Merge pull request #116 from Dormiveglia-elf/hotfix/embedding-dim
Browse files
examples/lightrag_openai_compatible_demo.py
CHANGED
@@ -34,6 +34,13 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
34 |
)
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# function test
|
38 |
async def test_funcs():
|
39 |
result = await llm_model_func("How are you?")
|
@@ -43,37 +50,46 @@ async def test_funcs():
|
|
43 |
print("embedding_func: ", result)
|
44 |
|
45 |
|
46 |
-
asyncio.run(test_funcs())
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
rag = LightRAG(
|
50 |
-
working_dir=WORKING_DIR,
|
51 |
-
llm_model_func=llm_model_func,
|
52 |
-
embedding_func=EmbeddingFunc(
|
53 |
-
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
54 |
-
),
|
55 |
-
)
|
56 |
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
# Perform
|
62 |
-
print(
|
63 |
-
|
64 |
-
)
|
65 |
|
66 |
-
# Perform
|
67 |
-
print(
|
68 |
-
|
69 |
-
)
|
70 |
|
71 |
-
# Perform
|
72 |
-
print(
|
73 |
-
|
74 |
-
)
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
79 |
-
)
|
|
|
34 |
)
|
35 |
|
36 |
|
37 |
+
async def get_embedding_dim():
|
38 |
+
test_text = ["This is a test sentence."]
|
39 |
+
embedding = await embedding_func(test_text)
|
40 |
+
embedding_dim = embedding.shape[1]
|
41 |
+
return embedding_dim
|
42 |
+
|
43 |
+
|
44 |
# function test
|
45 |
async def test_funcs():
|
46 |
result = await llm_model_func("How are you?")
|
|
|
50 |
print("embedding_func: ", result)
|
51 |
|
52 |
|
53 |
+
# asyncio.run(test_funcs())
|
54 |
+
|
55 |
+
async def main():
|
56 |
+
try:
|
57 |
+
embedding_dimension = await get_embedding_dim()
|
58 |
+
print(f"Detected embedding dimension: {embedding_dimension}")
|
59 |
|
60 |
+
rag = LightRAG(
|
61 |
+
working_dir=WORKING_DIR,
|
62 |
+
llm_model_func=llm_model_func,
|
63 |
+
embedding_func=EmbeddingFunc(
|
64 |
+
embedding_dim=embedding_dimension, max_token_size=8192, func=embedding_func
|
65 |
+
),
|
66 |
+
)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
with open("./book.txt", "r", encoding="utf-8") as f:
|
70 |
+
rag.insert(f.read())
|
71 |
|
72 |
+
# Perform naive search
|
73 |
+
print(
|
74 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
75 |
+
)
|
76 |
|
77 |
+
# Perform local search
|
78 |
+
print(
|
79 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
80 |
+
)
|
81 |
|
82 |
+
# Perform global search
|
83 |
+
print(
|
84 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
85 |
+
)
|
86 |
|
87 |
+
# Perform hybrid search
|
88 |
+
print(
|
89 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
90 |
+
)
|
91 |
+
except Exception as e:
|
92 |
+
print(f"An error occurred: {e}")
|
93 |
|
94 |
+
if __name__ == "__main__":
|
95 |
+
asyncio.run(main())
|
|
|
|