LarFii commited on
Commit
9f4950c
·
1 Parent(s): 37b31db
README.md CHANGED
@@ -655,16 +655,19 @@ setup_logger("lightrag", level="INFO")
655
 
656
  # Note: Default settings use NetworkX
657
  # Initialize LightRAG with Neo4J implementation.
658
- rag = LightRAG(
659
- working_dir=WORKING_DIR,
660
- llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
661
- graph_storage="Neo4JStorage", #<-----------override KG default
662
- )
 
663
 
664
- # Initialize database connections
665
- await rag.initialize_storages()
666
- # Initialize pipeline status for document processing
667
- await initialize_pipeline_status()
 
 
668
  ```
669
  see test_neo4j.py for a working example.
670
 
 
655
 
656
  # Note: Default settings use NetworkX
657
  # Initialize LightRAG with Neo4J implementation.
658
+ async def initialize_rag():
659
+ rag = LightRAG(
660
+ working_dir=WORKING_DIR,
661
+ llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
662
+ graph_storage="Neo4JStorage", #<-----------override KG default
663
+ )
664
 
665
+ # Initialize database connections
666
+ await rag.initialize_storages()
667
+ # Initialize pipeline status for document processing
668
+ await initialize_pipeline_status()
669
+
670
+ return rag
671
  ```
672
  see test_neo4j.py for a working example.
673
 
examples/lightrag_azure_openai_demo.py CHANGED
@@ -81,34 +81,46 @@ asyncio.run(test_funcs())
81
 
82
  embedding_dimension = 3072
83
 
84
- rag = LightRAG(
85
- working_dir=WORKING_DIR,
86
- llm_model_func=llm_model_func,
87
- embedding_func=EmbeddingFunc(
88
- embedding_dim=embedding_dimension,
89
- max_token_size=8192,
90
- func=embedding_func,
91
- ),
92
- )
93
 
94
- rag.initialize_storages()
95
- initialize_pipeline_status()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
- book1 = open("./book_1.txt", encoding="utf-8")
98
- book2 = open("./book_2.txt", encoding="utf-8")
99
 
100
- rag.insert([book1.read(), book2.read()])
 
101
 
102
- query_text = "What are the main themes?"
 
103
 
104
- print("Result (Naive):")
105
- print(rag.query(query_text, param=QueryParam(mode="naive")))
106
 
107
- print("\nResult (Local):")
108
- print(rag.query(query_text, param=QueryParam(mode="local")))
109
 
110
- print("\nResult (Global):")
111
- print(rag.query(query_text, param=QueryParam(mode="global")))
112
 
113
- print("\nResult (Hybrid):")
114
- print(rag.query(query_text, param=QueryParam(mode="hybrid")))
 
81
 
82
  embedding_dimension = 3072
83
 
 
 
 
 
 
 
 
 
 
84
 
85
+ async def initialize_rag():
86
+ rag = LightRAG(
87
+ working_dir=WORKING_DIR,
88
+ llm_model_func=llm_model_func,
89
+ embedding_func=EmbeddingFunc(
90
+ embedding_dim=embedding_dimension,
91
+ max_token_size=8192,
92
+ func=embedding_func,
93
+ ),
94
+ )
95
+
96
+ await rag.initialize_storages()
97
+ await initialize_pipeline_status()
98
+
99
+ return rag
100
+
101
+
102
+ def main():
103
+ rag = asyncio.run(initialize_rag())
104
+
105
+ book1 = open("./book_1.txt", encoding="utf-8")
106
+ book2 = open("./book_2.txt", encoding="utf-8")
107
+
108
+ rag.insert([book1.read(), book2.read()])
109
 
110
+ query_text = "What are the main themes?"
 
111
 
112
+ print("Result (Naive):")
113
+ print(rag.query(query_text, param=QueryParam(mode="naive")))
114
 
115
+ print("\nResult (Local):")
116
+ print(rag.query(query_text, param=QueryParam(mode="local")))
117
 
118
+ print("\nResult (Global):")
119
+ print(rag.query(query_text, param=QueryParam(mode="global")))
120
 
121
+ print("\nResult (Hybrid):")
122
+ print(rag.query(query_text, param=QueryParam(mode="hybrid")))
123
 
 
 
124
 
125
+ if __name__ == "__main__":
126
+ main()
examples/lightrag_bedrock_demo.py CHANGED
@@ -53,3 +53,7 @@ def main():
53
  "What are the top themes in this story?", param=QueryParam(mode=mode)
54
  )
55
  )
 
 
 
 
 
53
  "What are the top themes in this story?", param=QueryParam(mode=mode)
54
  )
55
  )
56
+
57
+
58
+ if __name__ == "__main__":
59
+ main()
examples/lightrag_nvidia_demo.py CHANGED
@@ -125,7 +125,7 @@ async def initialize_rag():
125
  async def main():
126
  try:
127
  # Initialize RAG instance
128
- rag = asyncio.run(initialize_rag())
129
 
130
  # reading file
131
  with open("./book.txt", "r", encoding="utf-8") as f:
 
125
  async def main():
126
  try:
127
  # Initialize RAG instance
128
+ rag = await initialize_rag()
129
 
130
  # reading file
131
  with open("./book.txt", "r", encoding="utf-8") as f:
examples/lightrag_openai_compatible_demo.py CHANGED
@@ -77,7 +77,7 @@ async def initialize_rag():
77
  async def main():
78
  try:
79
  # Initialize RAG instance
80
- rag = asyncio.run(initialize_rag())
81
 
82
  with open("./book.txt", "r", encoding="utf-8") as f:
83
  await rag.ainsert(f.read())
 
77
  async def main():
78
  try:
79
  # Initialize RAG instance
80
+ rag = await initialize_rag()
81
 
82
  with open("./book.txt", "r", encoding="utf-8") as f:
83
  await rag.ainsert(f.read())
examples/lightrag_openai_compatible_demo_embedding_cache.py CHANGED
@@ -81,7 +81,7 @@ async def initialize_rag():
81
  async def main():
82
  try:
83
  # Initialize RAG instance
84
- rag = asyncio.run(initialize_rag())
85
 
86
  with open("./book.txt", "r", encoding="utf-8") as f:
87
  await rag.ainsert(f.read())
 
81
  async def main():
82
  try:
83
  # Initialize RAG instance
84
+ rag = await initialize_rag()
85
 
86
  with open("./book.txt", "r", encoding="utf-8") as f:
87
  await rag.ainsert(f.read())
examples/lightrag_oracle_demo.py CHANGED
@@ -107,7 +107,7 @@ async def initialize_rag():
107
  async def main():
108
  try:
109
  # Initialize RAG instance
110
- rag = asyncio.run(initialize_rag())
111
 
112
  # Extract and Insert into LightRAG storage
113
  with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
 
107
  async def main():
108
  try:
109
  # Initialize RAG instance
110
+ rag = await initialize_rag()
111
 
112
  # Extract and Insert into LightRAG storage
113
  with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
examples/lightrag_tidb_demo.py CHANGED
@@ -87,7 +87,7 @@ async def initialize_rag():
87
  async def main():
88
  try:
89
  # Initialize RAG instance
90
- rag = asyncio.run(initialize_rag())
91
 
92
  with open("./book.txt", "r", encoding="utf-8") as f:
93
  rag.insert(f.read())
 
87
  async def main():
88
  try:
89
  # Initialize RAG instance
90
+ rag = await initialize_rag()
91
 
92
  with open("./book.txt", "r", encoding="utf-8") as f:
93
  rag.insert(f.read())
examples/lightrag_zhipu_postgres_demo.py CHANGED
@@ -59,7 +59,7 @@ async def initialize_rag():
59
 
60
  async def main():
61
  # Initialize RAG instance
62
- rag = asyncio.run(initialize_rag())
63
 
64
  # add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
65
  rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
 
59
 
60
  async def main():
61
  # Initialize RAG instance
62
+ rag = await initialize_rag()
63
 
64
  # add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
65
  rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
examples/query_keyword_separation_example.py CHANGED
@@ -102,7 +102,7 @@ async def initialize_rag():
102
  # Example function demonstrating the new query_with_separate_keyword_extraction usage
103
  async def run_example():
104
  # Initialize RAG instance
105
- rag = asyncio.run(initialize_rag())
106
 
107
  book1 = open("./book_1.txt", encoding="utf-8")
108
  book2 = open("./book_2.txt", encoding="utf-8")
 
102
  # Example function demonstrating the new query_with_separate_keyword_extraction usage
103
  async def run_example():
104
  # Initialize RAG instance
105
+ rag = await initialize_rag()
106
 
107
  book1 = open("./book_1.txt", encoding="utf-8")
108
  book2 = open("./book_2.txt", encoding="utf-8")