jin commited on
Commit
99f5836
·
1 Parent(s): 55feb16

Update insert_custom_kg.py

Browse files
Files changed (1) hide show
  1. examples/insert_custom_kg.py +16 -16
examples/insert_custom_kg.py CHANGED
@@ -1,5 +1,5 @@
1
  import os
2
- from lightrag import LightRAG, QueryParam
3
  from lightrag.llm import gpt_4o_mini_complete
4
  #########
5
  # Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
@@ -24,50 +24,50 @@ custom_kg = {
24
  "entity_name": "CompanyA",
25
  "entity_type": "Organization",
26
  "description": "A major technology company",
27
- "source_id": "Source1"
28
  },
29
  {
30
  "entity_name": "ProductX",
31
  "entity_type": "Product",
32
  "description": "A popular product developed by CompanyA",
33
- "source_id": "Source1"
34
  },
35
  {
36
  "entity_name": "PersonA",
37
  "entity_type": "Person",
38
  "description": "A renowned researcher in AI",
39
- "source_id": "Source2"
40
  },
41
  {
42
  "entity_name": "UniversityB",
43
  "entity_type": "Organization",
44
  "description": "A leading university specializing in technology and sciences",
45
- "source_id": "Source2"
46
  },
47
  {
48
  "entity_name": "CityC",
49
  "entity_type": "Location",
50
  "description": "A large metropolitan city known for its culture and economy",
51
- "source_id": "Source3"
52
  },
53
  {
54
  "entity_name": "EventY",
55
  "entity_type": "Event",
56
  "description": "An annual technology conference held in CityC",
57
- "source_id": "Source3"
58
  },
59
  {
60
  "entity_name": "CompanyD",
61
  "entity_type": "Organization",
62
  "description": "A financial services company specializing in insurance",
63
- "source_id": "Source4"
64
  },
65
  {
66
  "entity_name": "ServiceZ",
67
  "entity_type": "Service",
68
  "description": "An insurance product offered by CompanyD",
69
- "source_id": "Source4"
70
- }
71
  ],
72
  "relationships": [
73
  {
@@ -76,7 +76,7 @@ custom_kg = {
76
  "description": "CompanyA develops ProductX",
77
  "keywords": "develop, produce",
78
  "weight": 1.0,
79
- "source_id": "Source1"
80
  },
81
  {
82
  "src_id": "PersonA",
@@ -84,7 +84,7 @@ custom_kg = {
84
  "description": "PersonA works at UniversityB",
85
  "keywords": "employment, affiliation",
86
  "weight": 0.9,
87
- "source_id": "Source2"
88
  },
89
  {
90
  "src_id": "CityC",
@@ -92,7 +92,7 @@ custom_kg = {
92
  "description": "EventY is hosted in CityC",
93
  "keywords": "host, location",
94
  "weight": 0.8,
95
- "source_id": "Source3"
96
  },
97
  {
98
  "src_id": "CompanyD",
@@ -100,9 +100,9 @@ custom_kg = {
100
  "description": "CompanyD provides ServiceZ",
101
  "keywords": "provide, offer",
102
  "weight": 1.0,
103
- "source_id": "Source4"
104
- }
105
- ]
106
  }
107
 
108
  rag.insert_custom_kg(custom_kg)
 
1
  import os
2
+ from lightrag import LightRAG
3
  from lightrag.llm import gpt_4o_mini_complete
4
  #########
5
  # Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
 
24
  "entity_name": "CompanyA",
25
  "entity_type": "Organization",
26
  "description": "A major technology company",
27
+ "source_id": "Source1",
28
  },
29
  {
30
  "entity_name": "ProductX",
31
  "entity_type": "Product",
32
  "description": "A popular product developed by CompanyA",
33
+ "source_id": "Source1",
34
  },
35
  {
36
  "entity_name": "PersonA",
37
  "entity_type": "Person",
38
  "description": "A renowned researcher in AI",
39
+ "source_id": "Source2",
40
  },
41
  {
42
  "entity_name": "UniversityB",
43
  "entity_type": "Organization",
44
  "description": "A leading university specializing in technology and sciences",
45
+ "source_id": "Source2",
46
  },
47
  {
48
  "entity_name": "CityC",
49
  "entity_type": "Location",
50
  "description": "A large metropolitan city known for its culture and economy",
51
+ "source_id": "Source3",
52
  },
53
  {
54
  "entity_name": "EventY",
55
  "entity_type": "Event",
56
  "description": "An annual technology conference held in CityC",
57
+ "source_id": "Source3",
58
  },
59
  {
60
  "entity_name": "CompanyD",
61
  "entity_type": "Organization",
62
  "description": "A financial services company specializing in insurance",
63
+ "source_id": "Source4",
64
  },
65
  {
66
  "entity_name": "ServiceZ",
67
  "entity_type": "Service",
68
  "description": "An insurance product offered by CompanyD",
69
+ "source_id": "Source4",
70
+ },
71
  ],
72
  "relationships": [
73
  {
 
76
  "description": "CompanyA develops ProductX",
77
  "keywords": "develop, produce",
78
  "weight": 1.0,
79
+ "source_id": "Source1",
80
  },
81
  {
82
  "src_id": "PersonA",
 
84
  "description": "PersonA works at UniversityB",
85
  "keywords": "employment, affiliation",
86
  "weight": 0.9,
87
+ "source_id": "Source2",
88
  },
89
  {
90
  "src_id": "CityC",
 
92
  "description": "EventY is hosted in CityC",
93
  "keywords": "host, location",
94
  "weight": 0.8,
95
+ "source_id": "Source3",
96
  },
97
  {
98
  "src_id": "CompanyD",
 
100
  "description": "CompanyD provides ServiceZ",
101
  "keywords": "provide, offer",
102
  "weight": 1.0,
103
+ "source_id": "Source4",
104
+ },
105
+ ],
106
  }
107
 
108
  rag.insert_custom_kg(custom_kg)