LarFii
commited on
Commit
Β·
af7f5dd
1
Parent(s):
949e019
Add visualization methods
Browse files- .gitignore +2 -1
- README.md +139 -2
- examples/{graph_visual.py β graph_visual_with_html.py} +0 -0
- examples/graph_visual_with_neo4j.py +118 -0
- lightrag/utils.py +49 -0
.gitignore
CHANGED
@@ -3,4 +3,5 @@ __pycache__
|
|
3 |
dickens/
|
4 |
book.txt
|
5 |
lightrag-dev/
|
6 |
-
.idea/
|
|
|
|
3 |
dickens/
|
4 |
book.txt
|
5 |
lightrag-dev/
|
6 |
+
.idea/
|
7 |
+
dist/
|
README.md
CHANGED
@@ -22,6 +22,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|
22 |
</div>
|
23 |
|
24 |
## π News
|
|
|
25 |
- [x] [2024.10.18]π―π―π’π’Weβve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
|
26 |
- [x] [2024.10.17]π―π―π’π’We have created a [Discord channel](https://discord.gg/mvsfu2Tg)! Welcome to join for sharing and discussions! ππ
|
27 |
- [x] [2024.10.16]π―π―π’π’LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
|
@@ -221,7 +222,11 @@ with open("./newText.txt") as f:
|
|
221 |
|
222 |
### Graph Visualization
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
225 |
```python
|
226 |
import networkx as nx
|
227 |
from pyvis.network import Network
|
@@ -238,6 +243,137 @@ net.from_nx(G)
|
|
238 |
# Save and display the network
|
239 |
net.show('knowledge_graph.html')
|
240 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
## Evaluation
|
242 |
### Dataset
|
243 |
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
|
@@ -484,8 +620,9 @@ def extract_queries(file_path):
|
|
484 |
.
|
485 |
βββ examples
|
486 |
β βββ batch_eval.py
|
|
|
|
|
487 |
β βββ generate_query.py
|
488 |
-
β βββ graph_visual.py
|
489 |
β βββ lightrag_azure_openai_demo.py
|
490 |
β βββ lightrag_bedrock_demo.py
|
491 |
β βββ lightrag_hf_demo.py
|
|
|
22 |
</div>
|
23 |
|
24 |
## π News
|
25 |
+
- [x] [2024.10.20]π―π―π’π’We add two methods to visualize the graph.
|
26 |
- [x] [2024.10.18]π―π―π’π’Weβve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
|
27 |
- [x] [2024.10.17]π―π―π’π’We have created a [Discord channel](https://discord.gg/mvsfu2Tg)! Welcome to join for sharing and discussions! ππ
|
28 |
- [x] [2024.10.16]π―π―π’π’LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
|
|
|
222 |
|
223 |
### Graph Visualization
|
224 |
|
225 |
+
<details>
|
226 |
+
<summary> Graph visualization with html </summary>
|
227 |
+
|
228 |
+
* The following code can be found in `examples/graph_visual_with_html.py`
|
229 |
+
|
230 |
```python
|
231 |
import networkx as nx
|
232 |
from pyvis.network import Network
|
|
|
243 |
# Save and display the network
|
244 |
net.show('knowledge_graph.html')
|
245 |
```
|
246 |
+
|
247 |
+
</details>
|
248 |
+
|
249 |
+
<details>
|
250 |
+
<summary> Graph visualization with Neo4j </summary>
|
251 |
+
|
252 |
+
* The following code can be found in `examples/graph_visual_with_neo4j.py`
|
253 |
+
|
254 |
+
```python
|
255 |
+
import os
|
256 |
+
import json
|
257 |
+
from lightrag.utils import xml_to_json
|
258 |
+
from neo4j import GraphDatabase
|
259 |
+
|
260 |
+
# Constants
|
261 |
+
WORKING_DIR = "./dickens"
|
262 |
+
BATCH_SIZE_NODES = 500
|
263 |
+
BATCH_SIZE_EDGES = 100
|
264 |
+
|
265 |
+
# Neo4j connection credentials
|
266 |
+
NEO4J_URI = "bolt://localhost:7687"
|
267 |
+
NEO4J_USERNAME = "neo4j"
|
268 |
+
NEO4J_PASSWORD = "your_password"
|
269 |
+
|
270 |
+
def convert_xml_to_json(xml_path, output_path):
|
271 |
+
"""Converts XML file to JSON and saves the output."""
|
272 |
+
if not os.path.exists(xml_path):
|
273 |
+
print(f"Error: File not found - {xml_path}")
|
274 |
+
return None
|
275 |
+
|
276 |
+
json_data = xml_to_json(xml_path)
|
277 |
+
if json_data:
|
278 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
279 |
+
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
280 |
+
print(f"JSON file created: {output_path}")
|
281 |
+
return json_data
|
282 |
+
else:
|
283 |
+
print("Failed to create JSON data")
|
284 |
+
return None
|
285 |
+
|
286 |
+
def process_in_batches(tx, query, data, batch_size):
|
287 |
+
"""Process data in batches and execute the given query."""
|
288 |
+
for i in range(0, len(data), batch_size):
|
289 |
+
batch = data[i:i + batch_size]
|
290 |
+
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
291 |
+
|
292 |
+
def main():
|
293 |
+
# Paths
|
294 |
+
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
|
295 |
+
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
|
296 |
+
|
297 |
+
# Convert XML to JSON
|
298 |
+
json_data = convert_xml_to_json(xml_file, json_file)
|
299 |
+
if json_data is None:
|
300 |
+
return
|
301 |
+
|
302 |
+
# Load nodes and edges
|
303 |
+
nodes = json_data.get('nodes', [])
|
304 |
+
edges = json_data.get('edges', [])
|
305 |
+
|
306 |
+
# Neo4j queries
|
307 |
+
create_nodes_query = """
|
308 |
+
UNWIND $nodes AS node
|
309 |
+
MERGE (e:Entity {id: node.id})
|
310 |
+
SET e.entity_type = node.entity_type,
|
311 |
+
e.description = node.description,
|
312 |
+
e.source_id = node.source_id,
|
313 |
+
e.displayName = node.id
|
314 |
+
REMOVE e:Entity
|
315 |
+
WITH e, node
|
316 |
+
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
317 |
+
RETURN count(*)
|
318 |
+
"""
|
319 |
+
|
320 |
+
create_edges_query = """
|
321 |
+
UNWIND $edges AS edge
|
322 |
+
MATCH (source {id: edge.source})
|
323 |
+
MATCH (target {id: edge.target})
|
324 |
+
WITH source, target, edge,
|
325 |
+
CASE
|
326 |
+
WHEN edge.keywords CONTAINS 'lead' THEN 'lead'
|
327 |
+
WHEN edge.keywords CONTAINS 'participate' THEN 'participate'
|
328 |
+
WHEN edge.keywords CONTAINS 'uses' THEN 'uses'
|
329 |
+
WHEN edge.keywords CONTAINS 'located' THEN 'located'
|
330 |
+
WHEN edge.keywords CONTAINS 'occurs' THEN 'occurs'
|
331 |
+
ELSE REPLACE(SPLIT(edge.keywords, ',')[0], '\"', '')
|
332 |
+
END AS relType
|
333 |
+
CALL apoc.create.relationship(source, relType, {
|
334 |
+
weight: edge.weight,
|
335 |
+
description: edge.description,
|
336 |
+
keywords: edge.keywords,
|
337 |
+
source_id: edge.source_id
|
338 |
+
}, target) YIELD rel
|
339 |
+
RETURN count(*)
|
340 |
+
"""
|
341 |
+
|
342 |
+
set_displayname_and_labels_query = """
|
343 |
+
MATCH (n)
|
344 |
+
SET n.displayName = n.id
|
345 |
+
WITH n
|
346 |
+
CALL apoc.create.setLabels(n, [n.entity_type]) YIELD node
|
347 |
+
RETURN count(*)
|
348 |
+
"""
|
349 |
+
|
350 |
+
# Create a Neo4j driver
|
351 |
+
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
|
352 |
+
|
353 |
+
try:
|
354 |
+
# Execute queries in batches
|
355 |
+
with driver.session() as session:
|
356 |
+
# Insert nodes in batches
|
357 |
+
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
|
358 |
+
|
359 |
+
# Insert edges in batches
|
360 |
+
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
|
361 |
+
|
362 |
+
# Set displayName and labels
|
363 |
+
session.run(set_displayname_and_labels_query)
|
364 |
+
|
365 |
+
except Exception as e:
|
366 |
+
print(f"Error occurred: {e}")
|
367 |
+
|
368 |
+
finally:
|
369 |
+
driver.close()
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
main()
|
373 |
+
```
|
374 |
+
|
375 |
+
</details>
|
376 |
+
|
377 |
## Evaluation
|
378 |
### Dataset
|
379 |
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
|
|
|
620 |
.
|
621 |
βββ examples
|
622 |
β βββ batch_eval.py
|
623 |
+
β βββ graph_visual_with_html.py
|
624 |
+
β βββ graph_visual_with_neo4j.py
|
625 |
β βββ generate_query.py
|
|
|
626 |
β βββ lightrag_azure_openai_demo.py
|
627 |
β βββ lightrag_bedrock_demo.py
|
628 |
β βββ lightrag_hf_demo.py
|
examples/{graph_visual.py β graph_visual_with_html.py}
RENAMED
File without changes
|
examples/graph_visual_with_neo4j.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from lightrag.utils import xml_to_json
|
4 |
+
from neo4j import GraphDatabase
|
5 |
+
|
6 |
+
# Constants
|
7 |
+
WORKING_DIR = "./dickens"
|
8 |
+
BATCH_SIZE_NODES = 500
|
9 |
+
BATCH_SIZE_EDGES = 100
|
10 |
+
|
11 |
+
# Neo4j connection credentials
|
12 |
+
NEO4J_URI = "bolt://localhost:7687"
|
13 |
+
NEO4J_USERNAME = "neo4j"
|
14 |
+
NEO4J_PASSWORD = "your_password"
|
15 |
+
|
16 |
+
def convert_xml_to_json(xml_path, output_path):
|
17 |
+
"""Converts XML file to JSON and saves the output."""
|
18 |
+
if not os.path.exists(xml_path):
|
19 |
+
print(f"Error: File not found - {xml_path}")
|
20 |
+
return None
|
21 |
+
|
22 |
+
json_data = xml_to_json(xml_path)
|
23 |
+
if json_data:
|
24 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
25 |
+
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
26 |
+
print(f"JSON file created: {output_path}")
|
27 |
+
return json_data
|
28 |
+
else:
|
29 |
+
print("Failed to create JSON data")
|
30 |
+
return None
|
31 |
+
|
32 |
+
def process_in_batches(tx, query, data, batch_size):
|
33 |
+
"""Process data in batches and execute the given query."""
|
34 |
+
for i in range(0, len(data), batch_size):
|
35 |
+
batch = data[i:i + batch_size]
|
36 |
+
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
37 |
+
|
38 |
+
def main():
|
39 |
+
# Paths
|
40 |
+
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
|
41 |
+
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
|
42 |
+
|
43 |
+
# Convert XML to JSON
|
44 |
+
json_data = convert_xml_to_json(xml_file, json_file)
|
45 |
+
if json_data is None:
|
46 |
+
return
|
47 |
+
|
48 |
+
# Load nodes and edges
|
49 |
+
nodes = json_data.get('nodes', [])
|
50 |
+
edges = json_data.get('edges', [])
|
51 |
+
|
52 |
+
# Neo4j queries
|
53 |
+
create_nodes_query = """
|
54 |
+
UNWIND $nodes AS node
|
55 |
+
MERGE (e:Entity {id: node.id})
|
56 |
+
SET e.entity_type = node.entity_type,
|
57 |
+
e.description = node.description,
|
58 |
+
e.source_id = node.source_id,
|
59 |
+
e.displayName = node.id
|
60 |
+
REMOVE e:Entity
|
61 |
+
WITH e, node
|
62 |
+
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
63 |
+
RETURN count(*)
|
64 |
+
"""
|
65 |
+
|
66 |
+
create_edges_query = """
|
67 |
+
UNWIND $edges AS edge
|
68 |
+
MATCH (source {id: edge.source})
|
69 |
+
MATCH (target {id: edge.target})
|
70 |
+
WITH source, target, edge,
|
71 |
+
CASE
|
72 |
+
WHEN edge.keywords CONTAINS 'lead' THEN 'lead'
|
73 |
+
WHEN edge.keywords CONTAINS 'participate' THEN 'participate'
|
74 |
+
WHEN edge.keywords CONTAINS 'uses' THEN 'uses'
|
75 |
+
WHEN edge.keywords CONTAINS 'located' THEN 'located'
|
76 |
+
WHEN edge.keywords CONTAINS 'occurs' THEN 'occurs'
|
77 |
+
ELSE REPLACE(SPLIT(edge.keywords, ',')[0], '\"', '')
|
78 |
+
END AS relType
|
79 |
+
CALL apoc.create.relationship(source, relType, {
|
80 |
+
weight: edge.weight,
|
81 |
+
description: edge.description,
|
82 |
+
keywords: edge.keywords,
|
83 |
+
source_id: edge.source_id
|
84 |
+
}, target) YIELD rel
|
85 |
+
RETURN count(*)
|
86 |
+
"""
|
87 |
+
|
88 |
+
set_displayname_and_labels_query = """
|
89 |
+
MATCH (n)
|
90 |
+
SET n.displayName = n.id
|
91 |
+
WITH n
|
92 |
+
CALL apoc.create.setLabels(n, [n.entity_type]) YIELD node
|
93 |
+
RETURN count(*)
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Create a Neo4j driver
|
97 |
+
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
|
98 |
+
|
99 |
+
try:
|
100 |
+
# Execute queries in batches
|
101 |
+
with driver.session() as session:
|
102 |
+
# Insert nodes in batches
|
103 |
+
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
|
104 |
+
|
105 |
+
# Insert edges in batches
|
106 |
+
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
|
107 |
+
|
108 |
+
# Set displayName and labels
|
109 |
+
session.run(set_displayname_and_labels_query)
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error occurred: {e}")
|
113 |
+
|
114 |
+
finally:
|
115 |
+
driver.close()
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
main()
|
lightrag/utils.py
CHANGED
@@ -8,6 +8,7 @@ from dataclasses import dataclass
|
|
8 |
from functools import wraps
|
9 |
from hashlib import md5
|
10 |
from typing import Any, Union
|
|
|
11 |
|
12 |
import numpy as np
|
13 |
import tiktoken
|
@@ -183,3 +184,51 @@ def list_of_list_to_csv(data: list[list]):
|
|
183 |
def save_data_to_file(data, file_name):
|
184 |
with open(file_name, "w", encoding="utf-8") as f:
|
185 |
json.dump(data, f, ensure_ascii=False, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from functools import wraps
|
9 |
from hashlib import md5
|
10 |
from typing import Any, Union
|
11 |
+
import xml.etree.ElementTree as ET
|
12 |
|
13 |
import numpy as np
|
14 |
import tiktoken
|
|
|
184 |
def save_data_to_file(data, file_name):
|
185 |
with open(file_name, "w", encoding="utf-8") as f:
|
186 |
json.dump(data, f, ensure_ascii=False, indent=4)
|
187 |
+
|
188 |
+
def xml_to_json(xml_file):
|
189 |
+
try:
|
190 |
+
tree = ET.parse(xml_file)
|
191 |
+
root = tree.getroot()
|
192 |
+
|
193 |
+
# Print the root element's tag and attributes to confirm the file has been correctly loaded
|
194 |
+
print(f"Root element: {root.tag}")
|
195 |
+
print(f"Root attributes: {root.attrib}")
|
196 |
+
|
197 |
+
data = {
|
198 |
+
"nodes": [],
|
199 |
+
"edges": []
|
200 |
+
}
|
201 |
+
|
202 |
+
# Use namespace
|
203 |
+
namespace = {'': 'http://graphml.graphdrawing.org/xmlns'}
|
204 |
+
|
205 |
+
for node in root.findall('.//node', namespace):
|
206 |
+
node_data = {
|
207 |
+
"id": node.get('id').strip('"'),
|
208 |
+
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"') if node.find("./data[@key='d0']", namespace) is not None else "",
|
209 |
+
"description": node.find("./data[@key='d1']", namespace).text if node.find("./data[@key='d1']", namespace) is not None else "",
|
210 |
+
"source_id": node.find("./data[@key='d2']", namespace).text if node.find("./data[@key='d2']", namespace) is not None else ""
|
211 |
+
}
|
212 |
+
data["nodes"].append(node_data)
|
213 |
+
|
214 |
+
for edge in root.findall('.//edge', namespace):
|
215 |
+
edge_data = {
|
216 |
+
"source": edge.get('source').strip('"'),
|
217 |
+
"target": edge.get('target').strip('"'),
|
218 |
+
"weight": float(edge.find("./data[@key='d3']", namespace).text) if edge.find("./data[@key='d3']", namespace) is not None else 0.0,
|
219 |
+
"description": edge.find("./data[@key='d4']", namespace).text if edge.find("./data[@key='d4']", namespace) is not None else "",
|
220 |
+
"keywords": edge.find("./data[@key='d5']", namespace).text if edge.find("./data[@key='d5']", namespace) is not None else "",
|
221 |
+
"source_id": edge.find("./data[@key='d6']", namespace).text if edge.find("./data[@key='d6']", namespace) is not None else ""
|
222 |
+
}
|
223 |
+
data["edges"].append(edge_data)
|
224 |
+
|
225 |
+
# Print the number of nodes and edges found
|
226 |
+
print(f"Found {len(data['nodes'])} nodes and {len(data['edges'])} edges")
|
227 |
+
|
228 |
+
return data
|
229 |
+
except ET.ParseError as e:
|
230 |
+
print(f"Error parsing XML file: {e}")
|
231 |
+
return None
|
232 |
+
except Exception as e:
|
233 |
+
print(f"An error occurred: {e}")
|
234 |
+
return None
|