Larfii commited on
Commit
ace829c
·
1 Parent(s): 8540606

fix: unexpected keyword argument error

Browse files
Files changed (1) hide show
  1. lightrag/llm.py +7 -0
lightrag/llm.py CHANGED
@@ -478,6 +478,7 @@ class GPTKeywordExtractionFormat(BaseModel):
478
  async def gpt_4o_complete(
479
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
480
  ) -> str:
 
481
  if keyword_extraction:
482
  kwargs["response_format"] = GPTKeywordExtractionFormat
483
  return await openai_complete_if_cache(
@@ -492,6 +493,7 @@ async def gpt_4o_complete(
492
  async def gpt_4o_mini_complete(
493
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
494
  ) -> str:
 
495
  if keyword_extraction:
496
  kwargs["response_format"] = GPTKeywordExtractionFormat
497
  return await openai_complete_if_cache(
@@ -506,6 +508,7 @@ async def gpt_4o_mini_complete(
506
  async def nvidia_openai_complete(
507
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
508
  ) -> str:
 
509
  result = await openai_complete_if_cache(
510
  "nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
511
  prompt,
@@ -522,6 +525,7 @@ async def nvidia_openai_complete(
522
  async def azure_openai_complete(
523
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
524
  ) -> str:
 
525
  result = await azure_openai_complete_if_cache(
526
  "conversation-4o-mini",
527
  prompt,
@@ -537,6 +541,7 @@ async def azure_openai_complete(
537
  async def bedrock_complete(
538
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
539
  ) -> str:
 
540
  result = await bedrock_complete_if_cache(
541
  "anthropic.claude-3-haiku-20240307-v1:0",
542
  prompt,
@@ -552,6 +557,7 @@ async def bedrock_complete(
552
  async def hf_model_complete(
553
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
554
  ) -> str:
 
555
  model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
556
  result = await hf_model_if_cache(
557
  model_name,
@@ -568,6 +574,7 @@ async def hf_model_complete(
568
  async def ollama_model_complete(
569
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
570
  ) -> str:
 
571
  if keyword_extraction:
572
  kwargs["format"] = "json"
573
  model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
 
478
  async def gpt_4o_complete(
479
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
480
  ) -> str:
481
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
482
  if keyword_extraction:
483
  kwargs["response_format"] = GPTKeywordExtractionFormat
484
  return await openai_complete_if_cache(
 
493
  async def gpt_4o_mini_complete(
494
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
495
  ) -> str:
496
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
497
  if keyword_extraction:
498
  kwargs["response_format"] = GPTKeywordExtractionFormat
499
  return await openai_complete_if_cache(
 
508
  async def nvidia_openai_complete(
509
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
510
  ) -> str:
511
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
512
  result = await openai_complete_if_cache(
513
  "nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
514
  prompt,
 
525
  async def azure_openai_complete(
526
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
527
  ) -> str:
528
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
529
  result = await azure_openai_complete_if_cache(
530
  "conversation-4o-mini",
531
  prompt,
 
541
  async def bedrock_complete(
542
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
543
  ) -> str:
544
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
545
  result = await bedrock_complete_if_cache(
546
  "anthropic.claude-3-haiku-20240307-v1:0",
547
  prompt,
 
557
  async def hf_model_complete(
558
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
559
  ) -> str:
560
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
561
  model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
562
  result = await hf_model_if_cache(
563
  model_name,
 
574
  async def ollama_model_complete(
575
  prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
576
  ) -> str:
577
+ keyword_extraction = kwargs.pop("keyword_extraction", None)
578
  if keyword_extraction:
579
  kwargs["format"] = "json"
580
  model_name = kwargs["hashing_kv"].global_config["llm_model_name"]