LarFii
commited on
Commit
·
a25342b
1
Parent(s):
6e3b972
update insert custom kg
Browse files- Dockerfile +0 -56
- README.md +17 -53
- examples/insert_custom_kg.py +16 -18
- examples/lightrag_nvidia_demo.py +34 -25
- lightrag/__init__.py +1 -1
- lightrag/lightrag.py +36 -2
- lightrag/llm.py +12 -6
- lightrag/operate.py +3 -2
Dockerfile
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
FROM debian:bullseye-slim
|
2 |
-
ENV JAVA_HOME=/opt/java/openjdk
|
3 |
-
COPY --from=eclipse-temurin:17 $JAVA_HOME $JAVA_HOME
|
4 |
-
ENV PATH="${JAVA_HOME}/bin:${PATH}" \
|
5 |
-
NEO4J_SHA256=7ce97bd9a4348af14df442f00b3dc5085b5983d6f03da643744838c7a1bc8ba7 \
|
6 |
-
NEO4J_TARBALL=neo4j-enterprise-5.24.2-unix.tar.gz \
|
7 |
-
NEO4J_EDITION=enterprise \
|
8 |
-
NEO4J_HOME="/var/lib/neo4j" \
|
9 |
-
LANG=C.UTF-8
|
10 |
-
ARG NEO4J_URI=https://dist.neo4j.org/neo4j-enterprise-5.24.2-unix.tar.gz
|
11 |
-
|
12 |
-
RUN addgroup --gid 7474 --system neo4j && adduser --uid 7474 --system --no-create-home --home "${NEO4J_HOME}" --ingroup neo4j neo4j
|
13 |
-
|
14 |
-
COPY ./local-package/* /startup/
|
15 |
-
|
16 |
-
RUN apt update \
|
17 |
-
&& apt-get install -y curl gcc git jq make procps tini wget \
|
18 |
-
&& curl --fail --silent --show-error --location --remote-name ${NEO4J_URI} \
|
19 |
-
&& echo "${NEO4J_SHA256} ${NEO4J_TARBALL}" | sha256sum -c --strict --quiet \
|
20 |
-
&& tar --extract --file ${NEO4J_TARBALL} --directory /var/lib \
|
21 |
-
&& mv /var/lib/neo4j-* "${NEO4J_HOME}" \
|
22 |
-
&& rm ${NEO4J_TARBALL} \
|
23 |
-
&& sed -i 's/Package Type:.*/Package Type: docker bullseye/' $NEO4J_HOME/packaging_info \
|
24 |
-
&& mv /startup/neo4j-admin-report.sh "${NEO4J_HOME}"/bin/neo4j-admin-report \
|
25 |
-
&& mv "${NEO4J_HOME}"/data /data \
|
26 |
-
&& mv "${NEO4J_HOME}"/logs /logs \
|
27 |
-
&& chown -R neo4j:neo4j /data \
|
28 |
-
&& chmod -R 777 /data \
|
29 |
-
&& chown -R neo4j:neo4j /logs \
|
30 |
-
&& chmod -R 777 /logs \
|
31 |
-
&& chown -R neo4j:neo4j "${NEO4J_HOME}" \
|
32 |
-
&& chmod -R 777 "${NEO4J_HOME}" \
|
33 |
-
&& chmod -R 755 "${NEO4J_HOME}/bin" \
|
34 |
-
&& ln -s /data "${NEO4J_HOME}"/data \
|
35 |
-
&& ln -s /logs "${NEO4J_HOME}"/logs \
|
36 |
-
&& git clone https://github.com/ncopa/su-exec.git \
|
37 |
-
&& cd su-exec \
|
38 |
-
&& git checkout 4c3bb42b093f14da70d8ab924b487ccfbb1397af \
|
39 |
-
&& echo d6c40440609a23483f12eb6295b5191e94baf08298a856bab6e15b10c3b82891 su-exec.c | sha256sum -c \
|
40 |
-
&& echo 2a87af245eb125aca9305a0b1025525ac80825590800f047419dc57bba36b334 Makefile | sha256sum -c \
|
41 |
-
&& make \
|
42 |
-
&& mv /su-exec/su-exec /usr/bin/su-exec \
|
43 |
-
&& apt-get -y purge --auto-remove curl gcc git make \
|
44 |
-
&& rm -rf /var/lib/apt/lists/* /su-exec
|
45 |
-
|
46 |
-
|
47 |
-
ENV PATH "${NEO4J_HOME}"/bin:$PATH
|
48 |
-
|
49 |
-
WORKDIR "${NEO4J_HOME}"
|
50 |
-
|
51 |
-
VOLUME /data /logs
|
52 |
-
|
53 |
-
EXPOSE 7474 7473 7687
|
54 |
-
|
55 |
-
ENTRYPOINT ["tini", "-g", "--", "/startup/docker-entrypoint.sh"]
|
56 |
-
CMD ["neo4j"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -42,9 +42,9 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|
42 |
## Algorithm Flowchart
|
43 |
|
44 |

|
45 |
-
*Figure 1: LightRAG Indexing Flowchart*
|
46 |

|
47 |
-
*Figure 2: LightRAG Retrieval and Querying Flowchart*
|
48 |
|
49 |
## Install
|
50 |
|
@@ -364,7 +364,21 @@ custom_kg = {
|
|
364 |
"weight": 1.0,
|
365 |
"source_id": "Source1"
|
366 |
}
|
367 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
}
|
369 |
|
370 |
rag.insert_custom_kg(custom_kg)
|
@@ -947,56 +961,6 @@ def extract_queries(file_path):
|
|
947 |
```
|
948 |
</details>
|
949 |
|
950 |
-
## Code Structure
|
951 |
-
|
952 |
-
```python
|
953 |
-
.
|
954 |
-
├── examples
|
955 |
-
│ ├── batch_eval.py
|
956 |
-
│ ├── generate_query.py
|
957 |
-
│ ├── graph_visual_with_html.py
|
958 |
-
│ ├── graph_visual_with_neo4j.py
|
959 |
-
│ ├── lightrag_api_openai_compatible_demo.py
|
960 |
-
│ ├── lightrag_azure_openai_demo.py
|
961 |
-
│ ├── lightrag_bedrock_demo.py
|
962 |
-
│ ├── lightrag_hf_demo.py
|
963 |
-
│ ├── lightrag_lmdeploy_demo.py
|
964 |
-
│ ├── lightrag_ollama_demo.py
|
965 |
-
│ ├── lightrag_openai_compatible_demo.py
|
966 |
-
│ ├── lightrag_openai_demo.py
|
967 |
-
│ ├── lightrag_siliconcloud_demo.py
|
968 |
-
│ └── vram_management_demo.py
|
969 |
-
├── lightrag
|
970 |
-
│ ├── kg
|
971 |
-
│ │ ├── __init__.py
|
972 |
-
│ │ └── neo4j_impl.py
|
973 |
-
│ ├── __init__.py
|
974 |
-
│ ├── base.py
|
975 |
-
│ ├── lightrag.py
|
976 |
-
│ ├── llm.py
|
977 |
-
│ ├── operate.py
|
978 |
-
│ ├── prompt.py
|
979 |
-
│ ├── storage.py
|
980 |
-
│ └── utils.py
|
981 |
-
├── reproduce
|
982 |
-
│ ├── Step_0.py
|
983 |
-
│ ├── Step_1_openai_compatible.py
|
984 |
-
│ ├── Step_1.py
|
985 |
-
│ ├── Step_2.py
|
986 |
-
│ ├── Step_3_openai_compatible.py
|
987 |
-
│ └── Step_3.py
|
988 |
-
├── .gitignore
|
989 |
-
├── .pre-commit-config.yaml
|
990 |
-
├── Dockerfile
|
991 |
-
├── get_all_edges_nx.py
|
992 |
-
├── LICENSE
|
993 |
-
├── README.md
|
994 |
-
├── requirements.txt
|
995 |
-
├── setup.py
|
996 |
-
├── test_neo4j.py
|
997 |
-
└── test.py
|
998 |
-
```
|
999 |
-
|
1000 |
## Star History
|
1001 |
|
1002 |
<a href="https://star-history.com/#HKUDS/LightRAG&Date">
|
|
|
42 |
## Algorithm Flowchart
|
43 |
|
44 |

|
45 |
+
*Figure 1: LightRAG Indexing Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*
|
46 |

|
47 |
+
*Figure 2: LightRAG Retrieval and Querying Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*
|
48 |
|
49 |
## Install
|
50 |
|
|
|
364 |
"weight": 1.0,
|
365 |
"source_id": "Source1"
|
366 |
}
|
367 |
+
],
|
368 |
+
"chunks": [
|
369 |
+
{
|
370 |
+
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
|
371 |
+
"source_id": "Source1",
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
|
375 |
+
"source_id": "Source2",
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"content": "None",
|
379 |
+
"source_id": "UNKNOWN",
|
380 |
+
},
|
381 |
+
],
|
382 |
}
|
383 |
|
384 |
rag.insert_custom_kg(custom_kg)
|
|
|
961 |
```
|
962 |
</details>
|
963 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
964 |
## Star History
|
965 |
|
966 |
<a href="https://star-history.com/#HKUDS/LightRAG&Date">
|
examples/insert_custom_kg.py
CHANGED
@@ -56,18 +56,6 @@ custom_kg = {
|
|
56 |
"description": "An annual technology conference held in CityC",
|
57 |
"source_id": "Source3",
|
58 |
},
|
59 |
-
{
|
60 |
-
"entity_name": "CompanyD",
|
61 |
-
"entity_type": "Organization",
|
62 |
-
"description": "A financial services company specializing in insurance",
|
63 |
-
"source_id": "Source4",
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"entity_name": "ServiceZ",
|
67 |
-
"entity_type": "Service",
|
68 |
-
"description": "An insurance product offered by CompanyD",
|
69 |
-
"source_id": "Source4",
|
70 |
-
},
|
71 |
],
|
72 |
"relationships": [
|
73 |
{
|
@@ -94,13 +82,23 @@ custom_kg = {
|
|
94 |
"weight": 0.8,
|
95 |
"source_id": "Source3",
|
96 |
},
|
|
|
|
|
97 |
{
|
98 |
-
"
|
99 |
-
"
|
100 |
-
|
101 |
-
|
102 |
-
"
|
103 |
-
"source_id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
},
|
105 |
],
|
106 |
}
|
|
|
56 |
"description": "An annual technology conference held in CityC",
|
57 |
"source_id": "Source3",
|
58 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
],
|
60 |
"relationships": [
|
61 |
{
|
|
|
82 |
"weight": 0.8,
|
83 |
"source_id": "Source3",
|
84 |
},
|
85 |
+
],
|
86 |
+
"chunks": [
|
87 |
{
|
88 |
+
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
|
89 |
+
"source_id": "Source1",
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
|
93 |
+
"source_id": "Source2",
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"content": "EventY, held in CityC, attracts technology enthusiasts and companies from around the globe.",
|
97 |
+
"source_id": "Source3",
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"content": "None",
|
101 |
+
"source_id": "UNKNOWN",
|
102 |
},
|
103 |
],
|
104 |
}
|
examples/lightrag_nvidia_demo.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import
|
|
|
|
|
|
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
8 |
-
#for custom llm_model_func
|
9 |
from lightrag.utils import locate_json_string_body_from_string
|
10 |
|
11 |
WORKING_DIR = "./dickens"
|
@@ -13,14 +16,15 @@ WORKING_DIR = "./dickens"
|
|
13 |
if not os.path.exists(WORKING_DIR):
|
14 |
os.mkdir(WORKING_DIR)
|
15 |
|
16 |
-
#some method to use your API key (choose one)
|
17 |
# NVIDIA_OPENAI_API_KEY = os.getenv("NVIDIA_OPENAI_API_KEY")
|
18 |
-
NVIDIA_OPENAI_API_KEY = "nvapi-xxxx"
|
19 |
|
20 |
# using pre-defined function for nvidia LLM API. OpenAI compatible
|
21 |
# llm_model_func = nvidia_openai_complete
|
22 |
|
23 |
-
|
|
|
24 |
async def llm_model_func(
|
25 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
26 |
) -> str:
|
@@ -37,36 +41,41 @@ async def llm_model_func(
|
|
37 |
return locate_json_string_body_from_string(result)
|
38 |
return result
|
39 |
|
40 |
-
|
|
|
41 |
nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
|
|
|
|
|
42 |
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
43 |
return await nvidia_openai_embedding(
|
44 |
texts,
|
45 |
-
model
|
46 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
47 |
api_key=NVIDIA_OPENAI_API_KEY,
|
48 |
base_url="https://integrate.api.nvidia.com/v1",
|
49 |
-
input_type
|
50 |
-
trunc
|
51 |
-
encode
|
52 |
)
|
53 |
|
|
|
54 |
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
55 |
return await nvidia_openai_embedding(
|
56 |
texts,
|
57 |
-
model
|
58 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
59 |
api_key=NVIDIA_OPENAI_API_KEY,
|
60 |
base_url="https://integrate.api.nvidia.com/v1",
|
61 |
-
input_type
|
62 |
-
trunc
|
63 |
-
encode
|
64 |
)
|
65 |
|
66 |
-
|
|
|
67 |
async def get_embedding_dim():
|
68 |
test_text = ["This is a test sentence."]
|
69 |
-
embedding = await indexing_embedding_func(test_text)
|
70 |
embedding_dim = embedding.shape[1]
|
71 |
return embedding_dim
|
72 |
|
@@ -88,29 +97,29 @@ async def main():
|
|
88 |
embedding_dimension = await get_embedding_dim()
|
89 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
90 |
|
91 |
-
#lightRAG class during indexing
|
92 |
rag = LightRAG(
|
93 |
working_dir=WORKING_DIR,
|
94 |
llm_model_func=llm_model_func,
|
95 |
-
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
96 |
embedding_func=EmbeddingFunc(
|
97 |
embedding_dim=embedding_dimension,
|
98 |
-
max_token_size=512,
|
99 |
-
#so truncate (trunc) parameter on embedding_func will handle it and try to examine the tokenizer used in LightRAG
|
100 |
-
#so you can adjust to be able to fit the NVIDIA model (future work)
|
101 |
func=indexing_embedding_func,
|
102 |
),
|
103 |
)
|
104 |
-
|
105 |
-
#reading file
|
106 |
with open("./book.txt", "r", encoding="utf-8") as f:
|
107 |
await rag.ainsert(f.read())
|
108 |
|
109 |
-
#redefine rag to change embedding into query type
|
110 |
rag = LightRAG(
|
111 |
working_dir=WORKING_DIR,
|
112 |
llm_model_func=llm_model_func,
|
113 |
-
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
114 |
embedding_func=EmbeddingFunc(
|
115 |
embedding_dim=embedding_dimension,
|
116 |
max_token_size=512,
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm import (
|
5 |
+
openai_complete_if_cache,
|
6 |
+
nvidia_openai_embedding,
|
7 |
+
)
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
import numpy as np
|
10 |
|
11 |
+
# for custom llm_model_func
|
12 |
from lightrag.utils import locate_json_string_body_from_string
|
13 |
|
14 |
WORKING_DIR = "./dickens"
|
|
|
16 |
if not os.path.exists(WORKING_DIR):
|
17 |
os.mkdir(WORKING_DIR)
|
18 |
|
19 |
+
# some method to use your API key (choose one)
|
20 |
# NVIDIA_OPENAI_API_KEY = os.getenv("NVIDIA_OPENAI_API_KEY")
|
21 |
+
NVIDIA_OPENAI_API_KEY = "nvapi-xxxx" # your api key
|
22 |
|
23 |
# using pre-defined function for nvidia LLM API. OpenAI compatible
|
24 |
# llm_model_func = nvidia_openai_complete
|
25 |
|
26 |
+
|
27 |
+
# If you trying to make custom llm_model_func to use llm model on NVIDIA API like other example:
|
28 |
async def llm_model_func(
|
29 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
30 |
) -> str:
|
|
|
41 |
return locate_json_string_body_from_string(result)
|
42 |
return result
|
43 |
|
44 |
+
|
45 |
+
# custom embedding
|
46 |
nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
|
47 |
+
|
48 |
+
|
49 |
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
50 |
return await nvidia_openai_embedding(
|
51 |
texts,
|
52 |
+
model=nvidia_embed_model, # maximum 512 token
|
53 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
54 |
api_key=NVIDIA_OPENAI_API_KEY,
|
55 |
base_url="https://integrate.api.nvidia.com/v1",
|
56 |
+
input_type="passage",
|
57 |
+
trunc="END", # handling on server side if input token is longer than maximum token
|
58 |
+
encode="float",
|
59 |
)
|
60 |
|
61 |
+
|
62 |
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
63 |
return await nvidia_openai_embedding(
|
64 |
texts,
|
65 |
+
model=nvidia_embed_model, # maximum 512 token
|
66 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
67 |
api_key=NVIDIA_OPENAI_API_KEY,
|
68 |
base_url="https://integrate.api.nvidia.com/v1",
|
69 |
+
input_type="query",
|
70 |
+
trunc="END", # handling on server side if input token is longer than maximum token
|
71 |
+
encode="float",
|
72 |
)
|
73 |
|
74 |
+
|
75 |
+
# dimension are same
|
76 |
async def get_embedding_dim():
|
77 |
test_text = ["This is a test sentence."]
|
78 |
+
embedding = await indexing_embedding_func(test_text)
|
79 |
embedding_dim = embedding.shape[1]
|
80 |
return embedding_dim
|
81 |
|
|
|
97 |
embedding_dimension = await get_embedding_dim()
|
98 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
99 |
|
100 |
+
# lightRAG class during indexing
|
101 |
rag = LightRAG(
|
102 |
working_dir=WORKING_DIR,
|
103 |
llm_model_func=llm_model_func,
|
104 |
+
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
105 |
embedding_func=EmbeddingFunc(
|
106 |
embedding_dim=embedding_dimension,
|
107 |
+
max_token_size=512, # maximum token size, somehow it's still exceed maximum number of token
|
108 |
+
# so truncate (trunc) parameter on embedding_func will handle it and try to examine the tokenizer used in LightRAG
|
109 |
+
# so you can adjust to be able to fit the NVIDIA model (future work)
|
110 |
func=indexing_embedding_func,
|
111 |
),
|
112 |
)
|
113 |
+
|
114 |
+
# reading file
|
115 |
with open("./book.txt", "r", encoding="utf-8") as f:
|
116 |
await rag.ainsert(f.read())
|
117 |
|
118 |
+
# redefine rag to change embedding into query type
|
119 |
rag = LightRAG(
|
120 |
working_dir=WORKING_DIR,
|
121 |
llm_model_func=llm_model_func,
|
122 |
+
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
123 |
embedding_func=EmbeddingFunc(
|
124 |
embedding_dim=embedding_dimension,
|
125 |
max_token_size=512,
|
lightrag/__init__.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
2 |
|
3 |
-
__version__ = "1.0.
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
|
|
1 |
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
2 |
|
3 |
+
__version__ = "1.0.3"
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
lightrag/lightrag.py
CHANGED
@@ -329,13 +329,39 @@ class LightRAG:
|
|
329 |
async def ainsert_custom_kg(self, custom_kg: dict):
|
330 |
update_storage = False
|
331 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
# Insert entities into knowledge graph
|
333 |
all_entities_data = []
|
334 |
for entity_data in custom_kg.get("entities", []):
|
335 |
entity_name = f'"{entity_data["entity_name"].upper()}"'
|
336 |
entity_type = entity_data.get("entity_type", "UNKNOWN")
|
337 |
description = entity_data.get("description", "No description provided")
|
338 |
-
source_id = entity_data["source_id"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
# Prepare node data
|
341 |
node_data = {
|
@@ -359,7 +385,15 @@ class LightRAG:
|
|
359 |
description = relationship_data["description"]
|
360 |
keywords = relationship_data["keywords"]
|
361 |
weight = relationship_data.get("weight", 1.0)
|
362 |
-
source_id = relationship_data["source_id"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
# Check if nodes exist in the knowledge graph
|
365 |
for need_insert_id in [src_id, tgt_id]:
|
|
|
329 |
async def ainsert_custom_kg(self, custom_kg: dict):
|
330 |
update_storage = False
|
331 |
try:
|
332 |
+
# Insert chunks into vector storage
|
333 |
+
all_chunks_data = {}
|
334 |
+
chunk_to_source_map = {}
|
335 |
+
for chunk_data in custom_kg.get("chunks", []):
|
336 |
+
chunk_content = chunk_data["content"]
|
337 |
+
source_id = chunk_data["source_id"]
|
338 |
+
chunk_id = compute_mdhash_id(chunk_content.strip(), prefix="chunk-")
|
339 |
+
|
340 |
+
chunk_entry = {"content": chunk_content.strip(), "source_id": source_id}
|
341 |
+
all_chunks_data[chunk_id] = chunk_entry
|
342 |
+
chunk_to_source_map[source_id] = chunk_id
|
343 |
+
update_storage = True
|
344 |
+
|
345 |
+
if self.chunks_vdb is not None and all_chunks_data:
|
346 |
+
await self.chunks_vdb.upsert(all_chunks_data)
|
347 |
+
if self.text_chunks is not None and all_chunks_data:
|
348 |
+
await self.text_chunks.upsert(all_chunks_data)
|
349 |
+
|
350 |
# Insert entities into knowledge graph
|
351 |
all_entities_data = []
|
352 |
for entity_data in custom_kg.get("entities", []):
|
353 |
entity_name = f'"{entity_data["entity_name"].upper()}"'
|
354 |
entity_type = entity_data.get("entity_type", "UNKNOWN")
|
355 |
description = entity_data.get("description", "No description provided")
|
356 |
+
# source_id = entity_data["source_id"]
|
357 |
+
source_chunk_id = entity_data.get("source_id", "UNKNOWN")
|
358 |
+
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
|
359 |
+
|
360 |
+
# Log if source_id is UNKNOWN
|
361 |
+
if source_id == "UNKNOWN":
|
362 |
+
logger.warning(
|
363 |
+
f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping."
|
364 |
+
)
|
365 |
|
366 |
# Prepare node data
|
367 |
node_data = {
|
|
|
385 |
description = relationship_data["description"]
|
386 |
keywords = relationship_data["keywords"]
|
387 |
weight = relationship_data.get("weight", 1.0)
|
388 |
+
# source_id = relationship_data["source_id"]
|
389 |
+
source_chunk_id = relationship_data.get("source_id", "UNKNOWN")
|
390 |
+
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
|
391 |
+
|
392 |
+
# Log if source_id is UNKNOWN
|
393 |
+
if source_id == "UNKNOWN":
|
394 |
+
logger.warning(
|
395 |
+
f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping."
|
396 |
+
)
|
397 |
|
398 |
# Check if nodes exist in the knowledge graph
|
399 |
for need_insert_id in [src_id, tgt_id]:
|
lightrag/llm.py
CHANGED
@@ -502,11 +502,12 @@ async def gpt_4o_mini_complete(
|
|
502 |
**kwargs,
|
503 |
)
|
504 |
|
|
|
505 |
async def nvidia_openai_complete(
|
506 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
507 |
) -> str:
|
508 |
result = await openai_complete_if_cache(
|
509 |
-
"nvidia/llama-3.1-nemotron-70b-instruct",
|
510 |
prompt,
|
511 |
system_prompt=system_prompt,
|
512 |
history_messages=history_messages,
|
@@ -517,6 +518,7 @@ async def nvidia_openai_complete(
|
|
517 |
return locate_json_string_body_from_string(result)
|
518 |
return result
|
519 |
|
|
|
520 |
async def azure_openai_complete(
|
521 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
522 |
) -> str:
|
@@ -610,12 +612,12 @@ async def openai_embedding(
|
|
610 |
)
|
611 |
async def nvidia_openai_embedding(
|
612 |
texts: list[str],
|
613 |
-
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1",
|
614 |
base_url: str = "https://integrate.api.nvidia.com/v1",
|
615 |
api_key: str = None,
|
616 |
-
input_type: str = "passage",
|
617 |
-
trunc: str = "NONE",
|
618 |
-
encode: str = "float"
|
619 |
) -> np.ndarray:
|
620 |
if api_key:
|
621 |
os.environ["OPENAI_API_KEY"] = api_key
|
@@ -624,10 +626,14 @@ async def nvidia_openai_embedding(
|
|
624 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
625 |
)
|
626 |
response = await openai_async_client.embeddings.create(
|
627 |
-
model=model,
|
|
|
|
|
|
|
628 |
)
|
629 |
return np.array([dp.embedding for dp in response.data])
|
630 |
|
|
|
631 |
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
632 |
@retry(
|
633 |
stop=stop_after_attempt(3),
|
|
|
502 |
**kwargs,
|
503 |
)
|
504 |
|
505 |
+
|
506 |
async def nvidia_openai_complete(
|
507 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
508 |
) -> str:
|
509 |
result = await openai_complete_if_cache(
|
510 |
+
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
511 |
prompt,
|
512 |
system_prompt=system_prompt,
|
513 |
history_messages=history_messages,
|
|
|
518 |
return locate_json_string_body_from_string(result)
|
519 |
return result
|
520 |
|
521 |
+
|
522 |
async def azure_openai_complete(
|
523 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
524 |
) -> str:
|
|
|
612 |
)
|
613 |
async def nvidia_openai_embedding(
|
614 |
texts: list[str],
|
615 |
+
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1", # refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
|
616 |
base_url: str = "https://integrate.api.nvidia.com/v1",
|
617 |
api_key: str = None,
|
618 |
+
input_type: str = "passage", # query for retrieval, passage for embedding
|
619 |
+
trunc: str = "NONE", # NONE or START or END
|
620 |
+
encode: str = "float", # float or base64
|
621 |
) -> np.ndarray:
|
622 |
if api_key:
|
623 |
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
626 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
627 |
)
|
628 |
response = await openai_async_client.embeddings.create(
|
629 |
+
model=model,
|
630 |
+
input=texts,
|
631 |
+
encoding_format=encode,
|
632 |
+
extra_body={"input_type": input_type, "truncate": trunc},
|
633 |
)
|
634 |
return np.array([dp.embedding for dp in response.data])
|
635 |
|
636 |
+
|
637 |
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
638 |
@retry(
|
639 |
stop=stop_after_attempt(3),
|
lightrag/operate.py
CHANGED
@@ -297,7 +297,9 @@ async def extract_entities(
|
|
297 |
chunk_dp = chunk_key_dp[1]
|
298 |
content = chunk_dp["content"]
|
299 |
# hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
|
300 |
-
hint_prompt = entity_extract_prompt.format(
|
|
|
|
|
301 |
|
302 |
final_result = await use_llm_func(hint_prompt)
|
303 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
@@ -949,7 +951,6 @@ async def _find_related_text_unit_from_relationships(
|
|
949 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
950 |
for dp in edge_datas
|
951 |
]
|
952 |
-
|
953 |
all_text_units_lookup = {}
|
954 |
|
955 |
for index, unit_list in enumerate(text_units):
|
|
|
297 |
chunk_dp = chunk_key_dp[1]
|
298 |
content = chunk_dp["content"]
|
299 |
# hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
|
300 |
+
hint_prompt = entity_extract_prompt.format(
|
301 |
+
**context_base, input_text="{input_text}"
|
302 |
+
).format(**context_base, input_text=content)
|
303 |
|
304 |
final_result = await use_llm_func(hint_prompt)
|
305 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
|
|
951 |
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
952 |
for dp in edge_datas
|
953 |
]
|
|
|
954 |
all_text_units_lookup = {}
|
955 |
|
956 |
for index, unit_list in enumerate(text_units):
|