Merge pull request #447 from spo0nman/pkaushal/vectordb-chroma
Browse files- lightrag/kg/chroma_impl.py +172 -0
- lightrag/lightrag.py +2 -0
- test_chromadb.py +113 -0
lightrag/kg/chroma_impl.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Union
|
4 |
+
import numpy as np
|
5 |
+
from chromadb import HttpClient
|
6 |
+
from chromadb.config import Settings
|
7 |
+
from lightrag.base import BaseVectorStorage
|
8 |
+
from lightrag.utils import logger
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class ChromaVectorDBStorage(BaseVectorStorage):
|
13 |
+
"""ChromaDB vector storage implementation."""
|
14 |
+
|
15 |
+
cosine_better_than_threshold: float = 0.2
|
16 |
+
|
17 |
+
def __post_init__(self):
|
18 |
+
try:
|
19 |
+
# Use global config value if specified, otherwise use default
|
20 |
+
self.cosine_better_than_threshold = self.global_config.get(
|
21 |
+
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
22 |
+
)
|
23 |
+
|
24 |
+
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
25 |
+
user_collection_settings = config.get("collection_settings", {})
|
26 |
+
# Default HNSW index settings for ChromaDB
|
27 |
+
default_collection_settings = {
|
28 |
+
# Distance metric used for similarity search (cosine similarity)
|
29 |
+
"hnsw:space": "cosine",
|
30 |
+
# Number of nearest neighbors to explore during index construction
|
31 |
+
# Higher values = better recall but slower indexing
|
32 |
+
"hnsw:construction_ef": 128,
|
33 |
+
# Number of nearest neighbors to explore during search
|
34 |
+
# Higher values = better recall but slower search
|
35 |
+
"hnsw:search_ef": 128,
|
36 |
+
# Number of connections per node in the HNSW graph
|
37 |
+
# Higher values = better recall but more memory usage
|
38 |
+
"hnsw:M": 16,
|
39 |
+
# Number of vectors to process in one batch during indexing
|
40 |
+
"hnsw:batch_size": 100,
|
41 |
+
# Number of updates before forcing index synchronization
|
42 |
+
# Lower values = more frequent syncs but slower indexing
|
43 |
+
"hnsw:sync_threshold": 1000,
|
44 |
+
}
|
45 |
+
collection_settings = {
|
46 |
+
**default_collection_settings,
|
47 |
+
**user_collection_settings,
|
48 |
+
}
|
49 |
+
|
50 |
+
auth_provider = config.get(
|
51 |
+
"auth_provider", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
52 |
+
)
|
53 |
+
auth_credentials = config.get("auth_token", "secret-token")
|
54 |
+
headers = {}
|
55 |
+
|
56 |
+
if "token_authn" in auth_provider:
|
57 |
+
headers = {
|
58 |
+
config.get("auth_header_name", "X-Chroma-Token"): auth_credentials
|
59 |
+
}
|
60 |
+
elif "basic_authn" in auth_provider:
|
61 |
+
auth_credentials = config.get("auth_credentials", "admin:admin")
|
62 |
+
|
63 |
+
self._client = HttpClient(
|
64 |
+
host=config.get("host", "localhost"),
|
65 |
+
port=config.get("port", 8000),
|
66 |
+
headers=headers,
|
67 |
+
settings=Settings(
|
68 |
+
chroma_api_impl="rest",
|
69 |
+
chroma_client_auth_provider=auth_provider,
|
70 |
+
chroma_client_auth_credentials=auth_credentials,
|
71 |
+
allow_reset=True,
|
72 |
+
anonymized_telemetry=False,
|
73 |
+
),
|
74 |
+
)
|
75 |
+
|
76 |
+
self._collection = self._client.get_or_create_collection(
|
77 |
+
name=self.namespace,
|
78 |
+
metadata={
|
79 |
+
**collection_settings,
|
80 |
+
"dimension": self.embedding_func.embedding_dim,
|
81 |
+
},
|
82 |
+
)
|
83 |
+
# Use batch size from collection settings if specified
|
84 |
+
self._max_batch_size = self.global_config.get(
|
85 |
+
"embedding_batch_num", collection_settings.get("hnsw:batch_size", 32)
|
86 |
+
)
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"ChromaDB initialization failed: {str(e)}")
|
89 |
+
raise
|
90 |
+
|
91 |
+
async def upsert(self, data: dict[str, dict]):
|
92 |
+
if not data:
|
93 |
+
logger.warning("Empty data provided to vector DB")
|
94 |
+
return []
|
95 |
+
|
96 |
+
try:
|
97 |
+
ids = list(data.keys())
|
98 |
+
documents = [v["content"] for v in data.values()]
|
99 |
+
metadatas = [
|
100 |
+
{k: v for k, v in item.items() if k in self.meta_fields}
|
101 |
+
or {"_default": "true"}
|
102 |
+
for item in data.values()
|
103 |
+
]
|
104 |
+
|
105 |
+
# Process in batches
|
106 |
+
batches = [
|
107 |
+
documents[i : i + self._max_batch_size]
|
108 |
+
for i in range(0, len(documents), self._max_batch_size)
|
109 |
+
]
|
110 |
+
|
111 |
+
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
112 |
+
embeddings_list = []
|
113 |
+
|
114 |
+
# Pre-allocate embeddings_list with known size
|
115 |
+
embeddings_list = [None] * len(embedding_tasks)
|
116 |
+
|
117 |
+
# Use asyncio.gather instead of as_completed if order doesn't matter
|
118 |
+
embeddings_results = await asyncio.gather(*embedding_tasks)
|
119 |
+
embeddings_list = list(embeddings_results)
|
120 |
+
|
121 |
+
embeddings = np.concatenate(embeddings_list)
|
122 |
+
|
123 |
+
# Upsert in batches
|
124 |
+
for i in range(0, len(ids), self._max_batch_size):
|
125 |
+
batch_slice = slice(i, i + self._max_batch_size)
|
126 |
+
|
127 |
+
self._collection.upsert(
|
128 |
+
ids=ids[batch_slice],
|
129 |
+
embeddings=embeddings[batch_slice].tolist(),
|
130 |
+
documents=documents[batch_slice],
|
131 |
+
metadatas=metadatas[batch_slice],
|
132 |
+
)
|
133 |
+
|
134 |
+
return ids
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Error during ChromaDB upsert: {str(e)}")
|
138 |
+
raise
|
139 |
+
|
140 |
+
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
|
141 |
+
try:
|
142 |
+
embedding = await self.embedding_func([query])
|
143 |
+
|
144 |
+
results = self._collection.query(
|
145 |
+
query_embeddings=embedding.tolist(),
|
146 |
+
n_results=top_k * 2, # Request more results to allow for filtering
|
147 |
+
include=["metadatas", "distances", "documents"],
|
148 |
+
)
|
149 |
+
|
150 |
+
# Filter results by cosine similarity threshold and take top k
|
151 |
+
# We request 2x results initially to have enough after filtering
|
152 |
+
# ChromaDB returns cosine similarity (1 = identical, 0 = orthogonal)
|
153 |
+
# We convert to distance (0 = identical, 1 = orthogonal) via (1 - similarity)
|
154 |
+
# Only keep results with distance below threshold, then take top k
|
155 |
+
return [
|
156 |
+
{
|
157 |
+
"id": results["ids"][0][i],
|
158 |
+
"distance": 1 - results["distances"][0][i],
|
159 |
+
"content": results["documents"][0][i],
|
160 |
+
**results["metadatas"][0][i],
|
161 |
+
}
|
162 |
+
for i in range(len(results["ids"][0]))
|
163 |
+
if (1 - results["distances"][0][i]) >= self.cosine_better_than_threshold
|
164 |
+
][:top_k]
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
logger.error(f"Error during ChromaDB query: {str(e)}")
|
168 |
+
raise
|
169 |
+
|
170 |
+
async def index_done_callback(self):
|
171 |
+
# ChromaDB handles persistence automatically
|
172 |
+
pass
|
lightrag/lightrag.py
CHANGED
@@ -76,6 +76,7 @@ OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage
|
|
76 |
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
77 |
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
78 |
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
|
|
79 |
|
80 |
|
81 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
@@ -263,6 +264,7 @@ class LightRAG:
|
|
263 |
"NanoVectorDBStorage": NanoVectorDBStorage,
|
264 |
"OracleVectorDBStorage": OracleVectorDBStorage,
|
265 |
"MilvusVectorDBStorge": MilvusVectorDBStorge,
|
|
|
266 |
# graph storage
|
267 |
"NetworkXStorage": NetworkXStorage,
|
268 |
"Neo4JStorage": Neo4JStorage,
|
|
|
76 |
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
77 |
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
78 |
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
79 |
+
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
80 |
|
81 |
|
82 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
|
264 |
"NanoVectorDBStorage": NanoVectorDBStorage,
|
265 |
"OracleVectorDBStorage": OracleVectorDBStorage,
|
266 |
"MilvusVectorDBStorge": MilvusVectorDBStorge,
|
267 |
+
"ChromaVectorDBStorage": ChromaVectorDBStorage,
|
268 |
# graph storage
|
269 |
"NetworkXStorage": NetworkXStorage,
|
270 |
"Neo4JStorage": Neo4JStorage,
|
test_chromadb.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
5 |
+
from lightrag.utils import EmbeddingFunc
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
#########
|
9 |
+
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
10 |
+
# import nest_asyncio
|
11 |
+
# nest_asyncio.apply()
|
12 |
+
#########
|
13 |
+
WORKING_DIR = "./chromadb_test_dir"
|
14 |
+
if not os.path.exists(WORKING_DIR):
|
15 |
+
os.mkdir(WORKING_DIR)
|
16 |
+
|
17 |
+
# ChromaDB Configuration
|
18 |
+
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
|
19 |
+
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
|
20 |
+
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
|
21 |
+
CHROMADB_AUTH_PROVIDER = os.environ.get(
|
22 |
+
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
23 |
+
)
|
24 |
+
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
|
25 |
+
|
26 |
+
# Embedding Configuration and Functions
|
27 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
28 |
+
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
29 |
+
|
30 |
+
# ChromaDB requires knowing the dimension of embeddings upfront when
|
31 |
+
# creating a collection. The embedding dimension is model-specific
|
32 |
+
# (e.g. text-embedding-3-large uses 3072 dimensions)
|
33 |
+
# we dynamically determine it by running a test embedding
|
34 |
+
# and then pass it to the ChromaDBStorage class
|
35 |
+
|
36 |
+
|
37 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
38 |
+
return await openai_embedding(
|
39 |
+
texts,
|
40 |
+
model=EMBEDDING_MODEL,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
async def get_embedding_dimension():
|
45 |
+
test_text = ["This is a test sentence."]
|
46 |
+
embedding = await embedding_func(test_text)
|
47 |
+
return embedding.shape[1]
|
48 |
+
|
49 |
+
|
50 |
+
async def create_embedding_function_instance():
|
51 |
+
# Get embedding dimension
|
52 |
+
embedding_dimension = await get_embedding_dimension()
|
53 |
+
# Create embedding function instance
|
54 |
+
return EmbeddingFunc(
|
55 |
+
embedding_dim=embedding_dimension,
|
56 |
+
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
57 |
+
func=embedding_func,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
async def initialize_rag():
|
62 |
+
embedding_func_instance = await create_embedding_function_instance()
|
63 |
+
|
64 |
+
return LightRAG(
|
65 |
+
working_dir=WORKING_DIR,
|
66 |
+
llm_model_func=gpt_4o_mini_complete,
|
67 |
+
embedding_func=embedding_func_instance,
|
68 |
+
vector_storage="ChromaVectorDBStorage",
|
69 |
+
log_level="DEBUG",
|
70 |
+
embedding_batch_num=32,
|
71 |
+
vector_db_storage_cls_kwargs={
|
72 |
+
"host": CHROMADB_HOST,
|
73 |
+
"port": CHROMADB_PORT,
|
74 |
+
"auth_token": CHROMADB_AUTH_TOKEN,
|
75 |
+
"auth_provider": CHROMADB_AUTH_PROVIDER,
|
76 |
+
"auth_header_name": CHROMADB_AUTH_HEADER,
|
77 |
+
"collection_settings": {
|
78 |
+
"hnsw:space": "cosine",
|
79 |
+
"hnsw:construction_ef": 128,
|
80 |
+
"hnsw:search_ef": 128,
|
81 |
+
"hnsw:M": 16,
|
82 |
+
"hnsw:batch_size": 100,
|
83 |
+
"hnsw:sync_threshold": 1000,
|
84 |
+
},
|
85 |
+
},
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
# Run the initialization
|
90 |
+
rag = asyncio.run(initialize_rag())
|
91 |
+
|
92 |
+
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
93 |
+
# rag.insert(f.read())
|
94 |
+
|
95 |
+
# Perform naive search
|
96 |
+
print(
|
97 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
98 |
+
)
|
99 |
+
|
100 |
+
# Perform local search
|
101 |
+
print(
|
102 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
103 |
+
)
|
104 |
+
|
105 |
+
# Perform global search
|
106 |
+
print(
|
107 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
108 |
+
)
|
109 |
+
|
110 |
+
# Perform hybrid search
|
111 |
+
print(
|
112 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
113 |
+
)
|