gzdaniel commited on
Commit
b645022
·
1 Parent(s): f07f7a4

Fix linting

Browse files
Files changed (2) hide show
  1. README-zh.md +9 -9
  2. README.md +9 -9
README-zh.md CHANGED
@@ -824,7 +824,7 @@ rag = LightRAG(
824
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
825
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
826
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
827
-
828
  -- 如有必要可以删除
829
  drop INDEX entity_p_idx;
830
  drop INDEX vertex_p_idx;
@@ -1182,17 +1182,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1182
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1183
  from lightrag.utils import EmbeddingFunc
1184
  import os
1185
-
1186
  async def load_existing_lightrag():
1187
  # 首先,创建或加载现有的 LightRAG 实例
1188
  lightrag_working_dir = "./existing_lightrag_storage"
1189
-
1190
  # 检查是否存在之前的 LightRAG 实例
1191
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1192
  print("✅ Found existing LightRAG instance, loading...")
1193
  else:
1194
  print("❌ No existing LightRAG instance found, will create new one")
1195
-
1196
  # 使用您的配置创建/加载 LightRAG 实例
1197
  lightrag_instance = LightRAG(
1198
  working_dir=lightrag_working_dir,
@@ -1215,10 +1215,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1215
  ),
1216
  )
1217
  )
1218
-
1219
  # 初始化存储(如果有现有数据,这将加载现有数据)
1220
  await lightrag_instance.initialize_storages()
1221
-
1222
  # 现在使用现有的 LightRAG 实例初始化 RAGAnything
1223
  rag = RAGAnything(
1224
  lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
@@ -1247,20 +1247,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1247
  )
1248
  # 注意:working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
1249
  )
1250
-
1251
  # 查询现有的知识库
1252
  result = await rag.query_with_multimodal(
1253
  "What data has been processed in this LightRAG instance?",
1254
  mode="hybrid"
1255
  )
1256
  print("Query result:", result)
1257
-
1258
  # 向现有的 LightRAG 实例添加新的多模态文档
1259
  await rag.process_document_complete(
1260
  file_path="path/to/new/multimodal_document.pdf",
1261
  output_dir="./output"
1262
  )
1263
-
1264
  if __name__ == "__main__":
1265
  asyncio.run(load_existing_lightrag())
1266
  ```
 
824
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
825
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
826
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
827
+
828
  -- 如有必要可以删除
829
  drop INDEX entity_p_idx;
830
  drop INDEX vertex_p_idx;
 
1182
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1183
  from lightrag.utils import EmbeddingFunc
1184
  import os
1185
+
1186
  async def load_existing_lightrag():
1187
  # 首先,创建或加载现有的 LightRAG 实例
1188
  lightrag_working_dir = "./existing_lightrag_storage"
1189
+
1190
  # 检查是否存在之前的 LightRAG 实例
1191
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1192
  print("✅ Found existing LightRAG instance, loading...")
1193
  else:
1194
  print("❌ No existing LightRAG instance found, will create new one")
1195
+
1196
  # 使用您的配置创建/加载 LightRAG 实例
1197
  lightrag_instance = LightRAG(
1198
  working_dir=lightrag_working_dir,
 
1215
  ),
1216
  )
1217
  )
1218
+
1219
  # 初始化存储(如果有现有数据,这将加载现有数据)
1220
  await lightrag_instance.initialize_storages()
1221
+
1222
  # 现在使用现有的 LightRAG 实例初始化 RAGAnything
1223
  rag = RAGAnything(
1224
  lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
 
1247
  )
1248
  # 注意:working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
1249
  )
1250
+
1251
  # 查询现有的知识库
1252
  result = await rag.query_with_multimodal(
1253
  "What data has been processed in this LightRAG instance?",
1254
  mode="hybrid"
1255
  )
1256
  print("Query result:", result)
1257
+
1258
  # 向现有的 LightRAG 实例添加新的多模态文档
1259
  await rag.process_document_complete(
1260
  file_path="path/to/new/multimodal_document.pdf",
1261
  output_dir="./output"
1262
  )
1263
+
1264
  if __name__ == "__main__":
1265
  asyncio.run(load_existing_lightrag())
1266
  ```
README.md CHANGED
@@ -797,7 +797,7 @@ For production level scenarios you will most likely want to leverage an enterpri
797
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
798
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
799
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
800
-
801
  -- drop if necessary
802
  drop INDEX entity_p_idx;
803
  drop INDEX vertex_p_idx;
@@ -1231,17 +1231,17 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1231
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1232
  from lightrag.utils import EmbeddingFunc
1233
  import os
1234
-
1235
  async def load_existing_lightrag():
1236
  # First, create or load an existing LightRAG instance
1237
  lightrag_working_dir = "./existing_lightrag_storage"
1238
-
1239
  # Check if previous LightRAG instance exists
1240
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1241
  print("✅ Found existing LightRAG instance, loading...")
1242
  else:
1243
  print("❌ No existing LightRAG instance found, will create new one")
1244
-
1245
  # Create/Load LightRAG instance with your configurations
1246
  lightrag_instance = LightRAG(
1247
  working_dir=lightrag_working_dir,
@@ -1264,10 +1264,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1264
  ),
1265
  )
1266
  )
1267
-
1268
  # Initialize storage (this will load existing data if available)
1269
  await lightrag_instance.initialize_storages()
1270
-
1271
  # Now initialize RAGAnything with the existing LightRAG instance
1272
  rag = RAGAnything(
1273
  lightrag=lightrag_instance, # Pass the existing LightRAG instance
@@ -1296,20 +1296,20 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1296
  )
1297
  # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
1298
  )
1299
-
1300
  # Query the existing knowledge base
1301
  result = await rag.query_with_multimodal(
1302
  "What data has been processed in this LightRAG instance?",
1303
  mode="hybrid"
1304
  )
1305
  print("Query result:", result)
1306
-
1307
  # Add new multimodal documents to the existing LightRAG instance
1308
  await rag.process_document_complete(
1309
  file_path="path/to/new/multimodal_document.pdf",
1310
  output_dir="./output"
1311
  )
1312
-
1313
  if __name__ == "__main__":
1314
  asyncio.run(load_existing_lightrag())
1315
  ```
 
797
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
798
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
799
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
800
+
801
  -- drop if necessary
802
  drop INDEX entity_p_idx;
803
  drop INDEX vertex_p_idx;
 
1231
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1232
  from lightrag.utils import EmbeddingFunc
1233
  import os
1234
+
1235
  async def load_existing_lightrag():
1236
  # First, create or load an existing LightRAG instance
1237
  lightrag_working_dir = "./existing_lightrag_storage"
1238
+
1239
  # Check if previous LightRAG instance exists
1240
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1241
  print("✅ Found existing LightRAG instance, loading...")
1242
  else:
1243
  print("❌ No existing LightRAG instance found, will create new one")
1244
+
1245
  # Create/Load LightRAG instance with your configurations
1246
  lightrag_instance = LightRAG(
1247
  working_dir=lightrag_working_dir,
 
1264
  ),
1265
  )
1266
  )
1267
+
1268
  # Initialize storage (this will load existing data if available)
1269
  await lightrag_instance.initialize_storages()
1270
+
1271
  # Now initialize RAGAnything with the existing LightRAG instance
1272
  rag = RAGAnything(
1273
  lightrag=lightrag_instance, # Pass the existing LightRAG instance
 
1296
  )
1297
  # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
1298
  )
1299
+
1300
  # Query the existing knowledge base
1301
  result = await rag.query_with_multimodal(
1302
  "What data has been processed in this LightRAG instance?",
1303
  mode="hybrid"
1304
  )
1305
  print("Query result:", result)
1306
+
1307
  # Add new multimodal documents to the existing LightRAG instance
1308
  await rag.process_document_complete(
1309
  file_path="path/to/new/multimodal_document.pdf",
1310
  output_dir="./output"
1311
  )
1312
+
1313
  if __name__ == "__main__":
1314
  asyncio.run(load_existing_lightrag())
1315
  ```