|
|
2534 |
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
|
2535 |
""",
|
2536 |
-
"get_by_ids_llm_response_cache": """SELECT id, original_prompt,
|
2537 |
-
|
|
|
2538 |
""",
|
2539 |
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
|
2540 |
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
|
@@ -2542,16 +2997,31 @@ SQL_TEMPLATES = {
|
|
2542 |
ON CONFLICT (workspace,id) DO UPDATE
|
2543 |
SET content = $2, update_time = CURRENT_TIMESTAMP
|
2544 |
""",
|
2545 |
-
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode,chunk_id)
|
2546 |
-
VALUES ($1, $2, $3, $4, $5, $6)
|
2547 |
ON CONFLICT (workspace,mode,id) DO UPDATE
|
2548 |
SET original_prompt = EXCLUDED.original_prompt,
|
2549 |
return_value=EXCLUDED.return_value,
|
2550 |
mode=EXCLUDED.mode,
|
2551 |
chunk_id=EXCLUDED.chunk_id,
|
|
|
2552 |
update_time = CURRENT_TIMESTAMP
|
2553 |
""",
|
2554 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2555 |
chunk_order_index, full_doc_id, content, content_vector, file_path,
|
2556 |
create_time, update_time)
|
2557 |
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
|
@@ -2564,7 +3034,6 @@ SQL_TEMPLATES = {
|
|
2564 |
file_path=EXCLUDED.file_path,
|
2565 |
update_time = EXCLUDED.update_time
|
2566 |
""",
|
2567 |
-
# SQL for VectorStorage
|
2568 |
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
|
2569 |
content_vector, chunk_ids, file_path, create_time, update_time)
|
2570 |
VALUES ($1, $2, $3, $4, $5, $6::varchar[], $7, $8, $9)
|
@@ -2591,7 +3060,7 @@ SQL_TEMPLATES = {
|
|
2591 |
"relationships": """
|
2592 |
WITH relevant_chunks AS (
|
2593 |
SELECT id as chunk_id
|
2594 |
-
FROM
|
2595 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
2596 |
)
|
2597 |
SELECT source_id as src_id, target_id as tgt_id, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at
|
@@ -2608,7 +3077,7 @@ SQL_TEMPLATES = {
|
|
2608 |
"entities": """
|
2609 |
WITH relevant_chunks AS (
|
2610 |
SELECT id as chunk_id
|
2611 |
-
FROM
|
2612 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
2613 |
)
|
2614 |
SELECT entity_name, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
|
@@ -2625,13 +3094,13 @@ SQL_TEMPLATES = {
|
|
2625 |
"chunks": """
|
2626 |
WITH relevant_chunks AS (
|
2627 |
SELECT id as chunk_id
|
2628 |
-
FROM
|
2629 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
2630 |
)
|
2631 |
SELECT id, content, file_path, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
|
2632 |
(
|
2633 |
SELECT id, content, file_path, create_time, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
2634 |
-
FROM
|
2635 |
WHERE workspace=$1
|
2636 |
AND id IN (SELECT chunk_id FROM relevant_chunks)
|
2637 |
) as chunk_distances
|
|
|
136 |
except Exception as e:
|
137 |
logger.warning(f"Failed to add chunk_id column to LIGHTRAG_LLM_CACHE: {e}")
|
138 |
|
139 |
+
async def _migrate_llm_cache_add_cache_type(self):
|
140 |
+
"""Add cache_type column to LIGHTRAG_LLM_CACHE table if it doesn't exist"""
|
141 |
+
try:
|
142 |
+
# Check if cache_type column exists
|
143 |
+
check_column_sql = """
|
144 |
+
SELECT column_name
|
145 |
+
FROM information_schema.columns
|
146 |
+
WHERE table_name = 'lightrag_llm_cache'
|
147 |
+
AND column_name = 'cache_type'
|
148 |
+
"""
|
149 |
+
|
150 |
+
column_info = await self.query(check_column_sql)
|
151 |
+
if not column_info:
|
152 |
+
logger.info("Adding cache_type column to LIGHTRAG_LLM_CACHE table")
|
153 |
+
add_column_sql = """
|
154 |
+
ALTER TABLE LIGHTRAG_LLM_CACHE
|
155 |
+
ADD COLUMN cache_type VARCHAR(32) NULL
|
156 |
+
"""
|
157 |
+
await self.execute(add_column_sql)
|
158 |
+
logger.info(
|
159 |
+
"Successfully added cache_type column to LIGHTRAG_LLM_CACHE table"
|
160 |
+
)
|
161 |
+
|
162 |
+
# Migrate existing data: extract cache_type from flattened keys
|
163 |
+
logger.info(
|
164 |
+
"Migrating existing LLM cache data to populate cache_type field"
|
165 |
+
)
|
166 |
+
update_sql = """
|
167 |
+
UPDATE LIGHTRAG_LLM_CACHE
|
168 |
+
SET cache_type = CASE
|
169 |
+
WHEN id LIKE '%:%:%' THEN split_part(id, ':', 2)
|
170 |
+
ELSE 'extract'
|
171 |
+
END
|
172 |
+
WHERE cache_type IS NULL
|
173 |
+
"""
|
174 |
+
await self.execute(update_sql)
|
175 |
+
logger.info("Successfully migrated existing LLM cache data")
|
176 |
+
else:
|
177 |
+
logger.info(
|
178 |
+
"cache_type column already exists in LIGHTRAG_LLM_CACHE table"
|
179 |
+
)
|
180 |
+
except Exception as e:
|
181 |
+
logger.warning(
|
182 |
+
f"Failed to add cache_type column to LIGHTRAG_LLM_CACHE: {e}"
|
183 |
+
)
|
184 |
+
|
185 |
async def _migrate_timestamp_columns(self):
|
186 |
"""Migrate timestamp columns in tables to timezone-aware types, assuming original data is in UTC time"""
|
187 |
# Tables and columns that need migration
|
|
|
235 |
# Log error but don't interrupt the process
|
236 |
logger.warning(f"Failed to migrate {table_name}.{column_name}: {e}")
|
237 |
|
238 |
+
async def _migrate_doc_chunks_to_vdb_chunks(self):
|
239 |
+
"""
|
240 |
+
Migrate data from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS if specific conditions are met.
|
241 |
+
This migration is intended for users who are upgrading and have an older table structure
|
242 |
+
where LIGHTRAG_DOC_CHUNKS contained a `content_vector` column.
|
243 |
+
|
244 |
+
"""
|
245 |
+
try:
|
246 |
+
# 1. Check if the new table LIGHTRAG_VDB_CHUNKS is empty
|
247 |
+
vdb_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_VDB_CHUNKS"
|
248 |
+
vdb_chunks_count_result = await self.query(vdb_chunks_count_sql)
|
249 |
+
if vdb_chunks_count_result and vdb_chunks_count_result["count"] > 0:
|
250 |
+
logger.info(
|
251 |
+
"Skipping migration: LIGHTRAG_VDB_CHUNKS already contains data."
|
252 |
+
)
|
253 |
+
return
|
254 |
+
|
255 |
+
# 2. Check if `content_vector` column exists in the old table
|
256 |
+
check_column_sql = """
|
257 |
+
SELECT 1 FROM information_schema.columns
|
258 |
+
WHERE table_name = 'lightrag_doc_chunks' AND column_name = 'content_vector'
|
259 |
+
"""
|
260 |
+
column_exists = await self.query(check_column_sql)
|
261 |
+
if not column_exists:
|
262 |
+
logger.info(
|
263 |
+
"Skipping migration: `content_vector` not found in LIGHTRAG_DOC_CHUNKS"
|
264 |
+
)
|
265 |
+
return
|
266 |
+
|
267 |
+
# 3. Check if the old table LIGHTRAG_DOC_CHUNKS has data
|
268 |
+
doc_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_DOC_CHUNKS"
|
269 |
+
doc_chunks_count_result = await self.query(doc_chunks_count_sql)
|
270 |
+
if not doc_chunks_count_result or doc_chunks_count_result["count"] == 0:
|
271 |
+
logger.info("Skipping migration: LIGHTRAG_DOC_CHUNKS is empty.")
|
272 |
+
return
|
273 |
+
|
274 |
+
# 4. Perform the migration
|
275 |
+
logger.info(
|
276 |
+
"Starting data migration from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS..."
|
277 |
+
)
|
278 |
+
migration_sql = """
|
279 |
+
INSERT INTO LIGHTRAG_VDB_CHUNKS (
|
280 |
+
id, workspace, full_doc_id, chunk_order_index, tokens, content,
|
281 |
+
content_vector, file_path, create_time, update_time
|
282 |
+
)
|
283 |
+
SELECT
|
284 |
+
id, workspace, full_doc_id, chunk_order_index, tokens, content,
|
285 |
+
content_vector, file_path, create_time, update_time
|
286 |
+
FROM LIGHTRAG_DOC_CHUNKS
|
287 |
+
ON CONFLICT (workspace, id) DO NOTHING;
|
288 |
+
"""
|
289 |
+
await self.execute(migration_sql)
|
290 |
+
logger.info("Data migration to LIGHTRAG_VDB_CHUNKS completed successfully.")
|
291 |
+
|
292 |
+
except Exception as e:
|
293 |
+
logger.error(f"Failed during data migration to LIGHTRAG_VDB_CHUNKS: {e}")
|
294 |
+
# Do not re-raise, to allow the application to start
|
295 |
+
|
296 |
+
async def _check_llm_cache_needs_migration(self):
|
297 |
+
"""Check if LLM cache data needs migration by examining the first record"""
|
298 |
+
try:
|
299 |
+
# Only query the first record to determine format
|
300 |
+
check_sql = """
|
301 |
+
SELECT id FROM LIGHTRAG_LLM_CACHE
|
302 |
+
ORDER BY create_time ASC
|
303 |
+
LIMIT 1
|
304 |
+
"""
|
305 |
+
result = await self.query(check_sql)
|
306 |
+
|
307 |
+
if result and result.get("id"):
|
308 |
+
# If id doesn't contain colon, it's old format
|
309 |
+
return ":" not in result["id"]
|
310 |
+
|
311 |
+
return False # No data or already new format
|
312 |
+
except Exception as e:
|
313 |
+
logger.warning(f"Failed to check LLM cache migration status: {e}")
|
314 |
+
return False
|
315 |
+
|
316 |
+
async def _migrate_llm_cache_to_flattened_keys(self):
|
317 |
+
"""Migrate LLM cache to flattened key format, recalculating hash values"""
|
318 |
+
try:
|
319 |
+
# Get all old format data
|
320 |
+
old_data_sql = """
|
321 |
+
SELECT id, mode, original_prompt, return_value, chunk_id,
|
322 |
+
create_time, update_time
|
323 |
+
FROM LIGHTRAG_LLM_CACHE
|
324 |
+
WHERE id NOT LIKE '%:%'
|
325 |
+
"""
|
326 |
+
|
327 |
+
old_records = await self.query(old_data_sql, multirows=True)
|
328 |
+
|
329 |
+
if not old_records:
|
330 |
+
logger.info("No old format LLM cache data found, skipping migration")
|
331 |
+
return
|
332 |
+
|
333 |
+
logger.info(
|
334 |
+
f"Found {len(old_records)} old format cache records, starting migration..."
|
335 |
+
)
|
336 |
+
|
337 |
+
# Import hash calculation function
|
338 |
+
from ..utils import compute_args_hash
|
339 |
+
|
340 |
+
migrated_count = 0
|
341 |
+
|
342 |
+
# Migrate data in batches
|
343 |
+
for record in old_records:
|
344 |
+
try:
|
345 |
+
# Recalculate hash using correct method
|
346 |
+
new_hash = compute_args_hash(
|
347 |
+
record["mode"], record["original_prompt"]
|
348 |
+
)
|
349 |
+
|
350 |
+
# Determine cache_type based on mode
|
351 |
+
cache_type = "extract" if record["mode"] == "default" else "unknown"
|
352 |
+
|
353 |
+
# Generate new flattened key
|
354 |
+
new_key = f"{record['mode']}:{cache_type}:{new_hash}"
|
355 |
+
|
356 |
+
# Insert new format data with cache_type field
|
357 |
+
insert_sql = """
|
358 |
+
INSERT INTO LIGHTRAG_LLM_CACHE
|
359 |
+
(workspace, id, mode, original_prompt, return_value, chunk_id, cache_type, create_time, update_time)
|
360 |
+
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
|
361 |
+
ON CONFLICT (workspace, mode, id) DO NOTHING
|
362 |
+
"""
|
363 |
+
|
364 |
+
await self.execute(
|
365 |
+
insert_sql,
|
366 |
+
{
|
367 |
+
"workspace": self.workspace,
|
368 |
+
"id": new_key,
|
369 |
+
"mode": record["mode"],
|
370 |
+
"original_prompt": record["original_prompt"],
|
371 |
+
"return_value": record["return_value"],
|
372 |
+
"chunk_id": record["chunk_id"],
|
373 |
+
"cache_type": cache_type, # Add cache_type field
|
374 |
+
"create_time": record["create_time"],
|
375 |
+
"update_time": record["update_time"],
|
376 |
+
},
|
377 |
+
)
|
378 |
+
|
379 |
+
# Delete old data
|
380 |
+
delete_sql = """
|
381 |
+
DELETE FROM LIGHTRAG_LLM_CACHE
|
382 |
+
WHERE workspace=$1 AND mode=$2 AND id=$3
|
383 |
+
"""
|
384 |
+
await self.execute(
|
385 |
+
delete_sql,
|
386 |
+
{
|
387 |
+
"workspace": self.workspace,
|
388 |
+
"mode": record["mode"],
|
389 |
+
"id": record["id"], # Old id
|
390 |
+
},
|
391 |
+
)
|
392 |
+
|
393 |
+
migrated_count += 1
|
394 |
+
|
395 |
+
except Exception as e:
|
396 |
+
logger.warning(
|
397 |
+
f"Failed to migrate cache record {record['id']}: {e}"
|
398 |
+
)
|
399 |
+
continue
|
400 |
+
|
401 |
+
logger.info(
|
402 |
+
f"Successfully migrated {migrated_count} cache records to flattened format"
|
403 |
+
)
|
404 |
+
|
405 |
+
except Exception as e:
|
406 |
+
logger.error(f"LLM cache migration failed: {e}")
|
407 |
+
# Don't raise exception, allow system to continue startup
|
408 |
+
|
409 |
+
async def _migrate_doc_status_add_chunks_list(self):
|
410 |
+
"""Add chunks_list column to LIGHTRAG_DOC_STATUS table if it doesn't exist"""
|
411 |
+
try:
|
412 |
+
# Check if chunks_list column exists
|
413 |
+
check_column_sql = """
|
414 |
+
SELECT column_name
|
415 |
+
FROM information_schema.columns
|
416 |
+
WHERE table_name = 'lightrag_doc_status'
|
417 |
+
AND column_name = 'chunks_list'
|
418 |
+
"""
|
419 |
+
|
420 |
+
column_info = await self.query(check_column_sql)
|
421 |
+
if not column_info:
|
422 |
+
logger.info("Adding chunks_list column to LIGHTRAG_DOC_STATUS table")
|
423 |
+
add_column_sql = """
|
424 |
+
ALTER TABLE LIGHTRAG_DOC_STATUS
|
425 |
+
ADD COLUMN chunks_list JSONB NULL DEFAULT '[]'::jsonb
|
426 |
+
"""
|
427 |
+
await self.execute(add_column_sql)
|
428 |
+
logger.info(
|
429 |
+
"Successfully added chunks_list column to LIGHTRAG_DOC_STATUS table"
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
logger.info(
|
433 |
+
"chunks_list column already exists in LIGHTRAG_DOC_STATUS table"
|
434 |
+
)
|
435 |
+
except Exception as e:
|
436 |
+
logger.warning(
|
437 |
+
f"Failed to add chunks_list column to LIGHTRAG_DOC_STATUS: {e}"
|
438 |
+
)
|
439 |
+
|
440 |
+
async def _migrate_text_chunks_add_llm_cache_list(self):
|
441 |
+
"""Add llm_cache_list column to LIGHTRAG_DOC_CHUNKS table if it doesn't exist"""
|
442 |
+
try:
|
443 |
+
# Check if llm_cache_list column exists
|
444 |
+
check_column_sql = """
|
445 |
+
SELECT column_name
|
446 |
+
FROM information_schema.columns
|
447 |
+
WHERE table_name = 'lightrag_doc_chunks'
|
448 |
+
AND column_name = 'llm_cache_list'
|
449 |
+
"""
|
450 |
+
|
451 |
+
column_info = await self.query(check_column_sql)
|
452 |
+
if not column_info:
|
453 |
+
logger.info("Adding llm_cache_list column to LIGHTRAG_DOC_CHUNKS table")
|
454 |
+
add_column_sql = """
|
455 |
+
ALTER TABLE LIGHTRAG_DOC_CHUNKS
|
456 |
+
ADD COLUMN llm_cache_list JSONB NULL DEFAULT '[]'::jsonb
|
457 |
+
"""
|
458 |
+
await self.execute(add_column_sql)
|
459 |
+
logger.info(
|
460 |
+
"Successfully added llm_cache_list column to LIGHTRAG_DOC_CHUNKS table"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
logger.info(
|
464 |
+
"llm_cache_list column already exists in LIGHTRAG_DOC_CHUNKS table"
|
465 |
+
)
|
466 |
+
except Exception as e:
|
467 |
+
logger.warning(
|
468 |
+
f"Failed to add llm_cache_list column to LIGHTRAG_DOC_CHUNKS: {e}"
|
469 |
+
)
|
470 |
+
|
471 |
async def check_tables(self):
|
472 |
# First create all tables
|
473 |
for k, v in TABLES.items():
|
|
|
519 |
logger.error(f"PostgreSQL, Failed to migrate LLM cache chunk_id field: {e}")
|
520 |
# Don't throw an exception, allow the initialization process to continue
|
521 |
|
522 |
+
# Migrate LLM cache table to add cache_type field if needed
|
523 |
+
try:
|
524 |
+
await self._migrate_llm_cache_add_cache_type()
|
525 |
+
except Exception as e:
|
526 |
+
logger.error(
|
527 |
+
f"PostgreSQL, Failed to migrate LLM cache cache_type field: {e}"
|
528 |
+
)
|
529 |
+
# Don't throw an exception, allow the initialization process to continue
|
530 |
+
|
531 |
+
# Finally, attempt to migrate old doc chunks data if needed
|
532 |
+
try:
|
533 |
+
await self._migrate_doc_chunks_to_vdb_chunks()
|
534 |
+
except Exception as e:
|
535 |
+
logger.error(f"PostgreSQL, Failed to migrate doc_chunks to vdb_chunks: {e}")
|
536 |
+
|
537 |
+
# Check and migrate LLM cache to flattened keys if needed
|
538 |
+
try:
|
539 |
+
if await self._check_llm_cache_needs_migration():
|
540 |
+
await self._migrate_llm_cache_to_flattened_keys()
|
541 |
+
except Exception as e:
|
542 |
+
logger.error(f"PostgreSQL, LLM cache migration failed: {e}")
|
543 |
+
|
544 |
+
# Migrate doc status to add chunks_list field if needed
|
545 |
+
try:
|
546 |
+
await self._migrate_doc_status_add_chunks_list()
|
547 |
+
except Exception as e:
|
548 |
+
logger.error(
|
549 |
+
f"PostgreSQL, Failed to migrate doc status chunks_list field: {e}"
|
550 |
+
)
|
551 |
+
|
552 |
+
# Migrate text chunks to add llm_cache_list field if needed
|
553 |
+
try:
|
554 |
+
await self._migrate_text_chunks_add_llm_cache_list()
|
555 |
+
except Exception as e:
|
556 |
+
logger.error(
|
557 |
+
f"PostgreSQL, Failed to migrate text chunks llm_cache_list field: {e}"
|
558 |
+
)
|
559 |
+
|
560 |
async def query(
|
561 |
self,
|
562 |
sql: str,
|
|
|
740 |
try:
|
741 |
results = await self.db.query(sql, params, multirows=True)
|
742 |
|
743 |
+
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
|
744 |
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
745 |
+
processed_results = {}
|
746 |
for row in results:
|
747 |
+
create_time = row.get("create_time", 0)
|
748 |
+
update_time = row.get("update_time", 0)
|
749 |
+
# Map field names and add cache_type for compatibility
|
750 |
+
processed_row = {
|
751 |
+
**row,
|
752 |
+
"return": row.get("return_value", ""),
|
753 |
+
"cache_type": row.get("original_prompt", "unknow"),
|
754 |
+
"original_prompt": row.get("original_prompt", ""),
|
755 |
+
"chunk_id": row.get("chunk_id"),
|
756 |
+
"mode": row.get("mode", "default"),
|
757 |
+
"create_time": create_time,
|
758 |
+
"update_time": create_time if update_time == 0 else update_time,
|
759 |
+
}
|
760 |
+
processed_results[row["id"]] = processed_row
|
761 |
+
return processed_results
|
762 |
+
|
763 |
+
# For text_chunks namespace, parse llm_cache_list JSON string back to list
|
764 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
765 |
+
processed_results = {}
|
766 |
+
for row in results:
|
767 |
+
llm_cache_list = row.get("llm_cache_list", [])
|
768 |
+
if isinstance(llm_cache_list, str):
|
769 |
+
try:
|
770 |
+
llm_cache_list = json.loads(llm_cache_list)
|
771 |
+
except json.JSONDecodeError:
|
772 |
+
llm_cache_list = []
|
773 |
+
row["llm_cache_list"] = llm_cache_list
|
774 |
+
create_time = row.get("create_time", 0)
|
775 |
+
update_time = row.get("update_time", 0)
|
776 |
+
row["create_time"] = create_time
|
777 |
+
row["update_time"] = (
|
778 |
+
create_time if update_time == 0 else update_time
|
779 |
+
)
|
780 |
+
processed_results[row["id"]] = row
|
781 |
+
return processed_results
|
782 |
+
|
783 |
+
# For other namespaces, return as-is
|
784 |
+
return {row["id"]: row for row in results}
|
785 |
except Exception as e:
|
786 |
logger.error(f"Error retrieving all data from {self.namespace}: {e}")
|
787 |
return {}
|
788 |
|
789 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
790 |
+
"""Get data by id."""
|
791 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
792 |
params = {"workspace": self.db.workspace, "id": id}
|
793 |
+
response = await self.db.query(sql, params)
|
794 |
+
|
795 |
+
if response and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
796 |
+
# Parse llm_cache_list JSON string back to list
|
797 |
+
llm_cache_list = response.get("llm_cache_list", [])
|
798 |
+
if isinstance(llm_cache_list, str):
|
799 |
+
try:
|
800 |
+
llm_cache_list = json.loads(llm_cache_list)
|
801 |
+
except json.JSONDecodeError:
|
802 |
+
llm_cache_list = []
|
803 |
+
response["llm_cache_list"] = llm_cache_list
|
804 |
+
create_time = response.get("create_time", 0)
|
805 |
+
update_time = response.get("update_time", 0)
|
806 |
+
response["create_time"] = create_time
|
807 |
+
response["update_time"] = create_time if update_time == 0 else update_time
|
808 |
+
|
809 |
+
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
|
810 |
+
if response and is_namespace(
|
811 |
+
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
|
812 |
+
):
|
813 |
+
create_time = response.get("create_time", 0)
|
814 |
+
update_time = response.get("update_time", 0)
|
815 |
+
# Map field names and add cache_type for compatibility
|
816 |
+
response = {
|
817 |
+
**response,
|
818 |
+
"return": response.get("return_value", ""),
|
819 |
+
"cache_type": response.get("cache_type"),
|
820 |
+
"original_prompt": response.get("original_prompt", ""),
|
821 |
+
"chunk_id": response.get("chunk_id"),
|
822 |
+
"mode": response.get("mode", "default"),
|
823 |
+
"create_time": create_time,
|
824 |
+
"update_time": create_time if update_time == 0 else update_time,
|
825 |
+
}
|
826 |
+
|
827 |
+
return response if response else None
|
828 |
|
829 |
# Query by id
|
830 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
831 |
+
"""Get data by ids"""
|
832 |
sql = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
833 |
ids=",".join([f"'{id}'" for id in ids])
|
834 |
)
|
835 |
params = {"workspace": self.db.workspace}
|
836 |
+
results = await self.db.query(sql, params, multirows=True)
|
837 |
+
|
838 |
+
if results and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
839 |
+
# Parse llm_cache_list JSON string back to list for each result
|
840 |
+
for result in results:
|
841 |
+
llm_cache_list = result.get("llm_cache_list", [])
|
842 |
+
if isinstance(llm_cache_list, str):
|
843 |
+
try:
|
844 |
+
llm_cache_list = json.loads(llm_cache_list)
|
845 |
+
except json.JSONDecodeError:
|
846 |
+
llm_cache_list = []
|
847 |
+
result["llm_cache_list"] = llm_cache_list
|
848 |
+
create_time = result.get("create_time", 0)
|
849 |
+
update_time = result.get("update_time", 0)
|
850 |
+
result["create_time"] = create_time
|
851 |
+
result["update_time"] = create_time if update_time == 0 else update_time
|
852 |
+
|
853 |
+
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
|
854 |
+
if results and is_namespace(
|
855 |
+
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
|
856 |
+
):
|
857 |
+
processed_results = []
|
858 |
+
for row in results:
|
859 |
+
create_time = row.get("create_time", 0)
|
860 |
+
update_time = row.get("update_time", 0)
|
861 |
+
# Map field names and add cache_type for compatibility
|
862 |
+
processed_row = {
|
863 |
+
**row,
|
864 |
+
"return": row.get("return_value", ""),
|
865 |
+
"cache_type": row.get("cache_type"),
|
866 |
+
"original_prompt": row.get("original_prompt", ""),
|
867 |
+
"chunk_id": row.get("chunk_id"),
|
868 |
+
"mode": row.get("mode", "default"),
|
869 |
+
"create_time": create_time,
|
870 |
+
"update_time": create_time if update_time == 0 else update_time,
|
871 |
+
}
|
872 |
+
processed_results.append(processed_row)
|
873 |
+
return processed_results
|
874 |
|
875 |
+
return results if results else []
|
|
|
|
|
|
|
|
|
876 |
|
877 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
878 |
"""Filter out duplicated content"""
|
|
|
902 |
return
|
903 |
|
904 |
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
905 |
+
current_time = datetime.datetime.now(timezone.utc)
|
906 |
+
for k, v in data.items():
|
907 |
+
upsert_sql = SQL_TEMPLATES["upsert_text_chunk"]
|
908 |
+
_data = {
|
909 |
+
"workspace": self.db.workspace,
|
910 |
+
"id": k,
|
911 |
+
"tokens": v["tokens"],
|
912 |
+
"chunk_order_index": v["chunk_order_index"],
|
913 |
+
"full_doc_id": v["full_doc_id"],
|
914 |
+
"content": v["content"],
|
915 |
+
"file_path": v["file_path"],
|
916 |
+
"llm_cache_list": json.dumps(v.get("llm_cache_list", [])),
|
917 |
+
"create_time": current_time,
|
918 |
+
"update_time": current_time,
|
919 |
+
}
|
920 |
+
await self.db.execute(upsert_sql, _data)
|
921 |
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
922 |
for k, v in data.items():
|
923 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
|
|
928 |
}
|
929 |
await self.db.execute(upsert_sql, _data)
|
930 |
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
931 |
+
for k, v in data.items():
|
932 |
+
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
933 |
+
_data = {
|
934 |
+
"workspace": self.db.workspace,
|
935 |
+
"id": k, # Use flattened key as id
|
936 |
+
"original_prompt": v["original_prompt"],
|
937 |
+
"return_value": v["return"],
|
938 |
+
"mode": v.get("mode", "default"), # Get mode from data
|
939 |
+
"chunk_id": v.get("chunk_id"),
|
940 |
+
"cache_type": v.get(
|
941 |
+
"cache_type", "extract"
|
942 |
+
), # Get cache_type from data
|
943 |
+
}
|
944 |
|
945 |
+
await self.db.execute(upsert_sql, _data)
|
946 |
|
947 |
async def index_done_callback(self) -> None:
|
948 |
# PG handles persistence automatically
|
|
|
1348 |
else:
|
1349 |
exist_keys = []
|
1350 |
new_keys = set([s for s in keys if s not in exist_keys])
|
1351 |
+
# print(f"keys: {keys}")
|
1352 |
+
# print(f"new_keys: {new_keys}")
|
1353 |
return new_keys
|
1354 |
except Exception as e:
|
1355 |
logger.error(
|
|
|
1364 |
if result is None or result == []:
|
1365 |
return None
|
1366 |
else:
|
1367 |
+
# Parse chunks_list JSON string back to list
|
1368 |
+
chunks_list = result[0].get("chunks_list", [])
|
1369 |
+
if isinstance(chunks_list, str):
|
1370 |
+
try:
|
1371 |
+
chunks_list = json.loads(chunks_list)
|
1372 |
+
except json.JSONDecodeError:
|
1373 |
+
chunks_list = []
|
1374 |
+
|
1375 |
return dict(
|
1376 |
content=result[0]["content"],
|
1377 |
content_length=result[0]["content_length"],
|
|
|
1381 |
created_at=result[0]["created_at"],
|
1382 |
updated_at=result[0]["updated_at"],
|
1383 |
file_path=result[0]["file_path"],
|
1384 |
+
chunks_list=chunks_list,
|
1385 |
)
|
1386 |
|
1387 |
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
|
|
1396 |
|
1397 |
if not results:
|
1398 |
return []
|
1399 |
+
|
1400 |
+
processed_results = []
|
1401 |
+
for row in results:
|
1402 |
+
# Parse chunks_list JSON string back to list
|
1403 |
+
chunks_list = row.get("chunks_list", [])
|
1404 |
+
if isinstance(chunks_list, str):
|
1405 |
+
try:
|
1406 |
+
chunks_list = json.loads(chunks_list)
|
1407 |
+
except json.JSONDecodeError:
|
1408 |
+
chunks_list = []
|
1409 |
+
|
1410 |
+
processed_results.append(
|
1411 |
+
{
|
1412 |
+
"content": row["content"],
|
1413 |
+
"content_length": row["content_length"],
|
1414 |
+
"content_summary": row["content_summary"],
|
1415 |
+
"status": row["status"],
|
1416 |
+
"chunks_count": row["chunks_count"],
|
1417 |
+
"created_at": row["created_at"],
|
1418 |
+
"updated_at": row["updated_at"],
|
1419 |
+
"file_path": row["file_path"],
|
1420 |
+
"chunks_list": chunks_list,
|
1421 |
+
}
|
1422 |
+
)
|
1423 |
+
|
1424 |
+
return processed_results
|
1425 |
|
1426 |
async def get_status_counts(self) -> dict[str, int]:
|
1427 |
"""Get counts of documents in each status"""
|
|
|
1442 |
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
1443 |
params = {"workspace": self.db.workspace, "status": status.value}
|
1444 |
result = await self.db.query(sql, params, True)
|
1445 |
+
|
1446 |
+
docs_by_status = {}
|
1447 |
+
for element in result:
|
1448 |
+
# Parse chunks_list JSON string back to list
|
1449 |
+
chunks_list = element.get("chunks_list", [])
|
1450 |
+
if isinstance(chunks_list, str):
|
1451 |
+
try:
|
1452 |
+
chunks_list = json.loads(chunks_list)
|
1453 |
+
except json.JSONDecodeError:
|
1454 |
+
chunks_list = []
|
1455 |
+
|
1456 |
+
docs_by_status[element["id"]] = DocProcessingStatus(
|
1457 |
content=element["content"],
|
1458 |
content_summary=element["content_summary"],
|
1459 |
content_length=element["content_length"],
|
|
|
1462 |
updated_at=element["updated_at"],
|
1463 |
chunks_count=element["chunks_count"],
|
1464 |
file_path=element["file_path"],
|
1465 |
+
chunks_list=chunks_list,
|
1466 |
)
|
1467 |
+
|
|
|
1468 |
return docs_by_status
|
1469 |
|
1470 |
async def index_done_callback(self) -> None:
|
|
|
1528 |
logger.warning(f"Unable to parse datetime string: {dt_str}")
|
1529 |
return None
|
1530 |
|
1531 |
+
# Modified SQL to include created_at, updated_at, and chunks_list in both INSERT and UPDATE operations
|
1532 |
+
# All fields are updated from the input data in both INSERT and UPDATE cases
|
1533 |
+
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status,file_path,chunks_list,created_at,updated_at)
|
1534 |
+
values($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11)
|
1535 |
on conflict(id,workspace) do update set
|
1536 |
content = EXCLUDED.content,
|
1537 |
content_summary = EXCLUDED.content_summary,
|
|
|
1539 |
chunks_count = EXCLUDED.chunks_count,
|
1540 |
status = EXCLUDED.status,
|
1541 |
file_path = EXCLUDED.file_path,
|
1542 |
+
chunks_list = EXCLUDED.chunks_list,
|
1543 |
created_at = EXCLUDED.created_at,
|
1544 |
updated_at = EXCLUDED.updated_at"""
|
1545 |
for k, v in data.items():
|
|
|
1547 |
created_at = parse_datetime(v.get("created_at"))
|
1548 |
updated_at = parse_datetime(v.get("updated_at"))
|
1549 |
|
1550 |
+
# chunks_count and chunks_list are optional
|
1551 |
await self.db.execute(
|
1552 |
sql,
|
1553 |
{
|
|
|
1559 |
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
1560 |
"status": v["status"],
|
1561 |
"file_path": v["file_path"],
|
1562 |
+
"chunks_list": json.dumps(v.get("chunks_list", [])),
|
1563 |
"created_at": created_at, # Use the converted datetime object
|
1564 |
"updated_at": updated_at, # Use the converted datetime object
|
1565 |
},
|
|
|
2842 |
NAMESPACE_TABLE_MAP = {
|
2843 |
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
2844 |
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
2845 |
+
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_VDB_CHUNKS",
|
2846 |
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
|
2847 |
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
|
2848 |
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
|
|
|
2877 |
chunk_order_index INTEGER,
|
2878 |
tokens INTEGER,
|
2879 |
content TEXT,
|
|
|
2880 |
file_path VARCHAR(256),
|
2881 |
+
llm_cache_list JSONB NULL DEFAULT '[]'::jsonb,
|
2882 |
create_time TIMESTAMP(0) WITH TIME ZONE,
|
2883 |
update_time TIMESTAMP(0) WITH TIME ZONE,
|
2884 |
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
|
2885 |
)"""
|
2886 |
},
|
2887 |
+
"LIGHTRAG_VDB_CHUNKS": {
|
2888 |
+
"ddl": """CREATE TABLE LIGHTRAG_VDB_CHUNKS (
|
2889 |
+
id VARCHAR(255),
|
2890 |
+
workspace VARCHAR(255),
|
2891 |
+
full_doc_id VARCHAR(256),
|
2892 |
+
chunk_order_index INTEGER,
|
2893 |
+
tokens INTEGER,
|
2894 |
+
content TEXT,
|
2895 |
+
content_vector VECTOR,
|
2896 |
+
file_path VARCHAR(256),
|
2897 |
+
create_time TIMESTAMP(0) WITH TIME ZONE,
|
2898 |
+
update_time TIMESTAMP(0) WITH TIME ZONE,
|
2899 |
+
CONSTRAINT LIGHTRAG_VDB_CHUNKS_PK PRIMARY KEY (workspace, id)
|
2900 |
+
)"""
|
2901 |
+
},
|
2902 |
"LIGHTRAG_VDB_ENTITY": {
|
2903 |
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
|
2904 |
id VARCHAR(255),
|
|
|
2951 |
chunks_count int4 NULL,
|
2952 |
status varchar(64) NULL,
|
2953 |
file_path TEXT NULL,
|
2954 |
+
chunks_list JSONB NULL DEFAULT '[]'::jsonb,
|
2955 |
created_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
2956 |
updated_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
2957 |
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
|
|
|
2966 |
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
|
2967 |
""",
|
2968 |
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
2969 |
+
chunk_order_index, full_doc_id, file_path,
|
2970 |
+
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
|
2971 |
+
create_time, update_time
|
2972 |
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
|
2973 |
""",
|
2974 |
+
"get_by_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
|
2975 |
+
create_time, update_time
|
2976 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id=$2
|
2977 |
""",
|
2978 |
+
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id
|
2979 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2 AND id=$3
|
2980 |
""",
|
2981 |
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
|
2982 |
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
|
2983 |
""",
|
2984 |
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
2985 |
+
chunk_order_index, full_doc_id, file_path,
|
2986 |
+
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
|
2987 |
+
create_time, update_time
|
2988 |
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
|
2989 |
""",
|
2990 |
+
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
|
2991 |
+
create_time, update_time
|
2992 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id IN ({ids})
|
2993 |
""",
|
2994 |
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
|
2995 |
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
|
|
|
2997 |
ON CONFLICT (workspace,id) DO UPDATE
|
2998 |
SET content = $2, update_time = CURRENT_TIMESTAMP
|
2999 |
""",
|
3000 |
+
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode,chunk_id,cache_type)
|
3001 |
+
VALUES ($1, $2, $3, $4, $5, $6, $7)
|
3002 |
ON CONFLICT (workspace,mode,id) DO UPDATE
|
3003 |
SET original_prompt = EXCLUDED.original_prompt,
|
3004 |
return_value=EXCLUDED.return_value,
|
3005 |
mode=EXCLUDED.mode,
|
3006 |
chunk_id=EXCLUDED.chunk_id,
|
3007 |
+
cache_type=EXCLUDED.cache_type,
|
3008 |
update_time = CURRENT_TIMESTAMP
|
3009 |
""",
|
3010 |
+
"upsert_text_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
|
3011 |
+
chunk_order_index, full_doc_id, content, file_path, llm_cache_list,
|
3012 |
+
create_time, update_time)
|
3013 |
+
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
|
3014 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
3015 |
+
SET tokens=EXCLUDED.tokens,
|
3016 |
+
chunk_order_index=EXCLUDED.chunk_order_index,
|
3017 |
+
full_doc_id=EXCLUDED.full_doc_id,
|
3018 |
+
content = EXCLUDED.content,
|
3019 |
+
file_path=EXCLUDED.file_path,
|
3020 |
+
llm_cache_list=EXCLUDED.llm_cache_list,
|
3021 |
+
update_time = EXCLUDED.update_time
|
3022 |
+
""",
|
3023 |
+
# SQL for VectorStorage
|
3024 |
+
"upsert_chunk": """INSERT INTO LIGHTRAG_VDB_CHUNKS (workspace, id, tokens,
|
3025 |
chunk_order_index, full_doc_id, content, content_vector, file_path,
|
3026 |
create_time, update_time)
|
3027 |
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
|
|
|
3034 |
file_path=EXCLUDED.file_path,
|
3035 |
update_time = EXCLUDED.update_time
|
3036 |
""",
|
|
|
3037 |
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
|
3038 |
content_vector, chunk_ids, file_path, create_time, update_time)
|
3039 |
VALUES ($1, $2, $3, $4, $5, $6::varchar[], $7, $8, $9)
|
|
|
3060 |
"relationships": """
|
3061 |
WITH relevant_chunks AS (
|
3062 |
SELECT id as chunk_id
|
3063 |
+
FROM LIGHTRAG_VDB_CHUNKS
|
3064 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
3065 |
)
|
3066 |
SELECT source_id as src_id, target_id as tgt_id, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at
|
|
|
3077 |
"entities": """
|
3078 |
WITH relevant_chunks AS (
|
3079 |
SELECT id as chunk_id
|
3080 |
+
FROM LIGHTRAG_VDB_CHUNKS
|
3081 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
3082 |
)
|
3083 |
SELECT entity_name, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
|
|
|
3094 |
"chunks": """
|
3095 |
WITH relevant_chunks AS (
|
3096 |
SELECT id as chunk_id
|
3097 |
+
FROM LIGHTRAG_VDB_CHUNKS
|
3098 |
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
|
3099 |
)
|
3100 |
SELECT id, content, file_path, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
|
3101 |
(
|
3102 |
SELECT id, content, file_path, create_time, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
3103 |
+
FROM LIGHTRAG_VDB_CHUNKS
|
3104 |
WHERE workspace=$1
|
3105 |
AND id IN (SELECT chunk_id FROM relevant_chunks)
|
3106 |
) as chunk_distances
|
lightrag/kg/qdrant_impl.py
CHANGED
@@ -85,7 +85,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|
85 |
)
|
86 |
|
87 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
88 |
-
logger.
|
89 |
if not data:
|
90 |
return
|
91 |
|
|
|
85 |
)
|
86 |
|
87 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
88 |
+
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
89 |
if not data:
|
90 |
return
|
91 |
|
lightrag/kg/redis_impl.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import os
|
2 |
-
from typing import Any, final
|
3 |
from dataclasses import dataclass
|
4 |
import pipmaster as pm
|
5 |
import configparser
|
6 |
from contextlib import asynccontextmanager
|
|
|
7 |
|
8 |
if not pm.is_installed("redis"):
|
9 |
pm.install("redis")
|
@@ -13,7 +14,12 @@ from redis.asyncio import Redis, ConnectionPool # type: ignore
|
|
13 |
from redis.exceptions import RedisError, ConnectionError # type: ignore
|
14 |
from lightrag.utils import logger
|
15 |
|
16 |
-
from lightrag.base import
|
|
|
|
|
|
|
|
|
|
|
17 |
import json
|
18 |
|
19 |
|
@@ -26,6 +32,41 @@ SOCKET_TIMEOUT = 5.0
|
|
26 |
SOCKET_CONNECT_TIMEOUT = 3.0
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@final
|
30 |
@dataclass
|
31 |
class RedisKVStorage(BaseKVStorage):
|
@@ -33,19 +74,28 @@ class RedisKVStorage(BaseKVStorage):
|
|
33 |
redis_url = os.environ.get(
|
34 |
"REDIS_URI", config.get("redis", "uri", fallback="redis://localhost:6379")
|
35 |
)
|
36 |
-
#
|
37 |
-
self._pool =
|
38 |
-
redis_url,
|
39 |
-
max_connections=MAX_CONNECTIONS,
|
40 |
-
decode_responses=True,
|
41 |
-
socket_timeout=SOCKET_TIMEOUT,
|
42 |
-
socket_connect_timeout=SOCKET_CONNECT_TIMEOUT,
|
43 |
-
)
|
44 |
self._redis = Redis(connection_pool=self._pool)
|
45 |
logger.info(
|
46 |
-
f"Initialized Redis
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@asynccontextmanager
|
50 |
async def _get_redis_connection(self):
|
51 |
"""Safe context manager for Redis operations."""
|
@@ -82,7 +132,13 @@ class RedisKVStorage(BaseKVStorage):
|
|
82 |
async with self._get_redis_connection() as redis:
|
83 |
try:
|
84 |
data = await redis.get(f"{self.namespace}:{id}")
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except json.JSONDecodeError as e:
|
87 |
logger.error(f"JSON decode error for id {id}: {e}")
|
88 |
return None
|
@@ -94,35 +150,113 @@ class RedisKVStorage(BaseKVStorage):
|
|
94 |
for id in ids:
|
95 |
pipe.get(f"{self.namespace}:{id}")
|
96 |
results = await pipe.execute()
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except json.JSONDecodeError as e:
|
99 |
logger.error(f"JSON decode error in batch get: {e}")
|
100 |
return [None] * len(ids)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
103 |
async with self._get_redis_connection() as redis:
|
104 |
pipe = redis.pipeline()
|
105 |
-
|
|
|
106 |
pipe.exists(f"{self.namespace}:{key}")
|
107 |
results = await pipe.execute()
|
108 |
|
109 |
-
existing_ids = {
|
110 |
return set(keys) - existing_ids
|
111 |
|
112 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
113 |
if not data:
|
114 |
return
|
115 |
|
116 |
-
|
|
|
|
|
|
|
117 |
async with self._get_redis_connection() as redis:
|
118 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
pipe = redis.pipeline()
|
120 |
for k, v in data.items():
|
121 |
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
122 |
await pipe.execute()
|
123 |
|
124 |
-
for k in data:
|
125 |
-
data[k]["_id"] = k
|
126 |
except json.JSONEncodeError as e:
|
127 |
logger.error(f"JSON encode error during upsert: {e}")
|
128 |
raise
|
@@ -148,13 +282,13 @@ class RedisKVStorage(BaseKVStorage):
|
|
148 |
)
|
149 |
|
150 |
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
151 |
-
"""Delete specific records from storage by
|
152 |
|
153 |
Importance notes for Redis storage:
|
154 |
1. This will immediately delete the specified cache modes from Redis
|
155 |
|
156 |
Args:
|
157 |
-
modes (list[str]): List of cache
|
158 |
|
159 |
Returns:
|
160 |
True: if the cache drop successfully
|
@@ -164,9 +298,47 @@ class RedisKVStorage(BaseKVStorage):
|
|
164 |
return False
|
165 |
|
166 |
try:
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
return True
|
169 |
-
except Exception:
|
|
|
170 |
return False
|
171 |
|
172 |
async def drop(self) -> dict[str, str]:
|
@@ -177,24 +349,370 @@ class RedisKVStorage(BaseKVStorage):
|
|
177 |
"""
|
178 |
async with self._get_redis_connection() as redis:
|
179 |
try:
|
180 |
-
keys
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
except Exception as e:
|
199 |
logger.error(f"Error dropping keys from {self.namespace}: {e}")
|
200 |
return {"status": "error", "message": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import Any, final, Union
|
3 |
from dataclasses import dataclass
|
4 |
import pipmaster as pm
|
5 |
import configparser
|
6 |
from contextlib import asynccontextmanager
|
7 |
+
import threading
|
8 |
|
9 |
if not pm.is_installed("redis"):
|
10 |
pm.install("redis")
|
|
|
14 |
from redis.exceptions import RedisError, ConnectionError # type: ignore
|
15 |
from lightrag.utils import logger
|
16 |
|
17 |
+
from lightrag.base import (
|
18 |
+
BaseKVStorage,
|
19 |
+
DocStatusStorage,
|
20 |
+
DocStatus,
|
21 |
+
DocProcessingStatus,
|
22 |
+
)
|
23 |
import json
|
24 |
|
25 |
|
|
|
32 |
SOCKET_CONNECT_TIMEOUT = 3.0
|
33 |
|
34 |
|
35 |
+
class RedisConnectionManager:
|
36 |
+
"""Shared Redis connection pool manager to avoid creating multiple pools for the same Redis URI"""
|
37 |
+
|
38 |
+
_pools = {}
|
39 |
+
_lock = threading.Lock()
|
40 |
+
|
41 |
+
@classmethod
|
42 |
+
def get_pool(cls, redis_url: str) -> ConnectionPool:
|
43 |
+
"""Get or create a connection pool for the given Redis URL"""
|
44 |
+
if redis_url not in cls._pools:
|
45 |
+
with cls._lock:
|
46 |
+
if redis_url not in cls._pools:
|
47 |
+
cls._pools[redis_url] = ConnectionPool.from_url(
|
48 |
+
redis_url,
|
49 |
+
max_connections=MAX_CONNECTIONS,
|
50 |
+
decode_responses=True,
|
51 |
+
socket_timeout=SOCKET_TIMEOUT,
|
52 |
+
socket_connect_timeout=SOCKET_CONNECT_TIMEOUT,
|
53 |
+
)
|
54 |
+
logger.info(f"Created shared Redis connection pool for {redis_url}")
|
55 |
+
return cls._pools[redis_url]
|
56 |
+
|
57 |
+
@classmethod
|
58 |
+
def close_all_pools(cls):
|
59 |
+
"""Close all connection pools (for cleanup)"""
|
60 |
+
with cls._lock:
|
61 |
+
for url, pool in cls._pools.items():
|
62 |
+
try:
|
63 |
+
pool.disconnect()
|
64 |
+
logger.info(f"Closed Redis connection pool for {url}")
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error closing Redis pool for {url}: {e}")
|
67 |
+
cls._pools.clear()
|
68 |
+
|
69 |
+
|
70 |
@final
|
71 |
@dataclass
|
72 |
class RedisKVStorage(BaseKVStorage):
|
|
|
74 |
redis_url = os.environ.get(
|
75 |
"REDIS_URI", config.get("redis", "uri", fallback="redis://localhost:6379")
|
76 |
)
|
77 |
+
# Use shared connection pool
|
78 |
+
self._pool = RedisConnectionManager.get_pool(redis_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
self._redis = Redis(connection_pool=self._pool)
|
80 |
logger.info(
|
81 |
+
f"Initialized Redis KV storage for {self.namespace} using shared connection pool"
|
82 |
)
|
83 |
|
84 |
+
async def initialize(self):
|
85 |
+
"""Initialize Redis connection and migrate legacy cache structure if needed"""
|
86 |
+
# Test connection
|
87 |
+
try:
|
88 |
+
async with self._get_redis_connection() as redis:
|
89 |
+
await redis.ping()
|
90 |
+
logger.info(f"Connected to Redis for namespace {self.namespace}")
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Failed to connect to Redis: {e}")
|
93 |
+
raise
|
94 |
+
|
95 |
+
# Migrate legacy cache structure if this is a cache namespace
|
96 |
+
if self.namespace.endswith("_cache"):
|
97 |
+
await self._migrate_legacy_cache_structure()
|
98 |
+
|
99 |
@asynccontextmanager
|
100 |
async def _get_redis_connection(self):
|
101 |
"""Safe context manager for Redis operations."""
|
|
|
132 |
async with self._get_redis_connection() as redis:
|
133 |
try:
|
134 |
data = await redis.get(f"{self.namespace}:{id}")
|
135 |
+
if data:
|
136 |
+
result = json.loads(data)
|
137 |
+
# Ensure time fields are present, provide default values for old data
|
138 |
+
result.setdefault("create_time", 0)
|
139 |
+
result.setdefault("update_time", 0)
|
140 |
+
return result
|
141 |
+
return None
|
142 |
except json.JSONDecodeError as e:
|
143 |
logger.error(f"JSON decode error for id {id}: {e}")
|
144 |
return None
|
|
|
150 |
for id in ids:
|
151 |
pipe.get(f"{self.namespace}:{id}")
|
152 |
results = await pipe.execute()
|
153 |
+
|
154 |
+
processed_results = []
|
155 |
+
for result in results:
|
156 |
+
if result:
|
157 |
+
data = json.loads(result)
|
158 |
+
# Ensure time fields are present for all documents
|
159 |
+
data.setdefault("create_time", 0)
|
160 |
+
data.setdefault("update_time", 0)
|
161 |
+
processed_results.append(data)
|
162 |
+
else:
|
163 |
+
processed_results.append(None)
|
164 |
+
|
165 |
+
return processed_results
|
166 |
except json.JSONDecodeError as e:
|
167 |
logger.error(f"JSON decode error in batch get: {e}")
|
168 |
return [None] * len(ids)
|
169 |
|
170 |
+
async def get_all(self) -> dict[str, Any]:
|
171 |
+
"""Get all data from storage
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
Dictionary containing all stored data
|
175 |
+
"""
|
176 |
+
async with self._get_redis_connection() as redis:
|
177 |
+
try:
|
178 |
+
# Get all keys for this namespace
|
179 |
+
keys = await redis.keys(f"{self.namespace}:*")
|
180 |
+
|
181 |
+
if not keys:
|
182 |
+
return {}
|
183 |
+
|
184 |
+
# Get all values in batch
|
185 |
+
pipe = redis.pipeline()
|
186 |
+
for key in keys:
|
187 |
+
pipe.get(key)
|
188 |
+
values = await pipe.execute()
|
189 |
+
|
190 |
+
# Build result dictionary
|
191 |
+
result = {}
|
192 |
+
for key, value in zip(keys, values):
|
193 |
+
if value:
|
194 |
+
# Extract the ID part (after namespace:)
|
195 |
+
key_id = key.split(":", 1)[1]
|
196 |
+
try:
|
197 |
+
data = json.loads(value)
|
198 |
+
# Ensure time fields are present for all documents
|
199 |
+
data.setdefault("create_time", 0)
|
200 |
+
data.setdefault("update_time", 0)
|
201 |
+
result[key_id] = data
|
202 |
+
except json.JSONDecodeError as e:
|
203 |
+
logger.error(f"JSON decode error for key {key}: {e}")
|
204 |
+
continue
|
205 |
+
|
206 |
+
return result
|
207 |
+
except Exception as e:
|
208 |
+
logger.error(f"Error getting all data from Redis: {e}")
|
209 |
+
return {}
|
210 |
+
|
211 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
212 |
async with self._get_redis_connection() as redis:
|
213 |
pipe = redis.pipeline()
|
214 |
+
keys_list = list(keys) # Convert set to list for indexing
|
215 |
+
for key in keys_list:
|
216 |
pipe.exists(f"{self.namespace}:{key}")
|
217 |
results = await pipe.execute()
|
218 |
|
219 |
+
existing_ids = {keys_list[i] for i, exists in enumerate(results) if exists}
|
220 |
return set(keys) - existing_ids
|
221 |
|
222 |
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
223 |
if not data:
|
224 |
return
|
225 |
|
226 |
+
import time
|
227 |
+
|
228 |
+
current_time = int(time.time()) # Get current Unix timestamp
|
229 |
+
|
230 |
async with self._get_redis_connection() as redis:
|
231 |
try:
|
232 |
+
# Check which keys already exist to determine create vs update
|
233 |
+
pipe = redis.pipeline()
|
234 |
+
for k in data.keys():
|
235 |
+
pipe.exists(f"{self.namespace}:{k}")
|
236 |
+
exists_results = await pipe.execute()
|
237 |
+
|
238 |
+
# Add timestamps to data
|
239 |
+
for i, (k, v) in enumerate(data.items()):
|
240 |
+
# For text_chunks namespace, ensure llm_cache_list field exists
|
241 |
+
if "text_chunks" in self.namespace:
|
242 |
+
if "llm_cache_list" not in v:
|
243 |
+
v["llm_cache_list"] = []
|
244 |
+
|
245 |
+
# Add timestamps based on whether key exists
|
246 |
+
if exists_results[i]: # Key exists, only update update_time
|
247 |
+
v["update_time"] = current_time
|
248 |
+
else: # New key, set both create_time and update_time
|
249 |
+
v["create_time"] = current_time
|
250 |
+
v["update_time"] = current_time
|
251 |
+
|
252 |
+
v["_id"] = k
|
253 |
+
|
254 |
+
# Store the data
|
255 |
pipe = redis.pipeline()
|
256 |
for k, v in data.items():
|
257 |
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
258 |
await pipe.execute()
|
259 |
|
|
|
|
|
260 |
except json.JSONEncodeError as e:
|
261 |
logger.error(f"JSON encode error during upsert: {e}")
|
262 |
raise
|
|
|
282 |
)
|
283 |
|
284 |
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
285 |
+
"""Delete specific records from storage by cache mode
|
286 |
|
287 |
Importance notes for Redis storage:
|
288 |
1. This will immediately delete the specified cache modes from Redis
|
289 |
|
290 |
Args:
|
291 |
+
modes (list[str]): List of cache modes to be dropped from storage
|
292 |
|
293 |
Returns:
|
294 |
True: if the cache drop successfully
|
|
|
298 |
return False
|
299 |
|
300 |
try:
|
301 |
+
async with self._get_redis_connection() as redis:
|
302 |
+
keys_to_delete = []
|
303 |
+
|
304 |
+
# Find matching keys for each mode using SCAN
|
305 |
+
for mode in modes:
|
306 |
+
# Use correct pattern to match flattened cache key format {namespace}:{mode}:{cache_type}:{hash}
|
307 |
+
pattern = f"{self.namespace}:{mode}:*"
|
308 |
+
cursor = 0
|
309 |
+
mode_keys = []
|
310 |
+
|
311 |
+
while True:
|
312 |
+
cursor, keys = await redis.scan(
|
313 |
+
cursor, match=pattern, count=1000
|
314 |
+
)
|
315 |
+
if keys:
|
316 |
+
mode_keys.extend(keys)
|
317 |
+
|
318 |
+
if cursor == 0:
|
319 |
+
break
|
320 |
+
|
321 |
+
keys_to_delete.extend(mode_keys)
|
322 |
+
logger.info(
|
323 |
+
f"Found {len(mode_keys)} keys for mode '{mode}' with pattern '{pattern}'"
|
324 |
+
)
|
325 |
+
|
326 |
+
if keys_to_delete:
|
327 |
+
# Batch delete
|
328 |
+
pipe = redis.pipeline()
|
329 |
+
for key in keys_to_delete:
|
330 |
+
pipe.delete(key)
|
331 |
+
results = await pipe.execute()
|
332 |
+
deleted_count = sum(results)
|
333 |
+
logger.info(
|
334 |
+
f"Dropped {deleted_count} cache entries for modes: {modes}"
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
logger.warning(f"No cache entries found for modes: {modes}")
|
338 |
+
|
339 |
return True
|
340 |
+
except Exception as e:
|
341 |
+
logger.error(f"Error dropping cache by modes in Redis: {e}")
|
342 |
return False
|
343 |
|
344 |
async def drop(self) -> dict[str, str]:
|
|
|
349 |
"""
|
350 |
async with self._get_redis_connection() as redis:
|
351 |
try:
|
352 |
+
# Use SCAN to find all keys with the namespace prefix
|
353 |
+
pattern = f"{self.namespace}:*"
|
354 |
+
cursor = 0
|
355 |
+
deleted_count = 0
|
356 |
+
|
357 |
+
while True:
|
358 |
+
cursor, keys = await redis.scan(cursor, match=pattern, count=1000)
|
359 |
+
if keys:
|
360 |
+
# Delete keys in batches
|
361 |
+
pipe = redis.pipeline()
|
362 |
+
for key in keys:
|
363 |
+
pipe.delete(key)
|
364 |
+
results = await pipe.execute()
|
365 |
+
deleted_count += sum(results)
|
366 |
+
|
367 |
+
if cursor == 0:
|
368 |
+
break
|
369 |
+
|
370 |
+
logger.info(f"Dropped {deleted_count} keys from {self.namespace}")
|
371 |
+
return {
|
372 |
+
"status": "success",
|
373 |
+
"message": f"{deleted_count} keys dropped",
|
374 |
+
}
|
375 |
|
376 |
except Exception as e:
|
377 |
logger.error(f"Error dropping keys from {self.namespace}: {e}")
|
378 |
return {"status": "error", "message": str(e)}
|
379 |
+
|
380 |
+
async def _migrate_legacy_cache_structure(self):
|
381 |
+
"""Migrate legacy nested cache structure to flattened structure for Redis
|
382 |
+
|
383 |
+
Redis already stores data in a flattened way, but we need to check for
|
384 |
+
legacy keys that might contain nested JSON structures and migrate them.
|
385 |
+
|
386 |
+
Early exit if any flattened key is found (indicating migration already done).
|
387 |
+
"""
|
388 |
+
from lightrag.utils import generate_cache_key
|
389 |
+
|
390 |
+
async with self._get_redis_connection() as redis:
|
391 |
+
# Get all keys for this namespace
|
392 |
+
keys = await redis.keys(f"{self.namespace}:*")
|
393 |
+
|
394 |
+
if not keys:
|
395 |
+
return
|
396 |
+
|
397 |
+
# Check if we have any flattened keys already - if so, skip migration
|
398 |
+
has_flattened_keys = False
|
399 |
+
keys_to_migrate = []
|
400 |
+
|
401 |
+
for key in keys:
|
402 |
+
# Extract the ID part (after namespace:)
|
403 |
+
key_id = key.split(":", 1)[1]
|
404 |
+
|
405 |
+
# Check if already in flattened format (contains exactly 2 colons for mode:cache_type:hash)
|
406 |
+
if ":" in key_id and len(key_id.split(":")) == 3:
|
407 |
+
has_flattened_keys = True
|
408 |
+
break # Early exit - migration already done
|
409 |
+
|
410 |
+
# Get the data to check if it's a legacy nested structure
|
411 |
+
data = await redis.get(key)
|
412 |
+
if data:
|
413 |
+
try:
|
414 |
+
parsed_data = json.loads(data)
|
415 |
+
# Check if this looks like a legacy cache mode with nested structure
|
416 |
+
if isinstance(parsed_data, dict) and all(
|
417 |
+
isinstance(v, dict) and "return" in v
|
418 |
+
for v in parsed_data.values()
|
419 |
+
):
|
420 |
+
keys_to_migrate.append((key, key_id, parsed_data))
|
421 |
+
except json.JSONDecodeError:
|
422 |
+
continue
|
423 |
+
|
424 |
+
# If we found any flattened keys, assume migration is already done
|
425 |
+
if has_flattened_keys:
|
426 |
+
logger.debug(
|
427 |
+
f"Found flattened cache keys in {self.namespace}, skipping migration"
|
428 |
+
)
|
429 |
+
return
|
430 |
+
|
431 |
+
if not keys_to_migrate:
|
432 |
+
return
|
433 |
+
|
434 |
+
# Perform migration
|
435 |
+
pipe = redis.pipeline()
|
436 |
+
migration_count = 0
|
437 |
+
|
438 |
+
for old_key, mode, nested_data in keys_to_migrate:
|
439 |
+
# Delete the old key
|
440 |
+
pipe.delete(old_key)
|
441 |
+
|
442 |
+
# Create new flattened keys
|
443 |
+
for cache_hash, cache_entry in nested_data.items():
|
444 |
+
cache_type = cache_entry.get("cache_type", "extract")
|
445 |
+
flattened_key = generate_cache_key(mode, cache_type, cache_hash)
|
446 |
+
full_key = f"{self.namespace}:{flattened_key}"
|
447 |
+
pipe.set(full_key, json.dumps(cache_entry))
|
448 |
+
migration_count += 1
|
449 |
+
|
450 |
+
await pipe.execute()
|
451 |
+
|
452 |
+
if migration_count > 0:
|
453 |
+
logger.info(
|
454 |
+
f"Migrated {migration_count} legacy cache entries to flattened structure in Redis"
|
455 |
+
)
|
456 |
+
|
457 |
+
|
458 |
+
@final
|
459 |
+
@dataclass
|
460 |
+
class RedisDocStatusStorage(DocStatusStorage):
|
461 |
+
"""Redis implementation of document status storage"""
|
462 |
+
|
463 |
+
def __post_init__(self):
|
464 |
+
redis_url = os.environ.get(
|
465 |
+
"REDIS_URI", config.get("redis", "uri", fallback="redis://localhost:6379")
|
466 |
+
)
|
467 |
+
# Use shared connection pool
|
468 |
+
self._pool = RedisConnectionManager.get_pool(redis_url)
|
469 |
+
self._redis = Redis(connection_pool=self._pool)
|
470 |
+
logger.info(
|
471 |
+
f"Initialized Redis doc status storage for {self.namespace} using shared connection pool"
|
472 |
+
)
|
473 |
+
|
474 |
+
async def initialize(self):
|
475 |
+
"""Initialize Redis connection"""
|
476 |
+
try:
|
477 |
+
async with self._get_redis_connection() as redis:
|
478 |
+
await redis.ping()
|
479 |
+
logger.info(
|
480 |
+
f"Connected to Redis for doc status namespace {self.namespace}"
|
481 |
+
)
|
482 |
+
except Exception as e:
|
483 |
+
logger.error(f"Failed to connect to Redis for doc status: {e}")
|
484 |
+
raise
|
485 |
+
|
486 |
+
@asynccontextmanager
|
487 |
+
async def _get_redis_connection(self):
|
488 |
+
"""Safe context manager for Redis operations."""
|
489 |
+
try:
|
490 |
+
yield self._redis
|
491 |
+
except ConnectionError as e:
|
492 |
+
logger.error(f"Redis connection error in doc status {self.namespace}: {e}")
|
493 |
+
raise
|
494 |
+
except RedisError as e:
|
495 |
+
logger.error(f"Redis operation error in doc status {self.namespace}: {e}")
|
496 |
+
raise
|
497 |
+
except Exception as e:
|
498 |
+
logger.error(
|
499 |
+
f"Unexpected error in Redis doc status operation for {self.namespace}: {e}"
|
500 |
+
)
|
501 |
+
raise
|
502 |
+
|
503 |
+
async def close(self):
|
504 |
+
"""Close the Redis connection."""
|
505 |
+
if hasattr(self, "_redis") and self._redis:
|
506 |
+
await self._redis.close()
|
507 |
+
logger.debug(f"Closed Redis connection for doc status {self.namespace}")
|
508 |
+
|
509 |
+
async def __aenter__(self):
|
510 |
+
"""Support for async context manager."""
|
511 |
+
return self
|
512 |
+
|
513 |
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
514 |
+
"""Ensure Redis resources are cleaned up when exiting context."""
|
515 |
+
await self.close()
|
516 |
+
|
517 |
+
async def filter_keys(self, keys: set[str]) -> set[str]:
|
518 |
+
"""Return keys that should be processed (not in storage or not successfully processed)"""
|
519 |
+
async with self._get_redis_connection() as redis:
|
520 |
+
pipe = redis.pipeline()
|
521 |
+
keys_list = list(keys)
|
522 |
+
for key in keys_list:
|
523 |
+
pipe.exists(f"{self.namespace}:{key}")
|
524 |
+
results = await pipe.execute()
|
525 |
+
|
526 |
+
existing_ids = {keys_list[i] for i, exists in enumerate(results) if exists}
|
527 |
+
return set(keys) - existing_ids
|
528 |
+
|
529 |
+
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
530 |
+
result: list[dict[str, Any]] = []
|
531 |
+
async with self._get_redis_connection() as redis:
|
532 |
+
try:
|
533 |
+
pipe = redis.pipeline()
|
534 |
+
for id in ids:
|
535 |
+
pipe.get(f"{self.namespace}:{id}")
|
536 |
+
results = await pipe.execute()
|
537 |
+
|
538 |
+
for result_data in results:
|
539 |
+
if result_data:
|
540 |
+
try:
|
541 |
+
result.append(json.loads(result_data))
|
542 |
+
except json.JSONDecodeError as e:
|
543 |
+
logger.error(f"JSON decode error in get_by_ids: {e}")
|
544 |
+
continue
|
545 |
+
except Exception as e:
|
546 |
+
logger.error(f"Error in get_by_ids: {e}")
|
547 |
+
return result
|
548 |
+
|
549 |
+
async def get_status_counts(self) -> dict[str, int]:
|
550 |
+
"""Get counts of documents in each status"""
|
551 |
+
counts = {status.value: 0 for status in DocStatus}
|
552 |
+
async with self._get_redis_connection() as redis:
|
553 |
+
try:
|
554 |
+
# Use SCAN to iterate through all keys in the namespace
|
555 |
+
cursor = 0
|
556 |
+
while True:
|
557 |
+
cursor, keys = await redis.scan(
|
558 |
+
cursor, match=f"{self.namespace}:*", count=1000
|
559 |
+
)
|
560 |
+
if keys:
|
561 |
+
# Get all values in batch
|
562 |
+
pipe = redis.pipeline()
|
563 |
+
for key in keys:
|
564 |
+
pipe.get(key)
|
565 |
+
values = await pipe.execute()
|
566 |
+
|
567 |
+
# Count statuses
|
568 |
+
for value in values:
|
569 |
+
if value:
|
570 |
+
try:
|
571 |
+
doc_data = json.loads(value)
|
572 |
+
status = doc_data.get("status")
|
573 |
+
if status in counts:
|
574 |
+
counts[status] += 1
|
575 |
+
except json.JSONDecodeError:
|
576 |
+
continue
|
577 |
+
|
578 |
+
if cursor == 0:
|
579 |
+
break
|
580 |
+
except Exception as e:
|
581 |
+
logger.error(f"Error getting status counts: {e}")
|
582 |
+
|
583 |
+
return counts
|
584 |
+
|
585 |
+
async def get_docs_by_status(
|
586 |
+
self, status: DocStatus
|
587 |
+
) -> dict[str, DocProcessingStatus]:
|
588 |
+
"""Get all documents with a specific status"""
|
589 |
+
result = {}
|
590 |
+
async with self._get_redis_connection() as redis:
|
591 |
+
try:
|
592 |
+
# Use SCAN to iterate through all keys in the namespace
|
593 |
+
cursor = 0
|
594 |
+
while True:
|
595 |
+
cursor, keys = await redis.scan(
|
596 |
+
cursor, match=f"{self.namespace}:*", count=1000
|
597 |
+
)
|
598 |
+
if keys:
|
599 |
+
# Get all values in batch
|
600 |
+
pipe = redis.pipeline()
|
601 |
+
for key in keys:
|
602 |
+
pipe.get(key)
|
603 |
+
values = await pipe.execute()
|
604 |
+
|
605 |
+
# Filter by status and create DocProcessingStatus objects
|
606 |
+
for key, value in zip(keys, values):
|
607 |
+
if value:
|
608 |
+
try:
|
609 |
+
doc_data = json.loads(value)
|
610 |
+
if doc_data.get("status") == status.value:
|
611 |
+
# Extract document ID from key
|
612 |
+
doc_id = key.split(":", 1)[1]
|
613 |
+
|
614 |
+
# Make a copy of the data to avoid modifying the original
|
615 |
+
data = doc_data.copy()
|
616 |
+
# If content is missing, use content_summary as content
|
617 |
+
if (
|
618 |
+
"content" not in data
|
619 |
+
and "content_summary" in data
|
620 |
+
):
|
621 |
+
data["content"] = data["content_summary"]
|
622 |
+
# If file_path is not in data, use document id as file path
|
623 |
+
if "file_path" not in data:
|
624 |
+
data["file_path"] = "no-file-path"
|
625 |
+
|
626 |
+
result[doc_id] = DocProcessingStatus(**data)
|
627 |
+
except (json.JSONDecodeError, KeyError) as e:
|
628 |
+
logger.error(
|
629 |
+
f"Error processing document {key}: {e}"
|
630 |
+
)
|
631 |
+
continue
|
632 |
+
|
633 |
+
if cursor == 0:
|
634 |
+
break
|
635 |
+
except Exception as e:
|
636 |
+
logger.error(f"Error getting docs by status: {e}")
|
637 |
+
|
638 |
+
return result
|
639 |
+
|
640 |
+
async def index_done_callback(self) -> None:
|
641 |
+
"""Redis handles persistence automatically"""
|
642 |
+
pass
|
643 |
+
|
644 |
+
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
645 |
+
"""Insert or update document status data"""
|
646 |
+
if not data:
|
647 |
+
return
|
648 |
+
|
649 |
+
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
650 |
+
async with self._get_redis_connection() as redis:
|
651 |
+
try:
|
652 |
+
# Ensure chunks_list field exists for new documents
|
653 |
+
for doc_id, doc_data in data.items():
|
654 |
+
if "chunks_list" not in doc_data:
|
655 |
+
doc_data["chunks_list"] = []
|
656 |
+
|
657 |
+
pipe = redis.pipeline()
|
658 |
+
for k, v in data.items():
|
659 |
+
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
660 |
+
await pipe.execute()
|
661 |
+
except json.JSONEncodeError as e:
|
662 |
+
logger.error(f"JSON encode error during upsert: {e}")
|
663 |
+
raise
|
664 |
+
|
665 |
+
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
666 |
+
async with self._get_redis_connection() as redis:
|
667 |
+
try:
|
668 |
+
data = await redis.get(f"{self.namespace}:{id}")
|
669 |
+
return json.loads(data) if data else None
|
670 |
+
except json.JSONDecodeError as e:
|
671 |
+
logger.error(f"JSON decode error for id {id}: {e}")
|
672 |
+
return None
|
673 |
+
|
674 |
+
async def delete(self, doc_ids: list[str]) -> None:
|
675 |
+
"""Delete specific records from storage by their IDs"""
|
676 |
+
if not doc_ids:
|
677 |
+
return
|
678 |
+
|
679 |
+
async with self._get_redis_connection() as redis:
|
680 |
+
pipe = redis.pipeline()
|
681 |
+
for doc_id in doc_ids:
|
682 |
+
pipe.delete(f"{self.namespace}:{doc_id}")
|
683 |
+
|
684 |
+
results = await pipe.execute()
|
685 |
+
deleted_count = sum(results)
|
686 |
+
logger.info(
|
687 |
+
f"Deleted {deleted_count} of {len(doc_ids)} doc status entries from {self.namespace}"
|
688 |
+
)
|
689 |
+
|
690 |
+
async def drop(self) -> dict[str, str]:
|
691 |
+
"""Drop all document status data from storage and clean up resources"""
|
692 |
+
try:
|
693 |
+
async with self._get_redis_connection() as redis:
|
694 |
+
# Use SCAN to find all keys with the namespace prefix
|
695 |
+
pattern = f"{self.namespace}:*"
|
696 |
+
cursor = 0
|
697 |
+
deleted_count = 0
|
698 |
+
|
699 |
+
while True:
|
700 |
+
cursor, keys = await redis.scan(cursor, match=pattern, count=1000)
|
701 |
+
if keys:
|
702 |
+
# Delete keys in batches
|
703 |
+
pipe = redis.pipeline()
|
704 |
+
for key in keys:
|
705 |
+
pipe.delete(key)
|
706 |
+
results = await pipe.execute()
|
707 |
+
deleted_count += sum(results)
|
708 |
+
|
709 |
+
if cursor == 0:
|
710 |
+
break
|
711 |
+
|
712 |
+
logger.info(
|
713 |
+
f"Dropped {deleted_count} doc status keys from {self.namespace}"
|
714 |
+
)
|
715 |
+
return {"status": "success", "message": "data dropped"}
|
716 |
+
except Exception as e:
|
717 |
+
logger.error(f"Error dropping doc status {self.namespace}: {e}")
|
718 |
+
return {"status": "error", "message": str(e)}
|
lightrag/lightrag.py
CHANGED
@@ -22,6 +22,7 @@ from typing import (
|
|
22 |
Dict,
|
23 |
)
|
24 |
from lightrag.constants import (
|
|
|
25 |
DEFAULT_MAX_TOKEN_SUMMARY,
|
26 |
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
|
27 |
)
|
@@ -124,7 +125,9 @@ class LightRAG:
|
|
124 |
# Entity extraction
|
125 |
# ---
|
126 |
|
127 |
-
entity_extract_max_gleaning: int = field(
|
|
|
|
|
128 |
"""Maximum number of entity extraction attempts for ambiguous content."""
|
129 |
|
130 |
summary_to_max_tokens: int = field(
|
@@ -346,6 +349,7 @@ class LightRAG:
|
|
346 |
|
347 |
# Fix global_config now
|
348 |
global_config = asdict(self)
|
|
|
349 |
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
350 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
351 |
|
@@ -394,13 +398,13 @@ class LightRAG:
|
|
394 |
embedding_func=self.embedding_func,
|
395 |
)
|
396 |
|
397 |
-
# TODO: deprecating, text_chunks is redundant with chunks_vdb
|
398 |
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
399 |
namespace=make_namespace(
|
400 |
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
|
401 |
),
|
402 |
embedding_func=self.embedding_func,
|
403 |
)
|
|
|
404 |
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
|
405 |
namespace=make_namespace(
|
406 |
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION
|
@@ -949,6 +953,7 @@ class LightRAG:
|
|
949 |
**dp,
|
950 |
"full_doc_id": doc_id,
|
951 |
"file_path": file_path, # Add file path to each chunk
|
|
|
952 |
}
|
953 |
for dp in self.chunking_func(
|
954 |
self.tokenizer,
|
@@ -960,14 +965,17 @@ class LightRAG:
|
|
960 |
)
|
961 |
}
|
962 |
|
963 |
-
# Process document
|
964 |
-
#
|
965 |
doc_status_task = asyncio.create_task(
|
966 |
self.doc_status.upsert(
|
967 |
{
|
968 |
doc_id: {
|
969 |
"status": DocStatus.PROCESSING,
|
970 |
"chunks_count": len(chunks),
|
|
|
|
|
|
|
971 |
"content": status_doc.content,
|
972 |
"content_summary": status_doc.content_summary,
|
973 |
"content_length": status_doc.content_length,
|
@@ -983,11 +991,6 @@ class LightRAG:
|
|
983 |
chunks_vdb_task = asyncio.create_task(
|
984 |
self.chunks_vdb.upsert(chunks)
|
985 |
)
|
986 |
-
entity_relation_task = asyncio.create_task(
|
987 |
-
self._process_entity_relation_graph(
|
988 |
-
chunks, pipeline_status, pipeline_status_lock
|
989 |
-
)
|
990 |
-
)
|
991 |
full_docs_task = asyncio.create_task(
|
992 |
self.full_docs.upsert(
|
993 |
{doc_id: {"content": status_doc.content}}
|
@@ -996,14 +999,26 @@ class LightRAG:
|
|
996 |
text_chunks_task = asyncio.create_task(
|
997 |
self.text_chunks.upsert(chunks)
|
998 |
)
|
999 |
-
|
|
|
|
|
1000 |
doc_status_task,
|
1001 |
chunks_vdb_task,
|
1002 |
-
entity_relation_task,
|
1003 |
full_docs_task,
|
1004 |
text_chunks_task,
|
1005 |
]
|
1006 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1007 |
file_extraction_stage_ok = True
|
1008 |
|
1009 |
except Exception as e:
|
@@ -1018,14 +1033,14 @@ class LightRAG:
|
|
1018 |
)
|
1019 |
pipeline_status["history_messages"].append(error_msg)
|
1020 |
|
1021 |
-
# Cancel
|
1022 |
-
|
1023 |
-
|
1024 |
-
entity_relation_task
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
1028 |
-
if not task.done():
|
1029 |
task.cancel()
|
1030 |
|
1031 |
# Persistent llm cache
|
@@ -1075,6 +1090,9 @@ class LightRAG:
|
|
1075 |
doc_id: {
|
1076 |
"status": DocStatus.PROCESSED,
|
1077 |
"chunks_count": len(chunks),
|
|
|
|
|
|
|
1078 |
"content": status_doc.content,
|
1079 |
"content_summary": status_doc.content_summary,
|
1080 |
"content_length": status_doc.content_length,
|
@@ -1193,6 +1211,7 @@ class LightRAG:
|
|
1193 |
pipeline_status=pipeline_status,
|
1194 |
pipeline_status_lock=pipeline_status_lock,
|
1195 |
llm_response_cache=self.llm_response_cache,
|
|
|
1196 |
)
|
1197 |
return chunk_results
|
1198 |
except Exception as e:
|
@@ -1723,28 +1742,10 @@ class LightRAG:
|
|
1723 |
file_path="",
|
1724 |
)
|
1725 |
|
1726 |
-
# 2. Get
|
1727 |
-
|
1728 |
-
all_chunks = await self.text_chunks.get_all()
|
1729 |
-
related_chunks = {
|
1730 |
-
chunk_id: chunk_data
|
1731 |
-
for chunk_id, chunk_data in all_chunks.items()
|
1732 |
-
if isinstance(chunk_data, dict)
|
1733 |
-
and chunk_data.get("full_doc_id") == doc_id
|
1734 |
-
}
|
1735 |
|
1736 |
-
|
1737 |
-
async with pipeline_status_lock:
|
1738 |
-
log_message = f"Retrieved {len(related_chunks)} of {len(all_chunks)} related chunks"
|
1739 |
-
logger.info(log_message)
|
1740 |
-
pipeline_status["latest_message"] = log_message
|
1741 |
-
pipeline_status["history_messages"].append(log_message)
|
1742 |
-
|
1743 |
-
except Exception as e:
|
1744 |
-
logger.error(f"Failed to retrieve chunks for document {doc_id}: {e}")
|
1745 |
-
raise Exception(f"Failed to retrieve document chunks: {e}") from e
|
1746 |
-
|
1747 |
-
if not related_chunks:
|
1748 |
logger.warning(f"No chunks found for document {doc_id}")
|
1749 |
# Mark that deletion operations have started
|
1750 |
deletion_operations_started = True
|
@@ -1775,7 +1776,6 @@ class LightRAG:
|
|
1775 |
file_path=file_path,
|
1776 |
)
|
1777 |
|
1778 |
-
chunk_ids = set(related_chunks.keys())
|
1779 |
# Mark that deletion operations have started
|
1780 |
deletion_operations_started = True
|
1781 |
|
@@ -1799,26 +1799,12 @@ class LightRAG:
|
|
1799 |
)
|
1800 |
)
|
1801 |
|
1802 |
-
# Update pipeline status after getting affected_nodes
|
1803 |
-
async with pipeline_status_lock:
|
1804 |
-
log_message = f"Found {len(affected_nodes)} affected entities"
|
1805 |
-
logger.info(log_message)
|
1806 |
-
pipeline_status["latest_message"] = log_message
|
1807 |
-
pipeline_status["history_messages"].append(log_message)
|
1808 |
-
|
1809 |
affected_edges = (
|
1810 |
await self.chunk_entity_relation_graph.get_edges_by_chunk_ids(
|
1811 |
list(chunk_ids)
|
1812 |
)
|
1813 |
)
|
1814 |
|
1815 |
-
# Update pipeline status after getting affected_edges
|
1816 |
-
async with pipeline_status_lock:
|
1817 |
-
log_message = f"Found {len(affected_edges)} affected relations"
|
1818 |
-
logger.info(log_message)
|
1819 |
-
pipeline_status["latest_message"] = log_message
|
1820 |
-
pipeline_status["history_messages"].append(log_message)
|
1821 |
-
|
1822 |
except Exception as e:
|
1823 |
logger.error(f"Failed to analyze affected graph elements: {e}")
|
1824 |
raise Exception(f"Failed to analyze graph dependencies: {e}") from e
|
@@ -1836,6 +1822,14 @@ class LightRAG:
|
|
1836 |
elif remaining_sources != sources:
|
1837 |
entities_to_rebuild[node_label] = remaining_sources
|
1838 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1839 |
# Process relationships
|
1840 |
for edge_data in affected_edges:
|
1841 |
src = edge_data.get("source")
|
@@ -1857,6 +1851,14 @@ class LightRAG:
|
|
1857 |
elif remaining_sources != sources:
|
1858 |
relationships_to_rebuild[edge_tuple] = remaining_sources
|
1859 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1860 |
except Exception as e:
|
1861 |
logger.error(f"Failed to process graph analysis results: {e}")
|
1862 |
raise Exception(f"Failed to process graph dependencies: {e}") from e
|
@@ -1940,17 +1942,13 @@ class LightRAG:
|
|
1940 |
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
1941 |
entities_vdb=self.entities_vdb,
|
1942 |
relationships_vdb=self.relationships_vdb,
|
1943 |
-
|
1944 |
llm_response_cache=self.llm_response_cache,
|
1945 |
global_config=asdict(self),
|
|
|
|
|
1946 |
)
|
1947 |
|
1948 |
-
async with pipeline_status_lock:
|
1949 |
-
log_message = f"Successfully rebuilt {len(entities_to_rebuild)} entities and {len(relationships_to_rebuild)} relations"
|
1950 |
-
logger.info(log_message)
|
1951 |
-
pipeline_status["latest_message"] = log_message
|
1952 |
-
pipeline_status["history_messages"].append(log_message)
|
1953 |
-
|
1954 |
except Exception as e:
|
1955 |
logger.error(f"Failed to rebuild knowledge from chunks: {e}")
|
1956 |
raise Exception(
|
|
|
22 |
Dict,
|
23 |
)
|
24 |
from lightrag.constants import (
|
25 |
+
DEFAULT_MAX_GLEANING,
|
26 |
DEFAULT_MAX_TOKEN_SUMMARY,
|
27 |
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
|
28 |
)
|
|
|
125 |
# Entity extraction
|
126 |
# ---
|
127 |
|
128 |
+
entity_extract_max_gleaning: int = field(
|
129 |
+
default=get_env_value("MAX_GLEANING", DEFAULT_MAX_GLEANING, int)
|
130 |
+
)
|
131 |
"""Maximum number of entity extraction attempts for ambiguous content."""
|
132 |
|
133 |
summary_to_max_tokens: int = field(
|
|
|
349 |
|
350 |
# Fix global_config now
|
351 |
global_config = asdict(self)
|
352 |
+
|
353 |
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
354 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
355 |
|
|
|
398 |
embedding_func=self.embedding_func,
|
399 |
)
|
400 |
|
|
|
401 |
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
402 |
namespace=make_namespace(
|
403 |
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
|
404 |
),
|
405 |
embedding_func=self.embedding_func,
|
406 |
)
|
407 |
+
|
408 |
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
|
409 |
namespace=make_namespace(
|
410 |
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION
|
|
|
953 |
**dp,
|
954 |
"full_doc_id": doc_id,
|
955 |
"file_path": file_path, # Add file path to each chunk
|
956 |
+
"llm_cache_list": [], # Initialize empty LLM cache list for each chunk
|
957 |
}
|
958 |
for dp in self.chunking_func(
|
959 |
self.tokenizer,
|
|
|
965 |
)
|
966 |
}
|
967 |
|
968 |
+
# Process document in two stages
|
969 |
+
# Stage 1: Process text chunks and docs (parallel execution)
|
970 |
doc_status_task = asyncio.create_task(
|
971 |
self.doc_status.upsert(
|
972 |
{
|
973 |
doc_id: {
|
974 |
"status": DocStatus.PROCESSING,
|
975 |
"chunks_count": len(chunks),
|
976 |
+
"chunks_list": list(
|
977 |
+
chunks.keys()
|
978 |
+
), # Save chunks list
|
979 |
"content": status_doc.content,
|
980 |
"content_summary": status_doc.content_summary,
|
981 |
"content_length": status_doc.content_length,
|
|
|
991 |
chunks_vdb_task = asyncio.create_task(
|
992 |
self.chunks_vdb.upsert(chunks)
|
993 |
)
|
|
|
|
|
|
|
|
|
|
|
994 |
full_docs_task = asyncio.create_task(
|
995 |
self.full_docs.upsert(
|
996 |
{doc_id: {"content": status_doc.content}}
|
|
|
999 |
text_chunks_task = asyncio.create_task(
|
1000 |
self.text_chunks.upsert(chunks)
|
1001 |
)
|
1002 |
+
|
1003 |
+
# First stage tasks (parallel execution)
|
1004 |
+
first_stage_tasks = [
|
1005 |
doc_status_task,
|
1006 |
chunks_vdb_task,
|
|
|
1007 |
full_docs_task,
|
1008 |
text_chunks_task,
|
1009 |
]
|
1010 |
+
entity_relation_task = None
|
1011 |
+
|
1012 |
+
# Execute first stage tasks
|
1013 |
+
await asyncio.gather(*first_stage_tasks)
|
1014 |
+
|
1015 |
+
# Stage 2: Process entity relation graph (after text_chunks are saved)
|
1016 |
+
entity_relation_task = asyncio.create_task(
|
1017 |
+
self._process_entity_relation_graph(
|
1018 |
+
chunks, pipeline_status, pipeline_status_lock
|
1019 |
+
)
|
1020 |
+
)
|
1021 |
+
await entity_relation_task
|
1022 |
file_extraction_stage_ok = True
|
1023 |
|
1024 |
except Exception as e:
|
|
|
1033 |
)
|
1034 |
pipeline_status["history_messages"].append(error_msg)
|
1035 |
|
1036 |
+
# Cancel tasks that are not yet completed
|
1037 |
+
all_tasks = first_stage_tasks + (
|
1038 |
+
[entity_relation_task]
|
1039 |
+
if entity_relation_task
|
1040 |
+
else []
|
1041 |
+
)
|
1042 |
+
for task in all_tasks:
|
1043 |
+
if task and not task.done():
|
1044 |
task.cancel()
|
1045 |
|
1046 |
# Persistent llm cache
|
|
|
1090 |
doc_id: {
|
1091 |
"status": DocStatus.PROCESSED,
|
1092 |
"chunks_count": len(chunks),
|
1093 |
+
"chunks_list": list(
|
1094 |
+
chunks.keys()
|
1095 |
+
), # δΏη chunks_list
|
1096 |
"content": status_doc.content,
|
1097 |
"content_summary": status_doc.content_summary,
|
1098 |
"content_length": status_doc.content_length,
|
|
|
1211 |
pipeline_status=pipeline_status,
|
1212 |
pipeline_status_lock=pipeline_status_lock,
|
1213 |
llm_response_cache=self.llm_response_cache,
|
1214 |
+
text_chunks_storage=self.text_chunks,
|
1215 |
)
|
1216 |
return chunk_results
|
1217 |
except Exception as e:
|
|
|
1742 |
file_path="",
|
1743 |
)
|
1744 |
|
1745 |
+
# 2. Get chunk IDs from document status
|
1746 |
+
chunk_ids = set(doc_status_data.get("chunks_list", []))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1747 |
|
1748 |
+
if not chunk_ids:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1749 |
logger.warning(f"No chunks found for document {doc_id}")
|
1750 |
# Mark that deletion operations have started
|
1751 |
deletion_operations_started = True
|
|
|
1776 |
file_path=file_path,
|
1777 |
)
|
1778 |
|
|
|
1779 |
# Mark that deletion operations have started
|
1780 |
deletion_operations_started = True
|
1781 |
|
|
|
1799 |
)
|
1800 |
)
|
1801 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1802 |
affected_edges = (
|
1803 |
await self.chunk_entity_relation_graph.get_edges_by_chunk_ids(
|
1804 |
list(chunk_ids)
|
1805 |
)
|
1806 |
)
|
1807 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1808 |
except Exception as e:
|
1809 |
logger.error(f"Failed to analyze affected graph elements: {e}")
|
1810 |
raise Exception(f"Failed to analyze graph dependencies: {e}") from e
|
|
|
1822 |
elif remaining_sources != sources:
|
1823 |
entities_to_rebuild[node_label] = remaining_sources
|
1824 |
|
1825 |
+
async with pipeline_status_lock:
|
1826 |
+
log_message = (
|
1827 |
+
f"Found {len(entities_to_rebuild)} affected entities"
|
1828 |
+
)
|
1829 |
+
logger.info(log_message)
|
1830 |
+
pipeline_status["latest_message"] = log_message
|
1831 |
+
pipeline_status["history_messages"].append(log_message)
|
1832 |
+
|
1833 |
# Process relationships
|
1834 |
for edge_data in affected_edges:
|
1835 |
src = edge_data.get("source")
|
|
|
1851 |
elif remaining_sources != sources:
|
1852 |
relationships_to_rebuild[edge_tuple] = remaining_sources
|
1853 |
|
1854 |
+
async with pipeline_status_lock:
|
1855 |
+
log_message = (
|
1856 |
+
f"Found {len(relationships_to_rebuild)} affected relations"
|
1857 |
+
)
|
1858 |
+
logger.info(log_message)
|
1859 |
+
pipeline_status["latest_message"] = log_message
|
1860 |
+
pipeline_status["history_messages"].append(log_message)
|
1861 |
+
|
1862 |
except Exception as e:
|
1863 |
logger.error(f"Failed to process graph analysis results: {e}")
|
1864 |
raise Exception(f"Failed to process graph dependencies: {e}") from e
|
|
|
1942 |
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
1943 |
entities_vdb=self.entities_vdb,
|
1944 |
relationships_vdb=self.relationships_vdb,
|
1945 |
+
text_chunks_storage=self.text_chunks,
|
1946 |
llm_response_cache=self.llm_response_cache,
|
1947 |
global_config=asdict(self),
|
1948 |
+
pipeline_status=pipeline_status,
|
1949 |
+
pipeline_status_lock=pipeline_status_lock,
|
1950 |
)
|
1951 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1952 |
except Exception as e:
|
1953 |
logger.error(f"Failed to rebuild knowledge from chunks: {e}")
|
1954 |
raise Exception(
|
lightrag/operate.py
CHANGED
@@ -25,6 +25,7 @@ from .utils import (
|
|
25 |
CacheData,
|
26 |
get_conversation_turns,
|
27 |
use_llm_func_with_cache,
|
|
|
28 |
)
|
29 |
from .base import (
|
30 |
BaseGraphStorage,
|
@@ -103,8 +104,6 @@ async def _handle_entity_relation_summary(
|
|
103 |
entity_or_relation_name: str,
|
104 |
description: str,
|
105 |
global_config: dict,
|
106 |
-
pipeline_status: dict = None,
|
107 |
-
pipeline_status_lock=None,
|
108 |
llm_response_cache: BaseKVStorage | None = None,
|
109 |
) -> str:
|
110 |
"""Handle entity relation summary
|
@@ -247,9 +246,11 @@ async def _rebuild_knowledge_from_chunks(
|
|
247 |
knowledge_graph_inst: BaseGraphStorage,
|
248 |
entities_vdb: BaseVectorStorage,
|
249 |
relationships_vdb: BaseVectorStorage,
|
250 |
-
|
251 |
llm_response_cache: BaseKVStorage,
|
252 |
global_config: dict[str, str],
|
|
|
|
|
253 |
) -> None:
|
254 |
"""Rebuild entity and relationship descriptions from cached extraction results
|
255 |
|
@@ -259,9 +260,12 @@ async def _rebuild_knowledge_from_chunks(
|
|
259 |
Args:
|
260 |
entities_to_rebuild: Dict mapping entity_name -> set of remaining chunk_ids
|
261 |
relationships_to_rebuild: Dict mapping (src, tgt) -> set of remaining chunk_ids
|
|
|
262 |
"""
|
263 |
if not entities_to_rebuild and not relationships_to_rebuild:
|
264 |
return
|
|
|
|
|
265 |
|
266 |
# Get all referenced chunk IDs
|
267 |
all_referenced_chunk_ids = set()
|
@@ -270,36 +274,74 @@ async def _rebuild_knowledge_from_chunks(
|
|
270 |
for chunk_ids in relationships_to_rebuild.values():
|
271 |
all_referenced_chunk_ids.update(chunk_ids)
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
276 |
|
277 |
-
# Get cached extraction results for these chunks
|
|
|
278 |
cached_results = await _get_cached_extraction_results(
|
279 |
-
llm_response_cache,
|
|
|
|
|
280 |
)
|
281 |
|
282 |
if not cached_results:
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
284 |
return
|
285 |
|
286 |
# Process cached results to get entities and relationships for each chunk
|
287 |
chunk_entities = {} # chunk_id -> {entity_name: [entity_data]}
|
288 |
chunk_relationships = {} # chunk_id -> {(src, tgt): [relationship_data]}
|
289 |
|
290 |
-
for chunk_id,
|
291 |
try:
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
except Exception as e:
|
300 |
-
|
301 |
f"Failed to parse cached extraction result for chunk {chunk_id}: {e}"
|
302 |
)
|
|
|
|
|
|
|
|
|
|
|
303 |
continue
|
304 |
|
305 |
# Rebuild entities
|
@@ -314,11 +356,22 @@ async def _rebuild_knowledge_from_chunks(
|
|
314 |
llm_response_cache=llm_response_cache,
|
315 |
global_config=global_config,
|
316 |
)
|
317 |
-
|
318 |
-
|
|
|
319 |
)
|
|
|
|
|
|
|
|
|
|
|
320 |
except Exception as e:
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
# Rebuild relationships
|
324 |
for (src, tgt), chunk_ids in relationships_to_rebuild.items():
|
@@ -333,53 +386,112 @@ async def _rebuild_knowledge_from_chunks(
|
|
333 |
llm_response_cache=llm_response_cache,
|
334 |
global_config=global_config,
|
335 |
)
|
336 |
-
|
337 |
-
|
|
|
338 |
)
|
|
|
|
|
|
|
|
|
|
|
339 |
except Exception as e:
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
|
345 |
async def _get_cached_extraction_results(
|
346 |
-
llm_response_cache: BaseKVStorage,
|
347 |
-
|
|
|
|
|
348 |
"""Get cached extraction results for specific chunk IDs
|
349 |
|
350 |
Args:
|
|
|
351 |
chunk_ids: Set of chunk IDs to get cached results for
|
|
|
|
|
352 |
|
353 |
Returns:
|
354 |
-
Dict mapping chunk_id -> extraction_result_text
|
355 |
"""
|
356 |
cached_results = {}
|
357 |
|
358 |
-
#
|
359 |
-
|
360 |
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
if (
|
363 |
-
|
|
|
364 |
and cache_entry.get("cache_type") == "extract"
|
365 |
and cache_entry.get("chunk_id") in chunk_ids
|
366 |
):
|
367 |
chunk_id = cache_entry["chunk_id"]
|
368 |
extraction_result = cache_entry["return"]
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
-
logger.
|
372 |
-
f"Found {
|
373 |
)
|
374 |
return cached_results
|
375 |
|
376 |
|
377 |
async def _parse_extraction_result(
|
378 |
-
|
379 |
) -> tuple[dict, dict]:
|
380 |
"""Parse cached extraction result using the same logic as extract_entities
|
381 |
|
382 |
Args:
|
|
|
383 |
extraction_result: The cached LLM extraction result
|
384 |
chunk_id: The chunk ID for source tracking
|
385 |
|
@@ -387,8 +499,8 @@ async def _parse_extraction_result(
|
|
387 |
Tuple of (entities_dict, relationships_dict)
|
388 |
"""
|
389 |
|
390 |
-
# Get chunk data for file_path
|
391 |
-
chunk_data = await
|
392 |
file_path = (
|
393 |
chunk_data.get("file_path", "unknown_source")
|
394 |
if chunk_data
|
@@ -761,8 +873,6 @@ async def _merge_nodes_then_upsert(
|
|
761 |
entity_name,
|
762 |
description,
|
763 |
global_config,
|
764 |
-
pipeline_status,
|
765 |
-
pipeline_status_lock,
|
766 |
llm_response_cache,
|
767 |
)
|
768 |
else:
|
@@ -925,8 +1035,6 @@ async def _merge_edges_then_upsert(
|
|
925 |
f"({src_id}, {tgt_id})",
|
926 |
description,
|
927 |
global_config,
|
928 |
-
pipeline_status,
|
929 |
-
pipeline_status_lock,
|
930 |
llm_response_cache,
|
931 |
)
|
932 |
else:
|
@@ -1102,6 +1210,7 @@ async def extract_entities(
|
|
1102 |
pipeline_status: dict = None,
|
1103 |
pipeline_status_lock=None,
|
1104 |
llm_response_cache: BaseKVStorage | None = None,
|
|
|
1105 |
) -> list:
|
1106 |
use_llm_func: callable = global_config["llm_model_func"]
|
1107 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
@@ -1208,6 +1317,9 @@ async def extract_entities(
|
|
1208 |
# Get file path from chunk data or use default
|
1209 |
file_path = chunk_dp.get("file_path", "unknown_source")
|
1210 |
|
|
|
|
|
|
|
1211 |
# Get initial extraction
|
1212 |
hint_prompt = entity_extract_prompt.format(
|
1213 |
**{**context_base, "input_text": content}
|
@@ -1219,7 +1331,10 @@ async def extract_entities(
|
|
1219 |
llm_response_cache=llm_response_cache,
|
1220 |
cache_type="extract",
|
1221 |
chunk_id=chunk_key,
|
|
|
1222 |
)
|
|
|
|
|
1223 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
1224 |
|
1225 |
# Process initial extraction with file path
|
@@ -1236,6 +1351,7 @@ async def extract_entities(
|
|
1236 |
history_messages=history,
|
1237 |
cache_type="extract",
|
1238 |
chunk_id=chunk_key,
|
|
|
1239 |
)
|
1240 |
|
1241 |
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
@@ -1266,11 +1382,21 @@ async def extract_entities(
|
|
1266 |
llm_response_cache=llm_response_cache,
|
1267 |
history_messages=history,
|
1268 |
cache_type="extract",
|
|
|
1269 |
)
|
1270 |
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
1271 |
if if_loop_result != "yes":
|
1272 |
break
|
1273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1274 |
processed_chunks += 1
|
1275 |
entities_count = len(maybe_nodes)
|
1276 |
relations_count = len(maybe_edges)
|
@@ -1343,7 +1469,7 @@ async def kg_query(
|
|
1343 |
use_model_func = partial(use_model_func, _priority=5)
|
1344 |
|
1345 |
# Handle cache
|
1346 |
-
args_hash = compute_args_hash(query_param.mode, query
|
1347 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
1348 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
1349 |
)
|
@@ -1390,7 +1516,7 @@ async def kg_query(
|
|
1390 |
)
|
1391 |
|
1392 |
if query_param.only_need_context:
|
1393 |
-
return context
|
1394 |
if context is None:
|
1395 |
return PROMPTS["fail_response"]
|
1396 |
|
@@ -1502,7 +1628,7 @@ async def extract_keywords_only(
|
|
1502 |
"""
|
1503 |
|
1504 |
# 1. Handle cache if needed - add cache type for keywords
|
1505 |
-
args_hash = compute_args_hash(param.mode, text
|
1506 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
1507 |
hashing_kv, args_hash, text, param.mode, cache_type="keywords"
|
1508 |
)
|
@@ -1647,7 +1773,7 @@ async def _get_vector_context(
|
|
1647 |
f"Truncate chunks from {len(valid_chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
1648 |
)
|
1649 |
logger.info(
|
1650 |
-
f"
|
1651 |
)
|
1652 |
|
1653 |
if not maybe_trun_chunks:
|
@@ -1871,7 +1997,7 @@ async def _get_node_data(
|
|
1871 |
)
|
1872 |
|
1873 |
logger.info(
|
1874 |
-
f"Local query
|
1875 |
)
|
1876 |
|
1877 |
# build prompt
|
@@ -2180,7 +2306,7 @@ async def _get_edge_data(
|
|
2180 |
),
|
2181 |
)
|
2182 |
logger.info(
|
2183 |
-
f"Global query
|
2184 |
)
|
2185 |
|
2186 |
relations_context = []
|
@@ -2369,7 +2495,7 @@ async def naive_query(
|
|
2369 |
use_model_func = partial(use_model_func, _priority=5)
|
2370 |
|
2371 |
# Handle cache
|
2372 |
-
args_hash = compute_args_hash(query_param.mode, query
|
2373 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
2374 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
2375 |
)
|
@@ -2485,7 +2611,7 @@ async def kg_query_with_keywords(
|
|
2485 |
# Apply higher priority (5) to query relation LLM function
|
2486 |
use_model_func = partial(use_model_func, _priority=5)
|
2487 |
|
2488 |
-
args_hash = compute_args_hash(query_param.mode, query
|
2489 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
2490 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
2491 |
)
|
|
|
25 |
CacheData,
|
26 |
get_conversation_turns,
|
27 |
use_llm_func_with_cache,
|
28 |
+
update_chunk_cache_list,
|
29 |
)
|
30 |
from .base import (
|
31 |
BaseGraphStorage,
|
|
|
104 |
entity_or_relation_name: str,
|
105 |
description: str,
|
106 |
global_config: dict,
|
|
|
|
|
107 |
llm_response_cache: BaseKVStorage | None = None,
|
108 |
) -> str:
|
109 |
"""Handle entity relation summary
|
|
|
246 |
knowledge_graph_inst: BaseGraphStorage,
|
247 |
entities_vdb: BaseVectorStorage,
|
248 |
relationships_vdb: BaseVectorStorage,
|
249 |
+
text_chunks_storage: BaseKVStorage,
|
250 |
llm_response_cache: BaseKVStorage,
|
251 |
global_config: dict[str, str],
|
252 |
+
pipeline_status: dict | None = None,
|
253 |
+
pipeline_status_lock=None,
|
254 |
) -> None:
|
255 |
"""Rebuild entity and relationship descriptions from cached extraction results
|
256 |
|
|
|
260 |
Args:
|
261 |
entities_to_rebuild: Dict mapping entity_name -> set of remaining chunk_ids
|
262 |
relationships_to_rebuild: Dict mapping (src, tgt) -> set of remaining chunk_ids
|
263 |
+
text_chunks_data: Pre-loaded chunk data dict {chunk_id: chunk_data}
|
264 |
"""
|
265 |
if not entities_to_rebuild and not relationships_to_rebuild:
|
266 |
return
|
267 |
+
rebuilt_entities_count = 0
|
268 |
+
rebuilt_relationships_count = 0
|
269 |
|
270 |
# Get all referenced chunk IDs
|
271 |
all_referenced_chunk_ids = set()
|
|
|
274 |
for chunk_ids in relationships_to_rebuild.values():
|
275 |
all_referenced_chunk_ids.update(chunk_ids)
|
276 |
|
277 |
+
status_message = f"Rebuilding knowledge from {len(all_referenced_chunk_ids)} cached chunk extractions"
|
278 |
+
logger.info(status_message)
|
279 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
280 |
+
async with pipeline_status_lock:
|
281 |
+
pipeline_status["latest_message"] = status_message
|
282 |
+
pipeline_status["history_messages"].append(status_message)
|
283 |
|
284 |
+
# Get cached extraction results for these chunks using storage
|
285 |
+
# cached_resultsοΌ chunk_id -> [list of extraction result from LLM cache sorted by created_at]
|
286 |
cached_results = await _get_cached_extraction_results(
|
287 |
+
llm_response_cache,
|
288 |
+
all_referenced_chunk_ids,
|
289 |
+
text_chunks_storage=text_chunks_storage,
|
290 |
)
|
291 |
|
292 |
if not cached_results:
|
293 |
+
status_message = "No cached extraction results found, cannot rebuild"
|
294 |
+
logger.warning(status_message)
|
295 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
296 |
+
async with pipeline_status_lock:
|
297 |
+
pipeline_status["latest_message"] = status_message
|
298 |
+
pipeline_status["history_messages"].append(status_message)
|
299 |
return
|
300 |
|
301 |
# Process cached results to get entities and relationships for each chunk
|
302 |
chunk_entities = {} # chunk_id -> {entity_name: [entity_data]}
|
303 |
chunk_relationships = {} # chunk_id -> {(src, tgt): [relationship_data]}
|
304 |
|
305 |
+
for chunk_id, extraction_results in cached_results.items():
|
306 |
try:
|
307 |
+
# Handle multiple extraction results per chunk
|
308 |
+
chunk_entities[chunk_id] = defaultdict(list)
|
309 |
+
chunk_relationships[chunk_id] = defaultdict(list)
|
310 |
+
|
311 |
+
# process multiple LLM extraction results for a single chunk_id
|
312 |
+
for extraction_result in extraction_results:
|
313 |
+
entities, relationships = await _parse_extraction_result(
|
314 |
+
text_chunks_storage=text_chunks_storage,
|
315 |
+
extraction_result=extraction_result,
|
316 |
+
chunk_id=chunk_id,
|
317 |
+
)
|
318 |
+
|
319 |
+
# Merge entities and relationships from this extraction result
|
320 |
+
# Only keep the first occurrence of each entity_name in the same chunk_id
|
321 |
+
for entity_name, entity_list in entities.items():
|
322 |
+
if (
|
323 |
+
entity_name not in chunk_entities[chunk_id]
|
324 |
+
or len(chunk_entities[chunk_id][entity_name]) == 0
|
325 |
+
):
|
326 |
+
chunk_entities[chunk_id][entity_name].extend(entity_list)
|
327 |
+
|
328 |
+
# Only keep the first occurrence of each rel_key in the same chunk_id
|
329 |
+
for rel_key, rel_list in relationships.items():
|
330 |
+
if (
|
331 |
+
rel_key not in chunk_relationships[chunk_id]
|
332 |
+
or len(chunk_relationships[chunk_id][rel_key]) == 0
|
333 |
+
):
|
334 |
+
chunk_relationships[chunk_id][rel_key].extend(rel_list)
|
335 |
+
|
336 |
except Exception as e:
|
337 |
+
status_message = (
|
338 |
f"Failed to parse cached extraction result for chunk {chunk_id}: {e}"
|
339 |
)
|
340 |
+
logger.info(status_message) # Per requirement, change to info
|
341 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
342 |
+
async with pipeline_status_lock:
|
343 |
+
pipeline_status["latest_message"] = status_message
|
344 |
+
pipeline_status["history_messages"].append(status_message)
|
345 |
continue
|
346 |
|
347 |
# Rebuild entities
|
|
|
356 |
llm_response_cache=llm_response_cache,
|
357 |
global_config=global_config,
|
358 |
)
|
359 |
+
rebuilt_entities_count += 1
|
360 |
+
status_message = (
|
361 |
+
f"Rebuilt entity: {entity_name} from {len(chunk_ids)} chunks"
|
362 |
)
|
363 |
+
logger.info(status_message)
|
364 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
365 |
+
async with pipeline_status_lock:
|
366 |
+
pipeline_status["latest_message"] = status_message
|
367 |
+
pipeline_status["history_messages"].append(status_message)
|
368 |
except Exception as e:
|
369 |
+
status_message = f"Failed to rebuild entity {entity_name}: {e}"
|
370 |
+
logger.info(status_message) # Per requirement, change to info
|
371 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
372 |
+
async with pipeline_status_lock:
|
373 |
+
pipeline_status["latest_message"] = status_message
|
374 |
+
pipeline_status["history_messages"].append(status_message)
|
375 |
|
376 |
# Rebuild relationships
|
377 |
for (src, tgt), chunk_ids in relationships_to_rebuild.items():
|
|
|
386 |
llm_response_cache=llm_response_cache,
|
387 |
global_config=global_config,
|
388 |
)
|
389 |
+
rebuilt_relationships_count += 1
|
390 |
+
status_message = (
|
391 |
+
f"Rebuilt relationship: {src}->{tgt} from {len(chunk_ids)} chunks"
|
392 |
)
|
393 |
+
logger.info(status_message)
|
394 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
395 |
+
async with pipeline_status_lock:
|
396 |
+
pipeline_status["latest_message"] = status_message
|
397 |
+
pipeline_status["history_messages"].append(status_message)
|
398 |
except Exception as e:
|
399 |
+
status_message = f"Failed to rebuild relationship {src}->{tgt}: {e}"
|
400 |
+
logger.info(status_message)
|
401 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
402 |
+
async with pipeline_status_lock:
|
403 |
+
pipeline_status["latest_message"] = status_message
|
404 |
+
pipeline_status["history_messages"].append(status_message)
|
405 |
|
406 |
+
status_message = f"KG rebuild completed: {rebuilt_entities_count} entities and {rebuilt_relationships_count} relationships."
|
407 |
+
logger.info(status_message)
|
408 |
+
if pipeline_status is not None and pipeline_status_lock is not None:
|
409 |
+
async with pipeline_status_lock:
|
410 |
+
pipeline_status["latest_message"] = status_message
|
411 |
+
pipeline_status["history_messages"].append(status_message)
|
412 |
|
413 |
|
414 |
async def _get_cached_extraction_results(
|
415 |
+
llm_response_cache: BaseKVStorage,
|
416 |
+
chunk_ids: set[str],
|
417 |
+
text_chunks_storage: BaseKVStorage,
|
418 |
+
) -> dict[str, list[str]]:
|
419 |
"""Get cached extraction results for specific chunk IDs
|
420 |
|
421 |
Args:
|
422 |
+
llm_response_cache: LLM response cache storage
|
423 |
chunk_ids: Set of chunk IDs to get cached results for
|
424 |
+
text_chunks_data: Pre-loaded chunk data (optional, for performance)
|
425 |
+
text_chunks_storage: Text chunks storage (fallback if text_chunks_data is None)
|
426 |
|
427 |
Returns:
|
428 |
+
Dict mapping chunk_id -> list of extraction_result_text
|
429 |
"""
|
430 |
cached_results = {}
|
431 |
|
432 |
+
# Collect all LLM cache IDs from chunks
|
433 |
+
all_cache_ids = set()
|
434 |
|
435 |
+
# Read from storage
|
436 |
+
chunk_data_list = await text_chunks_storage.get_by_ids(list(chunk_ids))
|
437 |
+
for chunk_id, chunk_data in zip(chunk_ids, chunk_data_list):
|
438 |
+
if chunk_data and isinstance(chunk_data, dict):
|
439 |
+
llm_cache_list = chunk_data.get("llm_cache_list", [])
|
440 |
+
if llm_cache_list:
|
441 |
+
all_cache_ids.update(llm_cache_list)
|
442 |
+
else:
|
443 |
+
logger.warning(
|
444 |
+
f"Chunk {chunk_id} data is invalid or None: {type(chunk_data)}"
|
445 |
+
)
|
446 |
+
|
447 |
+
if not all_cache_ids:
|
448 |
+
logger.warning(f"No LLM cache IDs found for {len(chunk_ids)} chunk IDs")
|
449 |
+
return cached_results
|
450 |
+
|
451 |
+
# Batch get LLM cache entries
|
452 |
+
cache_data_list = await llm_response_cache.get_by_ids(list(all_cache_ids))
|
453 |
+
|
454 |
+
# Process cache entries and group by chunk_id
|
455 |
+
valid_entries = 0
|
456 |
+
for cache_id, cache_entry in zip(all_cache_ids, cache_data_list):
|
457 |
if (
|
458 |
+
cache_entry is not None
|
459 |
+
and isinstance(cache_entry, dict)
|
460 |
and cache_entry.get("cache_type") == "extract"
|
461 |
and cache_entry.get("chunk_id") in chunk_ids
|
462 |
):
|
463 |
chunk_id = cache_entry["chunk_id"]
|
464 |
extraction_result = cache_entry["return"]
|
465 |
+
create_time = cache_entry.get(
|
466 |
+
"create_time", 0
|
467 |
+
) # Get creation time, default to 0
|
468 |
+
valid_entries += 1
|
469 |
+
|
470 |
+
# Support multiple LLM caches per chunk
|
471 |
+
if chunk_id not in cached_results:
|
472 |
+
cached_results[chunk_id] = []
|
473 |
+
# Store tuple with extraction result and creation time for sorting
|
474 |
+
cached_results[chunk_id].append((extraction_result, create_time))
|
475 |
+
|
476 |
+
# Sort extraction results by create_time for each chunk
|
477 |
+
for chunk_id in cached_results:
|
478 |
+
# Sort by create_time (x[1]), then extract only extraction_result (x[0])
|
479 |
+
cached_results[chunk_id].sort(key=lambda x: x[1])
|
480 |
+
cached_results[chunk_id] = [item[0] for item in cached_results[chunk_id]]
|
481 |
|
482 |
+
logger.info(
|
483 |
+
f"Found {valid_entries} valid cache entries, {len(cached_results)} chunks with results"
|
484 |
)
|
485 |
return cached_results
|
486 |
|
487 |
|
488 |
async def _parse_extraction_result(
|
489 |
+
text_chunks_storage: BaseKVStorage, extraction_result: str, chunk_id: str
|
490 |
) -> tuple[dict, dict]:
|
491 |
"""Parse cached extraction result using the same logic as extract_entities
|
492 |
|
493 |
Args:
|
494 |
+
text_chunks_storage: Text chunks storage to get chunk data
|
495 |
extraction_result: The cached LLM extraction result
|
496 |
chunk_id: The chunk ID for source tracking
|
497 |
|
|
|
499 |
Tuple of (entities_dict, relationships_dict)
|
500 |
"""
|
501 |
|
502 |
+
# Get chunk data for file_path from storage
|
503 |
+
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
504 |
file_path = (
|
505 |
chunk_data.get("file_path", "unknown_source")
|
506 |
if chunk_data
|
|
|
873 |
entity_name,
|
874 |
description,
|
875 |
global_config,
|
|
|
|
|
876 |
llm_response_cache,
|
877 |
)
|
878 |
else:
|
|
|
1035 |
f"({src_id}, {tgt_id})",
|
1036 |
description,
|
1037 |
global_config,
|
|
|
|
|
1038 |
llm_response_cache,
|
1039 |
)
|
1040 |
else:
|
|
|
1210 |
pipeline_status: dict = None,
|
1211 |
pipeline_status_lock=None,
|
1212 |
llm_response_cache: BaseKVStorage | None = None,
|
1213 |
+
text_chunks_storage: BaseKVStorage | None = None,
|
1214 |
) -> list:
|
1215 |
use_llm_func: callable = global_config["llm_model_func"]
|
1216 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
|
|
1317 |
# Get file path from chunk data or use default
|
1318 |
file_path = chunk_dp.get("file_path", "unknown_source")
|
1319 |
|
1320 |
+
# Create cache keys collector for batch processing
|
1321 |
+
cache_keys_collector = []
|
1322 |
+
|
1323 |
# Get initial extraction
|
1324 |
hint_prompt = entity_extract_prompt.format(
|
1325 |
**{**context_base, "input_text": content}
|
|
|
1331 |
llm_response_cache=llm_response_cache,
|
1332 |
cache_type="extract",
|
1333 |
chunk_id=chunk_key,
|
1334 |
+
cache_keys_collector=cache_keys_collector,
|
1335 |
)
|
1336 |
+
|
1337 |
+
# Store LLM cache reference in chunk (will be handled by use_llm_func_with_cache)
|
1338 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
1339 |
|
1340 |
# Process initial extraction with file path
|
|
|
1351 |
history_messages=history,
|
1352 |
cache_type="extract",
|
1353 |
chunk_id=chunk_key,
|
1354 |
+
cache_keys_collector=cache_keys_collector,
|
1355 |
)
|
1356 |
|
1357 |
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
|
|
1382 |
llm_response_cache=llm_response_cache,
|
1383 |
history_messages=history,
|
1384 |
cache_type="extract",
|
1385 |
+
cache_keys_collector=cache_keys_collector,
|
1386 |
)
|
1387 |
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
1388 |
if if_loop_result != "yes":
|
1389 |
break
|
1390 |
|
1391 |
+
# Batch update chunk's llm_cache_list with all collected cache keys
|
1392 |
+
if cache_keys_collector and text_chunks_storage:
|
1393 |
+
await update_chunk_cache_list(
|
1394 |
+
chunk_key,
|
1395 |
+
text_chunks_storage,
|
1396 |
+
cache_keys_collector,
|
1397 |
+
"entity_extraction",
|
1398 |
+
)
|
1399 |
+
|
1400 |
processed_chunks += 1
|
1401 |
entities_count = len(maybe_nodes)
|
1402 |
relations_count = len(maybe_edges)
|
|
|
1469 |
use_model_func = partial(use_model_func, _priority=5)
|
1470 |
|
1471 |
# Handle cache
|
1472 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
1473 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
1474 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
1475 |
)
|
|
|
1516 |
)
|
1517 |
|
1518 |
if query_param.only_need_context:
|
1519 |
+
return context if context is not None else PROMPTS["fail_response"]
|
1520 |
if context is None:
|
1521 |
return PROMPTS["fail_response"]
|
1522 |
|
|
|
1628 |
"""
|
1629 |
|
1630 |
# 1. Handle cache if needed - add cache type for keywords
|
1631 |
+
args_hash = compute_args_hash(param.mode, text)
|
1632 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
1633 |
hashing_kv, args_hash, text, param.mode, cache_type="keywords"
|
1634 |
)
|
|
|
1773 |
f"Truncate chunks from {len(valid_chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
1774 |
)
|
1775 |
logger.info(
|
1776 |
+
f"Query chunks: {len(maybe_trun_chunks)} chunks, top_k: {query_param.top_k}"
|
1777 |
)
|
1778 |
|
1779 |
if not maybe_trun_chunks:
|
|
|
1997 |
)
|
1998 |
|
1999 |
logger.info(
|
2000 |
+
f"Local query: {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} chunks"
|
2001 |
)
|
2002 |
|
2003 |
# build prompt
|
|
|
2306 |
),
|
2307 |
)
|
2308 |
logger.info(
|
2309 |
+
f"Global query: {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} chunks"
|
2310 |
)
|
2311 |
|
2312 |
relations_context = []
|
|
|
2495 |
use_model_func = partial(use_model_func, _priority=5)
|
2496 |
|
2497 |
# Handle cache
|
2498 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
2499 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
2500 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
2501 |
)
|
|
|
2611 |
# Apply higher priority (5) to query relation LLM function
|
2612 |
use_model_func = partial(use_model_func, _priority=5)
|
2613 |
|
2614 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
2615 |
cached_response, quantized, min_val, max_val = await handle_cache(
|
2616 |
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
2617 |
)
|
lightrag/utils.py
CHANGED
@@ -14,7 +14,6 @@ from functools import wraps
|
|
14 |
from hashlib import md5
|
15 |
from typing import Any, Protocol, Callable, TYPE_CHECKING, List
|
16 |
import numpy as np
|
17 |
-
from lightrag.prompt import PROMPTS
|
18 |
from dotenv import load_dotenv
|
19 |
from lightrag.constants import (
|
20 |
DEFAULT_LOG_MAX_BYTES,
|
@@ -278,11 +277,10 @@ def convert_response_to_json(response: str) -> dict[str, Any]:
|
|
278 |
raise e from None
|
279 |
|
280 |
|
281 |
-
def compute_args_hash(*args: Any
|
282 |
"""Compute a hash for the given arguments.
|
283 |
Args:
|
284 |
*args: Arguments to hash
|
285 |
-
cache_type: Type of cache (e.g., 'keywords', 'query', 'extract')
|
286 |
Returns:
|
287 |
str: Hash string
|
288 |
"""
|
@@ -290,13 +288,40 @@ def compute_args_hash(*args: Any, cache_type: str | None = None) -> str:
|
|
290 |
|
291 |
# Convert all arguments to strings and join them
|
292 |
args_str = "".join([str(arg) for arg in args])
|
293 |
-
if cache_type:
|
294 |
-
args_str = f"{cache_type}:{args_str}"
|
295 |
|
296 |
# Compute MD5 hash
|
297 |
return hashlib.md5(args_str.encode()).hexdigest()
|
298 |
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
def compute_mdhash_id(content: str, prefix: str = "") -> str:
|
301 |
"""
|
302 |
Compute a unique ID for a given content string.
|
@@ -783,131 +808,6 @@ def process_combine_contexts(*context_lists):
|
|
783 |
return combined_data
|
784 |
|
785 |
|
786 |
-
async def get_best_cached_response(
|
787 |
-
hashing_kv,
|
788 |
-
current_embedding,
|
789 |
-
similarity_threshold=0.95,
|
790 |
-
mode="default",
|
791 |
-
use_llm_check=False,
|
792 |
-
llm_func=None,
|
793 |
-
original_prompt=None,
|
794 |
-
cache_type=None,
|
795 |
-
) -> str | None:
|
796 |
-
logger.debug(
|
797 |
-
f"get_best_cached_response: mode={mode} cache_type={cache_type} use_llm_check={use_llm_check}"
|
798 |
-
)
|
799 |
-
mode_cache = await hashing_kv.get_by_id(mode)
|
800 |
-
if not mode_cache:
|
801 |
-
return None
|
802 |
-
|
803 |
-
best_similarity = -1
|
804 |
-
best_response = None
|
805 |
-
best_prompt = None
|
806 |
-
best_cache_id = None
|
807 |
-
|
808 |
-
# Only iterate through cache entries for this mode
|
809 |
-
for cache_id, cache_data in mode_cache.items():
|
810 |
-
# Skip if cache_type doesn't match
|
811 |
-
if cache_type and cache_data.get("cache_type") != cache_type:
|
812 |
-
continue
|
813 |
-
|
814 |
-
# Check if cache data is valid
|
815 |
-
if cache_data["embedding"] is None:
|
816 |
-
continue
|
817 |
-
|
818 |
-
try:
|
819 |
-
# Safely convert cached embedding
|
820 |
-
cached_quantized = np.frombuffer(
|
821 |
-
bytes.fromhex(cache_data["embedding"]), dtype=np.uint8
|
822 |
-
).reshape(cache_data["embedding_shape"])
|
823 |
-
|
824 |
-
# Ensure min_val and max_val are valid float values
|
825 |
-
embedding_min = cache_data.get("embedding_min")
|
826 |
-
embedding_max = cache_data.get("embedding_max")
|
827 |
-
|
828 |
-
if (
|
829 |
-
embedding_min is None
|
830 |
-
or embedding_max is None
|
831 |
-
or embedding_min >= embedding_max
|
832 |
-
):
|
833 |
-
logger.warning(
|
834 |
-
f"Invalid embedding min/max values: min={embedding_min}, max={embedding_max}"
|
835 |
-
)
|
836 |
-
continue
|
837 |
-
|
838 |
-
cached_embedding = dequantize_embedding(
|
839 |
-
cached_quantized,
|
840 |
-
embedding_min,
|
841 |
-
embedding_max,
|
842 |
-
)
|
843 |
-
except Exception as e:
|
844 |
-
logger.warning(f"Error processing cached embedding: {str(e)}")
|
845 |
-
continue
|
846 |
-
|
847 |
-
similarity = cosine_similarity(current_embedding, cached_embedding)
|
848 |
-
if similarity > best_similarity:
|
849 |
-
best_similarity = similarity
|
850 |
-
best_response = cache_data["return"]
|
851 |
-
best_prompt = cache_data["original_prompt"]
|
852 |
-
best_cache_id = cache_id
|
853 |
-
|
854 |
-
if best_similarity > similarity_threshold:
|
855 |
-
# If LLM check is enabled and all required parameters are provided
|
856 |
-
if (
|
857 |
-
use_llm_check
|
858 |
-
and llm_func
|
859 |
-
and original_prompt
|
860 |
-
and best_prompt
|
861 |
-
and best_response is not None
|
862 |
-
):
|
863 |
-
compare_prompt = PROMPTS["similarity_check"].format(
|
864 |
-
original_prompt=original_prompt, cached_prompt=best_prompt
|
865 |
-
)
|
866 |
-
|
867 |
-
try:
|
868 |
-
llm_result = await llm_func(compare_prompt)
|
869 |
-
llm_result = llm_result.strip()
|
870 |
-
llm_similarity = float(llm_result)
|
871 |
-
|
872 |
-
# Replace vector similarity with LLM similarity score
|
873 |
-
best_similarity = llm_similarity
|
874 |
-
if best_similarity < similarity_threshold:
|
875 |
-
log_data = {
|
876 |
-
"event": "cache_rejected_by_llm",
|
877 |
-
"type": cache_type,
|
878 |
-
"mode": mode,
|
879 |
-
"original_question": original_prompt[:100] + "..."
|
880 |
-
if len(original_prompt) > 100
|
881 |
-
else original_prompt,
|
882 |
-
"cached_question": best_prompt[:100] + "..."
|
883 |
-
if len(best_prompt) > 100
|
884 |
-
else best_prompt,
|
885 |
-
"similarity_score": round(best_similarity, 4),
|
886 |
-
"threshold": similarity_threshold,
|
887 |
-
}
|
888 |
-
logger.debug(json.dumps(log_data, ensure_ascii=False))
|
889 |
-
logger.info(f"Cache rejected by LLM(mode:{mode} tpye:{cache_type})")
|
890 |
-
return None
|
891 |
-
except Exception as e: # Catch all possible exceptions
|
892 |
-
logger.warning(f"LLM similarity check failed: {e}")
|
893 |
-
return None # Return None directly when LLM check fails
|
894 |
-
|
895 |
-
prompt_display = (
|
896 |
-
best_prompt[:50] + "..." if len(best_prompt) > 50 else best_prompt
|
897 |
-
)
|
898 |
-
log_data = {
|
899 |
-
"event": "cache_hit",
|
900 |
-
"type": cache_type,
|
901 |
-
"mode": mode,
|
902 |
-
"similarity": round(best_similarity, 4),
|
903 |
-
"cache_id": best_cache_id,
|
904 |
-
"original_prompt": prompt_display,
|
905 |
-
}
|
906 |
-
logger.debug(json.dumps(log_data, ensure_ascii=False))
|
907 |
-
return best_response
|
908 |
-
return None
|
909 |
-
|
910 |
-
|
911 |
def cosine_similarity(v1, v2):
|
912 |
"""Calculate cosine similarity between two vectors"""
|
913 |
dot_product = np.dot(v1, v2)
|
@@ -957,7 +857,7 @@ async def handle_cache(
|
|
957 |
mode="default",
|
958 |
cache_type=None,
|
959 |
):
|
960 |
-
"""Generic cache handling function"""
|
961 |
if hashing_kv is None:
|
962 |
return None, None, None, None
|
963 |
|
@@ -968,15 +868,14 @@ async def handle_cache(
|
|
968 |
if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"):
|
969 |
return None, None, None, None
|
970 |
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
return mode_cache[args_hash]["return"], None, None, None
|
978 |
|
979 |
-
logger.debug(f"
|
980 |
return None, None, None, None
|
981 |
|
982 |
|
@@ -994,7 +893,7 @@ class CacheData:
|
|
994 |
|
995 |
|
996 |
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
997 |
-
"""Save data to cache
|
998 |
|
999 |
Args:
|
1000 |
hashing_kv: The key-value storage for caching
|
@@ -1009,26 +908,21 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
|
|
1009 |
logger.debug("Streaming response detected, skipping cache")
|
1010 |
return
|
1011 |
|
1012 |
-
#
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
or {}
|
1017 |
-
)
|
1018 |
-
else:
|
1019 |
-
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
|
1020 |
|
1021 |
# Check if we already have identical content cached
|
1022 |
-
|
1023 |
-
|
|
|
1024 |
if existing_content == cache_data.content:
|
1025 |
-
logger.info(
|
1026 |
-
f"Cache content unchanged for {cache_data.args_hash}, skipping update"
|
1027 |
-
)
|
1028 |
return
|
1029 |
|
1030 |
-
#
|
1031 |
-
|
1032 |
"return": cache_data.content,
|
1033 |
"cache_type": cache_data.cache_type,
|
1034 |
"chunk_id": cache_data.chunk_id if cache_data.chunk_id is not None else None,
|
@@ -1043,10 +937,10 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
|
|
1043 |
"original_prompt": cache_data.prompt,
|
1044 |
}
|
1045 |
|
1046 |
-
logger.info(f" == LLM cache == saving
|
1047 |
|
1048 |
-
#
|
1049 |
-
await hashing_kv.upsert({
|
1050 |
|
1051 |
|
1052 |
def safe_unicode_decode(content):
|
@@ -1529,6 +1423,48 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
|
|
1529 |
return import_class
|
1530 |
|
1531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1532 |
async def use_llm_func_with_cache(
|
1533 |
input_text: str,
|
1534 |
use_llm_func: callable,
|
@@ -1537,6 +1473,7 @@ async def use_llm_func_with_cache(
|
|
1537 |
history_messages: list[dict[str, str]] = None,
|
1538 |
cache_type: str = "extract",
|
1539 |
chunk_id: str | None = None,
|
|
|
1540 |
) -> str:
|
1541 |
"""Call LLM function with cache support
|
1542 |
|
@@ -1551,6 +1488,8 @@ async def use_llm_func_with_cache(
|
|
1551 |
history_messages: History messages list
|
1552 |
cache_type: Type of cache
|
1553 |
chunk_id: Chunk identifier to store in cache
|
|
|
|
|
1554 |
|
1555 |
Returns:
|
1556 |
LLM response text
|
@@ -1563,6 +1502,9 @@ async def use_llm_func_with_cache(
|
|
1563 |
_prompt = input_text
|
1564 |
|
1565 |
arg_hash = compute_args_hash(_prompt)
|
|
|
|
|
|
|
1566 |
cached_return, _1, _2, _3 = await handle_cache(
|
1567 |
llm_response_cache,
|
1568 |
arg_hash,
|
@@ -1573,6 +1515,11 @@ async def use_llm_func_with_cache(
|
|
1573 |
if cached_return:
|
1574 |
logger.debug(f"Found cache for {arg_hash}")
|
1575 |
statistic_data["llm_cache"] += 1
|
|
|
|
|
|
|
|
|
|
|
1576 |
return cached_return
|
1577 |
statistic_data["llm_call"] += 1
|
1578 |
|
@@ -1597,6 +1544,10 @@ async def use_llm_func_with_cache(
|
|
1597 |
),
|
1598 |
)
|
1599 |
|
|
|
|
|
|
|
|
|
1600 |
return res
|
1601 |
|
1602 |
# When cache is disabled, directly call LLM
|
|
|
14 |
from hashlib import md5
|
15 |
from typing import Any, Protocol, Callable, TYPE_CHECKING, List
|
16 |
import numpy as np
|
|
|
17 |
from dotenv import load_dotenv
|
18 |
from lightrag.constants import (
|
19 |
DEFAULT_LOG_MAX_BYTES,
|
|
|
277 |
raise e from None
|
278 |
|
279 |
|
280 |
+
def compute_args_hash(*args: Any) -> str:
|
281 |
"""Compute a hash for the given arguments.
|
282 |
Args:
|
283 |
*args: Arguments to hash
|
|
|
284 |
Returns:
|
285 |
str: Hash string
|
286 |
"""
|
|
|
288 |
|
289 |
# Convert all arguments to strings and join them
|
290 |
args_str = "".join([str(arg) for arg in args])
|
|
|
|
|
291 |
|
292 |
# Compute MD5 hash
|
293 |
return hashlib.md5(args_str.encode()).hexdigest()
|
294 |
|
295 |
|
296 |
+
def generate_cache_key(mode: str, cache_type: str, hash_value: str) -> str:
|
297 |
+
"""Generate a flattened cache key in the format {mode}:{cache_type}:{hash}
|
298 |
+
|
299 |
+
Args:
|
300 |
+
mode: Cache mode (e.g., 'default', 'local', 'global')
|
301 |
+
cache_type: Type of cache (e.g., 'extract', 'query', 'keywords')
|
302 |
+
hash_value: Hash value from compute_args_hash
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
str: Flattened cache key
|
306 |
+
"""
|
307 |
+
return f"{mode}:{cache_type}:{hash_value}"
|
308 |
+
|
309 |
+
|
310 |
+
def parse_cache_key(cache_key: str) -> tuple[str, str, str] | None:
|
311 |
+
"""Parse a flattened cache key back into its components
|
312 |
+
|
313 |
+
Args:
|
314 |
+
cache_key: Flattened cache key in format {mode}:{cache_type}:{hash}
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
tuple[str, str, str] | None: (mode, cache_type, hash) or None if invalid format
|
318 |
+
"""
|
319 |
+
parts = cache_key.split(":", 2)
|
320 |
+
if len(parts) == 3:
|
321 |
+
return parts[0], parts[1], parts[2]
|
322 |
+
return None
|
323 |
+
|
324 |
+
|
325 |
def compute_mdhash_id(content: str, prefix: str = "") -> str:
|
326 |
"""
|
327 |
Compute a unique ID for a given content string.
|
|
|
808 |
return combined_data
|
809 |
|
810 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
def cosine_similarity(v1, v2):
|
812 |
"""Calculate cosine similarity between two vectors"""
|
813 |
dot_product = np.dot(v1, v2)
|
|
|
857 |
mode="default",
|
858 |
cache_type=None,
|
859 |
):
|
860 |
+
"""Generic cache handling function with flattened cache keys"""
|
861 |
if hashing_kv is None:
|
862 |
return None, None, None, None
|
863 |
|
|
|
868 |
if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"):
|
869 |
return None, None, None, None
|
870 |
|
871 |
+
# Use flattened cache key format: {mode}:{cache_type}:{hash}
|
872 |
+
flattened_key = generate_cache_key(mode, cache_type, args_hash)
|
873 |
+
cache_entry = await hashing_kv.get_by_id(flattened_key)
|
874 |
+
if cache_entry:
|
875 |
+
logger.debug(f"Flattened cache hit(key:{flattened_key})")
|
876 |
+
return cache_entry["return"], None, None, None
|
|
|
877 |
|
878 |
+
logger.debug(f"Cache missed(mode:{mode} type:{cache_type})")
|
879 |
return None, None, None, None
|
880 |
|
881 |
|
|
|
893 |
|
894 |
|
895 |
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
896 |
+
"""Save data to cache using flattened key structure.
|
897 |
|
898 |
Args:
|
899 |
hashing_kv: The key-value storage for caching
|
|
|
908 |
logger.debug("Streaming response detected, skipping cache")
|
909 |
return
|
910 |
|
911 |
+
# Use flattened cache key format: {mode}:{cache_type}:{hash}
|
912 |
+
flattened_key = generate_cache_key(
|
913 |
+
cache_data.mode, cache_data.cache_type, cache_data.args_hash
|
914 |
+
)
|
|
|
|
|
|
|
|
|
915 |
|
916 |
# Check if we already have identical content cached
|
917 |
+
existing_cache = await hashing_kv.get_by_id(flattened_key)
|
918 |
+
if existing_cache:
|
919 |
+
existing_content = existing_cache.get("return")
|
920 |
if existing_content == cache_data.content:
|
921 |
+
logger.info(f"Cache content unchanged for {flattened_key}, skipping update")
|
|
|
|
|
922 |
return
|
923 |
|
924 |
+
# Create cache entry with flattened structure
|
925 |
+
cache_entry = {
|
926 |
"return": cache_data.content,
|
927 |
"cache_type": cache_data.cache_type,
|
928 |
"chunk_id": cache_data.chunk_id if cache_data.chunk_id is not None else None,
|
|
|
937 |
"original_prompt": cache_data.prompt,
|
938 |
}
|
939 |
|
940 |
+
logger.info(f" == LLM cache == saving: {flattened_key}")
|
941 |
|
942 |
+
# Save using flattened key
|
943 |
+
await hashing_kv.upsert({flattened_key: cache_entry})
|
944 |
|
945 |
|
946 |
def safe_unicode_decode(content):
|
|
|
1423 |
return import_class
|
1424 |
|
1425 |
|
1426 |
+
async def update_chunk_cache_list(
|
1427 |
+
chunk_id: str,
|
1428 |
+
text_chunks_storage: "BaseKVStorage",
|
1429 |
+
cache_keys: list[str],
|
1430 |
+
cache_scenario: str = "batch_update",
|
1431 |
+
) -> None:
|
1432 |
+
"""Update chunk's llm_cache_list with the given cache keys
|
1433 |
+
|
1434 |
+
Args:
|
1435 |
+
chunk_id: Chunk identifier
|
1436 |
+
text_chunks_storage: Text chunks storage instance
|
1437 |
+
cache_keys: List of cache keys to add to the list
|
1438 |
+
cache_scenario: Description of the cache scenario for logging
|
1439 |
+
"""
|
1440 |
+
if not cache_keys:
|
1441 |
+
return
|
1442 |
+
|
1443 |
+
try:
|
1444 |
+
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
1445 |
+
if chunk_data:
|
1446 |
+
# Ensure llm_cache_list exists
|
1447 |
+
if "llm_cache_list" not in chunk_data:
|
1448 |
+
chunk_data["llm_cache_list"] = []
|
1449 |
+
|
1450 |
+
# Add cache keys to the list if not already present
|
1451 |
+
existing_keys = set(chunk_data["llm_cache_list"])
|
1452 |
+
new_keys = [key for key in cache_keys if key not in existing_keys]
|
1453 |
+
|
1454 |
+
if new_keys:
|
1455 |
+
chunk_data["llm_cache_list"].extend(new_keys)
|
1456 |
+
|
1457 |
+
# Update the chunk in storage
|
1458 |
+
await text_chunks_storage.upsert({chunk_id: chunk_data})
|
1459 |
+
logger.debug(
|
1460 |
+
f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})"
|
1461 |
+
)
|
1462 |
+
except Exception as e:
|
1463 |
+
logger.warning(
|
1464 |
+
f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}"
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
|
1468 |
async def use_llm_func_with_cache(
|
1469 |
input_text: str,
|
1470 |
use_llm_func: callable,
|
|
|
1473 |
history_messages: list[dict[str, str]] = None,
|
1474 |
cache_type: str = "extract",
|
1475 |
chunk_id: str | None = None,
|
1476 |
+
cache_keys_collector: list = None,
|
1477 |
) -> str:
|
1478 |
"""Call LLM function with cache support
|
1479 |
|
|
|
1488 |
history_messages: History messages list
|
1489 |
cache_type: Type of cache
|
1490 |
chunk_id: Chunk identifier to store in cache
|
1491 |
+
text_chunks_storage: Text chunks storage to update llm_cache_list
|
1492 |
+
cache_keys_collector: Optional list to collect cache keys for batch processing
|
1493 |
|
1494 |
Returns:
|
1495 |
LLM response text
|
|
|
1502 |
_prompt = input_text
|
1503 |
|
1504 |
arg_hash = compute_args_hash(_prompt)
|
1505 |
+
# Generate cache key for this LLM call
|
1506 |
+
cache_key = generate_cache_key("default", cache_type, arg_hash)
|
1507 |
+
|
1508 |
cached_return, _1, _2, _3 = await handle_cache(
|
1509 |
llm_response_cache,
|
1510 |
arg_hash,
|
|
|
1515 |
if cached_return:
|
1516 |
logger.debug(f"Found cache for {arg_hash}")
|
1517 |
statistic_data["llm_cache"] += 1
|
1518 |
+
|
1519 |
+
# Add cache key to collector if provided
|
1520 |
+
if cache_keys_collector is not None:
|
1521 |
+
cache_keys_collector.append(cache_key)
|
1522 |
+
|
1523 |
return cached_return
|
1524 |
statistic_data["llm_call"] += 1
|
1525 |
|
|
|
1544 |
),
|
1545 |
)
|
1546 |
|
1547 |
+
# Add cache key to collector if provided
|
1548 |
+
if cache_keys_collector is not None:
|
1549 |
+
cache_keys_collector.append(cache_key)
|
1550 |
+
|
1551 |
return res
|
1552 |
|
1553 |
# When cache is disabled, directly call LLM
|
lightrag/utils_graph.py
CHANGED
@@ -6,7 +6,7 @@ from typing import Any, cast
|
|
6 |
|
7 |
from .base import DeletionResult
|
8 |
from .kg.shared_storage import get_graph_db_lock
|
9 |
-
from .
|
10 |
from .utils import compute_mdhash_id, logger
|
11 |
from .base import StorageNameSpace
|
12 |
|
|
|
6 |
|
7 |
from .base import DeletionResult
|
8 |
from .kg.shared_storage import get_graph_db_lock
|
9 |
+
from .constants import GRAPH_FIELD_SEP
|
10 |
from .utils import compute_mdhash_id, logger
|
11 |
from .base import StorageNameSpace
|
12 |
|
reproduce/batch_eval.py
CHANGED
@@ -57,6 +57,10 @@ def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
|
57 |
"Winner": "[Answer 1 or Answer 2]",
|
58 |
"Explanation": "[Provide explanation here]"
|
59 |
}},
|
|
|
|
|
|
|
|
|
60 |
"Empowerment": {{
|
61 |
"Winner": "[Answer 1 or Answer 2]",
|
62 |
"Explanation": "[Provide explanation here]"
|
|
|
57 |
"Winner": "[Answer 1 or Answer 2]",
|
58 |
"Explanation": "[Provide explanation here]"
|
59 |
}},
|
60 |
+
"Diversity": {{
|
61 |
+
"Winner": "[Answer 1 or Answer 2]",
|
62 |
+
"Explanation": "[Provide explanation here]"
|
63 |
+
}},
|
64 |
"Empowerment": {{
|
65 |
"Winner": "[Answer 1 or Answer 2]",
|
66 |
"Explanation": "[Provide explanation here]"
|
tests/test_graph_storage.py
CHANGED
@@ -8,6 +8,7 @@
|
|
8 |
ζ―ζηεΎεε¨η±»εε
ζ¬οΌ
|
9 |
- NetworkXStorage
|
10 |
- Neo4JStorage
|
|
|
11 |
- PGGraphStorage
|
12 |
- MemgraphStorage
|
13 |
"""
|
|
|
8 |
ζ―ζηεΎεε¨η±»εε
ζ¬οΌ
|
9 |
- NetworkXStorage
|
10 |
- Neo4JStorage
|
11 |
+
- MongoDBStorage
|
12 |
- PGGraphStorage
|
13 |
- MemgraphStorage
|
14 |
"""
|