Gurjot Singh
commited on
Commit
·
a5e91aa
1
Parent(s):
ae4419c
Add example usage for separate keyword extraction of user's query
Browse files
examples/query_keyword_separation_example.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.utils import EmbeddingFunc
|
5 |
+
import numpy as np
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import logging
|
8 |
+
from openai import AzureOpenAI
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
|
15 |
+
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
16 |
+
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
17 |
+
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
18 |
+
|
19 |
+
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
20 |
+
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
|
21 |
+
|
22 |
+
WORKING_DIR = "./dickens"
|
23 |
+
|
24 |
+
if os.path.exists(WORKING_DIR):
|
25 |
+
import shutil
|
26 |
+
|
27 |
+
shutil.rmtree(WORKING_DIR)
|
28 |
+
|
29 |
+
os.mkdir(WORKING_DIR)
|
30 |
+
|
31 |
+
|
32 |
+
async def llm_model_func(
|
33 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
34 |
+
) -> str:
|
35 |
+
client = AzureOpenAI(
|
36 |
+
api_key=AZURE_OPENAI_API_KEY,
|
37 |
+
api_version=AZURE_OPENAI_API_VERSION,
|
38 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
39 |
+
)
|
40 |
+
|
41 |
+
messages = []
|
42 |
+
if system_prompt:
|
43 |
+
messages.append({"role": "system", "content": system_prompt})
|
44 |
+
if history_messages:
|
45 |
+
messages.extend(history_messages)
|
46 |
+
messages.append({"role": "user", "content": prompt})
|
47 |
+
|
48 |
+
chat_completion = client.chat.completions.create(
|
49 |
+
model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
|
50 |
+
messages=messages,
|
51 |
+
temperature=kwargs.get("temperature", 0),
|
52 |
+
top_p=kwargs.get("top_p", 1),
|
53 |
+
n=kwargs.get("n", 1),
|
54 |
+
)
|
55 |
+
return chat_completion.choices[0].message.content
|
56 |
+
|
57 |
+
|
58 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
59 |
+
client = AzureOpenAI(
|
60 |
+
api_key=AZURE_OPENAI_API_KEY,
|
61 |
+
api_version=AZURE_EMBEDDING_API_VERSION,
|
62 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
63 |
+
)
|
64 |
+
embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
|
65 |
+
|
66 |
+
embeddings = [item.embedding for item in embedding.data]
|
67 |
+
return np.array(embeddings)
|
68 |
+
|
69 |
+
|
70 |
+
async def test_funcs():
|
71 |
+
result = await llm_model_func("How are you?")
|
72 |
+
print("Resposta do llm_model_func: ", result)
|
73 |
+
|
74 |
+
result = await embedding_func(["How are you?"])
|
75 |
+
print("Resultado do embedding_func: ", result.shape)
|
76 |
+
print("Dimensão da embedding: ", result.shape[1])
|
77 |
+
|
78 |
+
|
79 |
+
asyncio.run(test_funcs())
|
80 |
+
|
81 |
+
embedding_dimension = 3072
|
82 |
+
|
83 |
+
rag = LightRAG(
|
84 |
+
working_dir=WORKING_DIR,
|
85 |
+
llm_model_func=llm_model_func,
|
86 |
+
embedding_func=EmbeddingFunc(
|
87 |
+
embedding_dim=embedding_dimension,
|
88 |
+
max_token_size=8192,
|
89 |
+
func=embedding_func,
|
90 |
+
),
|
91 |
+
)
|
92 |
+
|
93 |
+
book1 = open("./book_1.txt", encoding="utf-8")
|
94 |
+
book2 = open("./book_2.txt", encoding="utf-8")
|
95 |
+
|
96 |
+
rag.insert([book1.read(), book2.read()])
|
97 |
+
|
98 |
+
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
99 |
+
async def run_example():
|
100 |
+
query = "What are the top themes in this story?"
|
101 |
+
prompt = "Please simplify the response for a young audience."
|
102 |
+
|
103 |
+
# Using the new method to ensure the keyword extraction is only applied to the query
|
104 |
+
response = rag.query_with_separate_keyword_extraction(
|
105 |
+
query=query,
|
106 |
+
prompt=prompt,
|
107 |
+
param=QueryParam(mode="hybrid") # Adjust QueryParam mode as necessary
|
108 |
+
)
|
109 |
+
|
110 |
+
print("Extracted Response:", response)
|
111 |
+
|
112 |
+
# Run the example asynchronously
|
113 |
+
if __name__ == "__main__":
|
114 |
+
asyncio.run(run_example())
|