Merge from main
Browse files- examples/lightrag_openai_mongodb_graph_demo.py +73 -0
- lightrag/api/lightrag_server.py +76 -60
- lightrag/kg/mongo_impl.py +361 -1
- lightrag/lightrag.py +1 -0
examples/lightrag_openai_mongodb_graph_demo.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
5 |
+
from lightrag.utils import EmbeddingFunc
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
#########
|
9 |
+
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
10 |
+
# import nest_asyncio
|
11 |
+
# nest_asyncio.apply()
|
12 |
+
#########
|
13 |
+
WORKING_DIR = "./mongodb_test_dir"
|
14 |
+
if not os.path.exists(WORKING_DIR):
|
15 |
+
os.mkdir(WORKING_DIR)
|
16 |
+
|
17 |
+
|
18 |
+
os.environ["OPENAI_API_KEY"] = "sk-"
|
19 |
+
os.environ["MONGO_URI"] = "mongodb://0.0.0.0:27017/?directConnection=true"
|
20 |
+
os.environ["MONGO_DATABASE"] = "LightRAG"
|
21 |
+
os.environ["MONGO_KG_COLLECTION"] = "MDB_KG"
|
22 |
+
|
23 |
+
# Embedding Configuration and Functions
|
24 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
25 |
+
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
26 |
+
|
27 |
+
|
28 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
29 |
+
return await openai_embed(
|
30 |
+
texts,
|
31 |
+
model=EMBEDDING_MODEL,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
async def get_embedding_dimension():
|
36 |
+
test_text = ["This is a test sentence."]
|
37 |
+
embedding = await embedding_func(test_text)
|
38 |
+
return embedding.shape[1]
|
39 |
+
|
40 |
+
|
41 |
+
async def create_embedding_function_instance():
|
42 |
+
# Get embedding dimension
|
43 |
+
embedding_dimension = await get_embedding_dimension()
|
44 |
+
# Create embedding function instance
|
45 |
+
return EmbeddingFunc(
|
46 |
+
embedding_dim=embedding_dimension,
|
47 |
+
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
48 |
+
func=embedding_func,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
async def initialize_rag():
|
53 |
+
embedding_func_instance = await create_embedding_function_instance()
|
54 |
+
|
55 |
+
return LightRAG(
|
56 |
+
working_dir=WORKING_DIR,
|
57 |
+
llm_model_func=gpt_4o_mini_complete,
|
58 |
+
embedding_func=embedding_func_instance,
|
59 |
+
graph_storage="MongoGraphStorage",
|
60 |
+
log_level="DEBUG",
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
# Run the initialization
|
65 |
+
rag = asyncio.run(initialize_rag())
|
66 |
+
|
67 |
+
with open("book.txt", "r", encoding="utf-8") as f:
|
68 |
+
rag.insert(f.read())
|
69 |
+
|
70 |
+
# Perform naive search
|
71 |
+
print(
|
72 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
73 |
+
)
|
lightrag/api/lightrag_server.py
CHANGED
@@ -48,18 +48,23 @@ def estimate_tokens(text: str) -> int:
|
|
48 |
return int(tokens)
|
49 |
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# read config.ini
|
65 |
config = configparser.ConfigParser()
|
@@ -68,8 +73,8 @@ config.read("config.ini", "utf-8")
|
|
68 |
redis_uri = config.get("redis", "uri", fallback=None)
|
69 |
if redis_uri:
|
70 |
os.environ["REDIS_URI"] = redis_uri
|
71 |
-
KV_STORAGE = "RedisKVStorage"
|
72 |
-
DOC_STATUS_STORAGE = "RedisKVStorage"
|
73 |
|
74 |
# Neo4j config
|
75 |
neo4j_uri = config.get("neo4j", "uri", fallback=None)
|
@@ -79,7 +84,7 @@ if neo4j_uri:
|
|
79 |
os.environ["NEO4J_URI"] = neo4j_uri
|
80 |
os.environ["NEO4J_USERNAME"] = neo4j_username
|
81 |
os.environ["NEO4J_PASSWORD"] = neo4j_password
|
82 |
-
GRAPH_STORAGE = "Neo4JStorage"
|
83 |
|
84 |
# Milvus config
|
85 |
milvus_uri = config.get("milvus", "uri", fallback=None)
|
@@ -91,7 +96,7 @@ if milvus_uri:
|
|
91 |
os.environ["MILVUS_USER"] = milvus_user
|
92 |
os.environ["MILVUS_PASSWORD"] = milvus_password
|
93 |
os.environ["MILVUS_DB_NAME"] = milvus_db_name
|
94 |
-
VECTOR_STORAGE = "MilvusVectorDBStorge"
|
95 |
|
96 |
# MongoDB config
|
97 |
mongo_uri = config.get("mongodb", "uri", fallback=None)
|
@@ -99,8 +104,8 @@ mongo_database = config.get("mongodb", "LightRAG", fallback=None)
|
|
99 |
if mongo_uri:
|
100 |
os.environ["MONGO_URI"] = mongo_uri
|
101 |
os.environ["MONGO_DATABASE"] = mongo_database
|
102 |
-
KV_STORAGE = "MongoKVStorage"
|
103 |
-
DOC_STATUS_STORAGE = "MongoKVStorage"
|
104 |
|
105 |
|
106 |
def get_default_host(binding_type: str) -> str:
|
@@ -217,7 +222,7 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
|
217 |
# System Configuration
|
218 |
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
219 |
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
220 |
-
ASCIIColors.yellow(f"{LIGHTRAG_MODEL}")
|
221 |
ASCIIColors.white(" ├─ Log Level: ", end="")
|
222 |
ASCIIColors.yellow(f"{args.log_level}")
|
223 |
ASCIIColors.white(" ├─ Timeout: ", end="")
|
@@ -502,8 +507,19 @@ def parse_args() -> argparse.Namespace:
|
|
502 |
help="Cosine similarity threshold (default: from env or 0.4)",
|
503 |
)
|
504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
args = parser.parse_args()
|
506 |
|
|
|
|
|
507 |
return args
|
508 |
|
509 |
|
@@ -556,7 +572,7 @@ class OllamaMessage(BaseModel):
|
|
556 |
|
557 |
|
558 |
class OllamaChatRequest(BaseModel):
|
559 |
-
model: str = LIGHTRAG_MODEL
|
560 |
messages: List[OllamaMessage]
|
561 |
stream: bool = True # Default to streaming mode
|
562 |
options: Optional[Dict[str, Any]] = None
|
@@ -571,7 +587,7 @@ class OllamaChatResponse(BaseModel):
|
|
571 |
|
572 |
|
573 |
class OllamaGenerateRequest(BaseModel):
|
574 |
-
model: str = LIGHTRAG_MODEL
|
575 |
prompt: str
|
576 |
system: Optional[str] = None
|
577 |
stream: bool = False
|
@@ -860,10 +876,10 @@ def create_app(args):
|
|
860 |
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
861 |
else {},
|
862 |
embedding_func=embedding_func,
|
863 |
-
kv_storage=KV_STORAGE,
|
864 |
-
graph_storage=GRAPH_STORAGE,
|
865 |
-
vector_storage=VECTOR_STORAGE,
|
866 |
-
doc_status_storage=DOC_STATUS_STORAGE,
|
867 |
vector_db_storage_cls_kwargs={
|
868 |
"cosine_better_than_threshold": args.cosine_threshold
|
869 |
},
|
@@ -883,10 +899,10 @@ def create_app(args):
|
|
883 |
llm_model_max_async=args.max_async,
|
884 |
llm_model_max_token_size=args.max_tokens,
|
885 |
embedding_func=embedding_func,
|
886 |
-
kv_storage=KV_STORAGE,
|
887 |
-
graph_storage=GRAPH_STORAGE,
|
888 |
-
vector_storage=VECTOR_STORAGE,
|
889 |
-
doc_status_storage=DOC_STATUS_STORAGE,
|
890 |
vector_db_storage_cls_kwargs={
|
891 |
"cosine_better_than_threshold": args.cosine_threshold
|
892 |
},
|
@@ -1452,16 +1468,16 @@ def create_app(args):
|
|
1452 |
return OllamaTagResponse(
|
1453 |
models=[
|
1454 |
{
|
1455 |
-
"name": LIGHTRAG_MODEL,
|
1456 |
-
"model": LIGHTRAG_MODEL,
|
1457 |
-
"size": LIGHTRAG_SIZE,
|
1458 |
-
"digest": LIGHTRAG_DIGEST,
|
1459 |
-
"modified_at": LIGHTRAG_CREATED_AT,
|
1460 |
"details": {
|
1461 |
"parent_model": "",
|
1462 |
"format": "gguf",
|
1463 |
-
"family": LIGHTRAG_NAME,
|
1464 |
-
"families": [LIGHTRAG_NAME],
|
1465 |
"parameter_size": "13B",
|
1466 |
"quantization_level": "Q4_0",
|
1467 |
},
|
@@ -1524,8 +1540,8 @@ def create_app(args):
|
|
1524 |
total_response = response
|
1525 |
|
1526 |
data = {
|
1527 |
-
"model": LIGHTRAG_MODEL,
|
1528 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1529 |
"response": response,
|
1530 |
"done": False,
|
1531 |
}
|
@@ -1537,8 +1553,8 @@ def create_app(args):
|
|
1537 |
eval_time = last_chunk_time - first_chunk_time
|
1538 |
|
1539 |
data = {
|
1540 |
-
"model": LIGHTRAG_MODEL,
|
1541 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1542 |
"done": True,
|
1543 |
"total_duration": total_time,
|
1544 |
"load_duration": 0,
|
@@ -1558,8 +1574,8 @@ def create_app(args):
|
|
1558 |
|
1559 |
total_response += chunk
|
1560 |
data = {
|
1561 |
-
"model": LIGHTRAG_MODEL,
|
1562 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1563 |
"response": chunk,
|
1564 |
"done": False,
|
1565 |
}
|
@@ -1571,8 +1587,8 @@ def create_app(args):
|
|
1571 |
eval_time = last_chunk_time - first_chunk_time
|
1572 |
|
1573 |
data = {
|
1574 |
-
"model": LIGHTRAG_MODEL,
|
1575 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1576 |
"done": True,
|
1577 |
"total_duration": total_time,
|
1578 |
"load_duration": 0,
|
@@ -1616,8 +1632,8 @@ def create_app(args):
|
|
1616 |
eval_time = last_chunk_time - first_chunk_time
|
1617 |
|
1618 |
return {
|
1619 |
-
"model": LIGHTRAG_MODEL,
|
1620 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1621 |
"response": str(response_text),
|
1622 |
"done": True,
|
1623 |
"total_duration": total_time,
|
@@ -1690,8 +1706,8 @@ def create_app(args):
|
|
1690 |
total_response = response
|
1691 |
|
1692 |
data = {
|
1693 |
-
"model": LIGHTRAG_MODEL,
|
1694 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1695 |
"message": {
|
1696 |
"role": "assistant",
|
1697 |
"content": response,
|
@@ -1707,8 +1723,8 @@ def create_app(args):
|
|
1707 |
eval_time = last_chunk_time - first_chunk_time
|
1708 |
|
1709 |
data = {
|
1710 |
-
"model": LIGHTRAG_MODEL,
|
1711 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1712 |
"done": True,
|
1713 |
"total_duration": total_time,
|
1714 |
"load_duration": 0,
|
@@ -1728,8 +1744,8 @@ def create_app(args):
|
|
1728 |
|
1729 |
total_response += chunk
|
1730 |
data = {
|
1731 |
-
"model": LIGHTRAG_MODEL,
|
1732 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1733 |
"message": {
|
1734 |
"role": "assistant",
|
1735 |
"content": chunk,
|
@@ -1745,8 +1761,8 @@ def create_app(args):
|
|
1745 |
eval_time = last_chunk_time - first_chunk_time
|
1746 |
|
1747 |
data = {
|
1748 |
-
"model": LIGHTRAG_MODEL,
|
1749 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1750 |
"done": True,
|
1751 |
"total_duration": total_time,
|
1752 |
"load_duration": 0,
|
@@ -1801,8 +1817,8 @@ def create_app(args):
|
|
1801 |
eval_time = last_chunk_time - first_chunk_time
|
1802 |
|
1803 |
return {
|
1804 |
-
"model": LIGHTRAG_MODEL,
|
1805 |
-
"created_at": LIGHTRAG_CREATED_AT,
|
1806 |
"message": {
|
1807 |
"role": "assistant",
|
1808 |
"content": str(response_text),
|
@@ -1845,10 +1861,10 @@ def create_app(args):
|
|
1845 |
"embedding_binding_host": args.embedding_binding_host,
|
1846 |
"embedding_model": args.embedding_model,
|
1847 |
"max_tokens": args.max_tokens,
|
1848 |
-
"kv_storage": KV_STORAGE,
|
1849 |
-
"doc_status_storage": DOC_STATUS_STORAGE,
|
1850 |
-
"graph_storage": GRAPH_STORAGE,
|
1851 |
-
"vector_storage": VECTOR_STORAGE,
|
1852 |
},
|
1853 |
}
|
1854 |
|
|
|
48 |
return int(tokens)
|
49 |
|
50 |
|
51 |
+
class OllamaServerInfos:
|
52 |
+
# Constants for emulated Ollama model information
|
53 |
+
LIGHTRAG_NAME = "lightrag"
|
54 |
+
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
55 |
+
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
56 |
+
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
57 |
+
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
58 |
+
LIGHTRAG_DIGEST = "sha256:lightrag"
|
59 |
+
|
60 |
+
KV_STORAGE = "JsonKVStorage"
|
61 |
+
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
62 |
+
GRAPH_STORAGE = "NetworkXStorage"
|
63 |
+
VECTOR_STORAGE = "NanoVectorDBStorage"
|
64 |
+
|
65 |
+
|
66 |
+
# Add infos
|
67 |
+
ollama_server_infos = OllamaServerInfos()
|
68 |
|
69 |
# read config.ini
|
70 |
config = configparser.ConfigParser()
|
|
|
73 |
redis_uri = config.get("redis", "uri", fallback=None)
|
74 |
if redis_uri:
|
75 |
os.environ["REDIS_URI"] = redis_uri
|
76 |
+
ollama_server_infos.KV_STORAGE = "RedisKVStorage"
|
77 |
+
ollama_server_infos.DOC_STATUS_STORAGE = "RedisKVStorage"
|
78 |
|
79 |
# Neo4j config
|
80 |
neo4j_uri = config.get("neo4j", "uri", fallback=None)
|
|
|
84 |
os.environ["NEO4J_URI"] = neo4j_uri
|
85 |
os.environ["NEO4J_USERNAME"] = neo4j_username
|
86 |
os.environ["NEO4J_PASSWORD"] = neo4j_password
|
87 |
+
ollama_server_infos.GRAPH_STORAGE = "Neo4JStorage"
|
88 |
|
89 |
# Milvus config
|
90 |
milvus_uri = config.get("milvus", "uri", fallback=None)
|
|
|
96 |
os.environ["MILVUS_USER"] = milvus_user
|
97 |
os.environ["MILVUS_PASSWORD"] = milvus_password
|
98 |
os.environ["MILVUS_DB_NAME"] = milvus_db_name
|
99 |
+
ollama_server_infos.VECTOR_STORAGE = "MilvusVectorDBStorge"
|
100 |
|
101 |
# MongoDB config
|
102 |
mongo_uri = config.get("mongodb", "uri", fallback=None)
|
|
|
104 |
if mongo_uri:
|
105 |
os.environ["MONGO_URI"] = mongo_uri
|
106 |
os.environ["MONGO_DATABASE"] = mongo_database
|
107 |
+
ollama_server_infos.KV_STORAGE = "MongoKVStorage"
|
108 |
+
ollama_server_infos.DOC_STATUS_STORAGE = "MongoKVStorage"
|
109 |
|
110 |
|
111 |
def get_default_host(binding_type: str) -> str:
|
|
|
222 |
# System Configuration
|
223 |
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
224 |
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
225 |
+
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
|
226 |
ASCIIColors.white(" ├─ Log Level: ", end="")
|
227 |
ASCIIColors.yellow(f"{args.log_level}")
|
228 |
ASCIIColors.white(" ├─ Timeout: ", end="")
|
|
|
507 |
help="Cosine similarity threshold (default: from env or 0.4)",
|
508 |
)
|
509 |
|
510 |
+
parser.add_argument(
|
511 |
+
"--simulated-model-name",
|
512 |
+
type=str,
|
513 |
+
default=get_env_value(
|
514 |
+
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
515 |
+
),
|
516 |
+
help="Number of conversation history turns to include (default: from env or 3)",
|
517 |
+
)
|
518 |
+
|
519 |
args = parser.parse_args()
|
520 |
|
521 |
+
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
522 |
+
|
523 |
return args
|
524 |
|
525 |
|
|
|
572 |
|
573 |
|
574 |
class OllamaChatRequest(BaseModel):
|
575 |
+
model: str = ollama_server_infos.LIGHTRAG_MODEL
|
576 |
messages: List[OllamaMessage]
|
577 |
stream: bool = True # Default to streaming mode
|
578 |
options: Optional[Dict[str, Any]] = None
|
|
|
587 |
|
588 |
|
589 |
class OllamaGenerateRequest(BaseModel):
|
590 |
+
model: str = ollama_server_infos.LIGHTRAG_MODEL
|
591 |
prompt: str
|
592 |
system: Optional[str] = None
|
593 |
stream: bool = False
|
|
|
876 |
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
877 |
else {},
|
878 |
embedding_func=embedding_func,
|
879 |
+
kv_storage=ollama_server_infos.KV_STORAGE,
|
880 |
+
graph_storage=ollama_server_infos.GRAPH_STORAGE,
|
881 |
+
vector_storage=ollama_server_infos.VECTOR_STORAGE,
|
882 |
+
doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
|
883 |
vector_db_storage_cls_kwargs={
|
884 |
"cosine_better_than_threshold": args.cosine_threshold
|
885 |
},
|
|
|
899 |
llm_model_max_async=args.max_async,
|
900 |
llm_model_max_token_size=args.max_tokens,
|
901 |
embedding_func=embedding_func,
|
902 |
+
kv_storage=ollama_server_infos.KV_STORAGE,
|
903 |
+
graph_storage=ollama_server_infos.GRAPH_STORAGE,
|
904 |
+
vector_storage=ollama_server_infos.VECTOR_STORAGE,
|
905 |
+
doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
|
906 |
vector_db_storage_cls_kwargs={
|
907 |
"cosine_better_than_threshold": args.cosine_threshold
|
908 |
},
|
|
|
1468 |
return OllamaTagResponse(
|
1469 |
models=[
|
1470 |
{
|
1471 |
+
"name": ollama_server_infos.LIGHTRAG_MODEL,
|
1472 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1473 |
+
"size": ollama_server_infos.LIGHTRAG_SIZE,
|
1474 |
+
"digest": ollama_server_infos.LIGHTRAG_DIGEST,
|
1475 |
+
"modified_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1476 |
"details": {
|
1477 |
"parent_model": "",
|
1478 |
"format": "gguf",
|
1479 |
+
"family": ollama_server_infos.LIGHTRAG_NAME,
|
1480 |
+
"families": [ollama_server_infos.LIGHTRAG_NAME],
|
1481 |
"parameter_size": "13B",
|
1482 |
"quantization_level": "Q4_0",
|
1483 |
},
|
|
|
1540 |
total_response = response
|
1541 |
|
1542 |
data = {
|
1543 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1544 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1545 |
"response": response,
|
1546 |
"done": False,
|
1547 |
}
|
|
|
1553 |
eval_time = last_chunk_time - first_chunk_time
|
1554 |
|
1555 |
data = {
|
1556 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1557 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1558 |
"done": True,
|
1559 |
"total_duration": total_time,
|
1560 |
"load_duration": 0,
|
|
|
1574 |
|
1575 |
total_response += chunk
|
1576 |
data = {
|
1577 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1578 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1579 |
"response": chunk,
|
1580 |
"done": False,
|
1581 |
}
|
|
|
1587 |
eval_time = last_chunk_time - first_chunk_time
|
1588 |
|
1589 |
data = {
|
1590 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1591 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1592 |
"done": True,
|
1593 |
"total_duration": total_time,
|
1594 |
"load_duration": 0,
|
|
|
1632 |
eval_time = last_chunk_time - first_chunk_time
|
1633 |
|
1634 |
return {
|
1635 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1636 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1637 |
"response": str(response_text),
|
1638 |
"done": True,
|
1639 |
"total_duration": total_time,
|
|
|
1706 |
total_response = response
|
1707 |
|
1708 |
data = {
|
1709 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1710 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1711 |
"message": {
|
1712 |
"role": "assistant",
|
1713 |
"content": response,
|
|
|
1723 |
eval_time = last_chunk_time - first_chunk_time
|
1724 |
|
1725 |
data = {
|
1726 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1727 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1728 |
"done": True,
|
1729 |
"total_duration": total_time,
|
1730 |
"load_duration": 0,
|
|
|
1744 |
|
1745 |
total_response += chunk
|
1746 |
data = {
|
1747 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1748 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1749 |
"message": {
|
1750 |
"role": "assistant",
|
1751 |
"content": chunk,
|
|
|
1761 |
eval_time = last_chunk_time - first_chunk_time
|
1762 |
|
1763 |
data = {
|
1764 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1765 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1766 |
"done": True,
|
1767 |
"total_duration": total_time,
|
1768 |
"load_duration": 0,
|
|
|
1817 |
eval_time = last_chunk_time - first_chunk_time
|
1818 |
|
1819 |
return {
|
1820 |
+
"model": ollama_server_infos.LIGHTRAG_MODEL,
|
1821 |
+
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
|
1822 |
"message": {
|
1823 |
"role": "assistant",
|
1824 |
"content": str(response_text),
|
|
|
1861 |
"embedding_binding_host": args.embedding_binding_host,
|
1862 |
"embedding_model": args.embedding_model,
|
1863 |
"max_tokens": args.max_tokens,
|
1864 |
+
"kv_storage": ollama_server_infos.KV_STORAGE,
|
1865 |
+
"doc_status_storage": ollama_server_infos.DOC_STATUS_STORAGE,
|
1866 |
+
"graph_storage": ollama_server_infos.GRAPH_STORAGE,
|
1867 |
+
"vector_storage": ollama_server_infos.VECTOR_STORAGE,
|
1868 |
},
|
1869 |
}
|
1870 |
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -2,15 +2,18 @@ import os
|
|
2 |
from tqdm.asyncio import tqdm as tqdm_async
|
3 |
from dataclasses import dataclass
|
4 |
import pipmaster as pm
|
|
|
5 |
|
6 |
if not pm.is_installed("pymongo"):
|
7 |
pm.install("pymongo")
|
8 |
|
9 |
from pymongo import MongoClient
|
10 |
-
from
|
|
|
11 |
from lightrag.utils import logger
|
12 |
|
13 |
from lightrag.base import BaseKVStorage
|
|
|
14 |
|
15 |
|
16 |
@dataclass
|
@@ -78,3 +81,360 @@ class MongoKVStorage(BaseKVStorage):
|
|
78 |
async def drop(self):
|
79 |
""" """
|
80 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from tqdm.asyncio import tqdm as tqdm_async
|
3 |
from dataclasses import dataclass
|
4 |
import pipmaster as pm
|
5 |
+
import np
|
6 |
|
7 |
if not pm.is_installed("pymongo"):
|
8 |
pm.install("pymongo")
|
9 |
|
10 |
from pymongo import MongoClient
|
11 |
+
from motor.motor_asyncio import AsyncIOMotorClient
|
12 |
+
from typing import Union, List, Tuple
|
13 |
from lightrag.utils import logger
|
14 |
|
15 |
from lightrag.base import BaseKVStorage
|
16 |
+
from lightrag.base import BaseGraphStorage
|
17 |
|
18 |
|
19 |
@dataclass
|
|
|
81 |
async def drop(self):
|
82 |
""" """
|
83 |
pass
|
84 |
+
|
85 |
+
|
86 |
+
@dataclass
|
87 |
+
class MongoGraphStorage(BaseGraphStorage):
|
88 |
+
"""
|
89 |
+
A concrete implementation using MongoDB’s $graphLookup to demonstrate multi-hop queries.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, namespace, global_config, embedding_func):
|
93 |
+
super().__init__(
|
94 |
+
namespace=namespace,
|
95 |
+
global_config=global_config,
|
96 |
+
embedding_func=embedding_func,
|
97 |
+
)
|
98 |
+
self.client = AsyncIOMotorClient(
|
99 |
+
os.environ.get("MONGO_URI", "mongodb://root:root@localhost:27017/")
|
100 |
+
)
|
101 |
+
self.db = self.client[os.environ.get("MONGO_DATABASE", "LightRAG")]
|
102 |
+
self.collection = self.db[os.environ.get("MONGO_KG_COLLECTION", "MDB_KG")]
|
103 |
+
|
104 |
+
#
|
105 |
+
# -------------------------------------------------------------------------
|
106 |
+
# HELPER: $graphLookup pipeline
|
107 |
+
# -------------------------------------------------------------------------
|
108 |
+
#
|
109 |
+
|
110 |
+
async def _graph_lookup(
|
111 |
+
self, start_node_id: str, max_depth: int = None
|
112 |
+
) -> List[dict]:
|
113 |
+
"""
|
114 |
+
Performs a $graphLookup starting from 'start_node_id' and returns
|
115 |
+
all reachable documents (including the start node itself).
|
116 |
+
|
117 |
+
Pipeline Explanation:
|
118 |
+
- 1) $match: We match the start node document by _id = start_node_id.
|
119 |
+
- 2) $graphLookup:
|
120 |
+
"from": same collection,
|
121 |
+
"startWith": "$edges.target" (the immediate neighbors in 'edges'),
|
122 |
+
"connectFromField": "edges.target",
|
123 |
+
"connectToField": "_id",
|
124 |
+
"as": "reachableNodes",
|
125 |
+
"maxDepth": max_depth (if provided),
|
126 |
+
"depthField": "depth" (used for debugging or filtering).
|
127 |
+
- 3) We add an $project or $unwind as needed to extract data.
|
128 |
+
"""
|
129 |
+
pipeline = [
|
130 |
+
{"$match": {"_id": start_node_id}},
|
131 |
+
{
|
132 |
+
"$graphLookup": {
|
133 |
+
"from": self.collection.name,
|
134 |
+
"startWith": "$edges.target",
|
135 |
+
"connectFromField": "edges.target",
|
136 |
+
"connectToField": "_id",
|
137 |
+
"as": "reachableNodes",
|
138 |
+
"depthField": "depth",
|
139 |
+
}
|
140 |
+
},
|
141 |
+
]
|
142 |
+
|
143 |
+
# If you want a limited depth (e.g., only 1 or 2 hops), set maxDepth
|
144 |
+
if max_depth is not None:
|
145 |
+
pipeline[1]["$graphLookup"]["maxDepth"] = max_depth
|
146 |
+
|
147 |
+
# Return the matching doc plus a field "reachableNodes"
|
148 |
+
cursor = self.collection.aggregate(pipeline)
|
149 |
+
results = await cursor.to_list(None)
|
150 |
+
|
151 |
+
# If there's no matching node, results = [].
|
152 |
+
# Otherwise, results[0] is the start node doc,
|
153 |
+
# plus results[0]["reachableNodes"] is the array of connected docs.
|
154 |
+
return results
|
155 |
+
|
156 |
+
#
|
157 |
+
# -------------------------------------------------------------------------
|
158 |
+
# BASIC QUERIES
|
159 |
+
# -------------------------------------------------------------------------
|
160 |
+
#
|
161 |
+
|
162 |
+
async def has_node(self, node_id: str) -> bool:
|
163 |
+
"""
|
164 |
+
Check if node_id is present in the collection by looking up its doc.
|
165 |
+
No real need for $graphLookup here, but let's keep it direct.
|
166 |
+
"""
|
167 |
+
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
|
168 |
+
return doc is not None
|
169 |
+
|
170 |
+
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
171 |
+
"""
|
172 |
+
Check if there's a direct single-hop edge from source_node_id to target_node_id.
|
173 |
+
|
174 |
+
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
|
175 |
+
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
|
176 |
+
and then see if the target node is in the "reachableNodes" at depth=0.
|
177 |
+
|
178 |
+
But typically for a direct edge, we might just do a find_one.
|
179 |
+
Below is a demonstration approach.
|
180 |
+
"""
|
181 |
+
|
182 |
+
# We can do a single-hop graphLookup (maxDepth=0 or 1).
|
183 |
+
# Then check if the target_node appears among the edges array.
|
184 |
+
pipeline = [
|
185 |
+
{"$match": {"_id": source_node_id}},
|
186 |
+
{
|
187 |
+
"$graphLookup": {
|
188 |
+
"from": self.collection.name,
|
189 |
+
"startWith": "$edges.target",
|
190 |
+
"connectFromField": "edges.target",
|
191 |
+
"connectToField": "_id",
|
192 |
+
"as": "reachableNodes",
|
193 |
+
"depthField": "depth",
|
194 |
+
"maxDepth": 0, # means: do not follow beyond immediate edges
|
195 |
+
}
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"$project": {
|
199 |
+
"_id": 0,
|
200 |
+
"reachableNodes._id": 1, # only keep the _id from the subdocs
|
201 |
+
}
|
202 |
+
},
|
203 |
+
]
|
204 |
+
cursor = self.collection.aggregate(pipeline)
|
205 |
+
results = await cursor.to_list(None)
|
206 |
+
if not results:
|
207 |
+
return False
|
208 |
+
|
209 |
+
# results[0]["reachableNodes"] are the immediate neighbors
|
210 |
+
reachable_ids = [d["_id"] for d in results[0].get("reachableNodes", [])]
|
211 |
+
return target_node_id in reachable_ids
|
212 |
+
|
213 |
+
#
|
214 |
+
# -------------------------------------------------------------------------
|
215 |
+
# DEGREES
|
216 |
+
# -------------------------------------------------------------------------
|
217 |
+
#
|
218 |
+
|
219 |
+
async def node_degree(self, node_id: str) -> int:
|
220 |
+
"""
|
221 |
+
Returns the total number of edges connected to node_id (both inbound and outbound).
|
222 |
+
The easiest approach is typically two queries:
|
223 |
+
- count of edges array in node_id's doc
|
224 |
+
- count of how many other docs have node_id in their edges.target.
|
225 |
+
|
226 |
+
But we'll do a $graphLookup demonstration for inbound edges:
|
227 |
+
1) Outbound edges: direct from node's edges array
|
228 |
+
2) Inbound edges: we can do a special $graphLookup from all docs
|
229 |
+
or do an explicit match.
|
230 |
+
|
231 |
+
For demonstration, let's do this in two steps (with second step $graphLookup).
|
232 |
+
"""
|
233 |
+
# --- 1) Outbound edges (direct from doc) ---
|
234 |
+
doc = await self.collection.find_one({"_id": node_id}, {"edges": 1})
|
235 |
+
if not doc:
|
236 |
+
return 0
|
237 |
+
outbound_count = len(doc.get("edges", []))
|
238 |
+
|
239 |
+
# --- 2) Inbound edges:
|
240 |
+
# A simple way is: find all docs where "edges.target" == node_id.
|
241 |
+
# But let's do a $graphLookup from `node_id` in REVERSE.
|
242 |
+
# There's a trick to do "reverse" graphLookups: you'd store
|
243 |
+
# reversed edges or do a more advanced pipeline. Typically you'd do
|
244 |
+
# a direct match. We'll just do a direct match for inbound.
|
245 |
+
inbound_count_pipeline = [
|
246 |
+
{"$match": {"edges.target": node_id}},
|
247 |
+
{
|
248 |
+
"$project": {
|
249 |
+
"matchingEdgesCount": {
|
250 |
+
"$size": {
|
251 |
+
"$filter": {
|
252 |
+
"input": "$edges",
|
253 |
+
"as": "edge",
|
254 |
+
"cond": {"$eq": ["$$edge.target", node_id]},
|
255 |
+
}
|
256 |
+
}
|
257 |
+
}
|
258 |
+
}
|
259 |
+
},
|
260 |
+
{"$group": {"_id": None, "totalInbound": {"$sum": "$matchingEdgesCount"}}},
|
261 |
+
]
|
262 |
+
inbound_cursor = self.collection.aggregate(inbound_count_pipeline)
|
263 |
+
inbound_result = await inbound_cursor.to_list(None)
|
264 |
+
inbound_count = inbound_result[0]["totalInbound"] if inbound_result else 0
|
265 |
+
|
266 |
+
return outbound_count + inbound_count
|
267 |
+
|
268 |
+
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
269 |
+
"""
|
270 |
+
If your graph can hold multiple edges from the same src to the same tgt
|
271 |
+
(e.g. different 'relation' values), you can sum them. If it's always
|
272 |
+
one edge, this is typically 1 or 0.
|
273 |
+
|
274 |
+
We'll do a single-hop $graphLookup from src_id,
|
275 |
+
then count how many edges reference tgt_id at depth=0.
|
276 |
+
"""
|
277 |
+
pipeline = [
|
278 |
+
{"$match": {"_id": src_id}},
|
279 |
+
{
|
280 |
+
"$graphLookup": {
|
281 |
+
"from": self.collection.name,
|
282 |
+
"startWith": "$edges.target",
|
283 |
+
"connectFromField": "edges.target",
|
284 |
+
"connectToField": "_id",
|
285 |
+
"as": "neighbors",
|
286 |
+
"depthField": "depth",
|
287 |
+
"maxDepth": 0,
|
288 |
+
}
|
289 |
+
},
|
290 |
+
{"$project": {"edges": 1, "neighbors._id": 1, "neighbors.type": 1}},
|
291 |
+
]
|
292 |
+
cursor = self.collection.aggregate(pipeline)
|
293 |
+
results = await cursor.to_list(None)
|
294 |
+
if not results:
|
295 |
+
return 0
|
296 |
+
|
297 |
+
# We can simply count how many edges in `results[0].edges` have target == tgt_id.
|
298 |
+
edges = results[0].get("edges", [])
|
299 |
+
count = sum(1 for e in edges if e.get("target") == tgt_id)
|
300 |
+
return count
|
301 |
+
|
302 |
+
#
|
303 |
+
# -------------------------------------------------------------------------
|
304 |
+
# GETTERS
|
305 |
+
# -------------------------------------------------------------------------
|
306 |
+
#
|
307 |
+
|
308 |
+
async def get_node(self, node_id: str) -> Union[dict, None]:
|
309 |
+
"""
|
310 |
+
Return the full node document (including "edges"), or None if missing.
|
311 |
+
"""
|
312 |
+
return await self.collection.find_one({"_id": node_id})
|
313 |
+
|
314 |
+
async def get_edge(
|
315 |
+
self, source_node_id: str, target_node_id: str
|
316 |
+
) -> Union[dict, None]:
|
317 |
+
"""
|
318 |
+
Return the first edge dict from source_node_id to target_node_id if it exists.
|
319 |
+
Uses a single-hop $graphLookup as demonstration, though a direct find is simpler.
|
320 |
+
"""
|
321 |
+
pipeline = [
|
322 |
+
{"$match": {"_id": source_node_id}},
|
323 |
+
{
|
324 |
+
"$graphLookup": {
|
325 |
+
"from": self.collection.name,
|
326 |
+
"startWith": "$edges.target",
|
327 |
+
"connectFromField": "edges.target",
|
328 |
+
"connectToField": "_id",
|
329 |
+
"as": "neighbors",
|
330 |
+
"depthField": "depth",
|
331 |
+
"maxDepth": 0,
|
332 |
+
}
|
333 |
+
},
|
334 |
+
{"$project": {"edges": 1}},
|
335 |
+
]
|
336 |
+
cursor = self.collection.aggregate(pipeline)
|
337 |
+
docs = await cursor.to_list(None)
|
338 |
+
if not docs:
|
339 |
+
return None
|
340 |
+
|
341 |
+
for e in docs[0].get("edges", []):
|
342 |
+
if e.get("target") == target_node_id:
|
343 |
+
return e
|
344 |
+
return None
|
345 |
+
|
346 |
+
async def get_node_edges(
|
347 |
+
self, source_node_id: str
|
348 |
+
) -> Union[List[Tuple[str, str]], None]:
|
349 |
+
"""
|
350 |
+
Return a list of (target_id, relation) for direct edges from source_node_id.
|
351 |
+
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
|
352 |
+
"""
|
353 |
+
pipeline = [
|
354 |
+
{"$match": {"_id": source_node_id}},
|
355 |
+
{
|
356 |
+
"$graphLookup": {
|
357 |
+
"from": self.collection.name,
|
358 |
+
"startWith": "$edges.target",
|
359 |
+
"connectFromField": "edges.target",
|
360 |
+
"connectToField": "_id",
|
361 |
+
"as": "neighbors",
|
362 |
+
"depthField": "depth",
|
363 |
+
"maxDepth": 0,
|
364 |
+
}
|
365 |
+
},
|
366 |
+
{"$project": {"_id": 0, "edges": 1}},
|
367 |
+
]
|
368 |
+
cursor = self.collection.aggregate(pipeline)
|
369 |
+
result = await cursor.to_list(None)
|
370 |
+
if not result:
|
371 |
+
return None
|
372 |
+
|
373 |
+
edges = result[0].get("edges", [])
|
374 |
+
return [(e["target"], e["relation"]) for e in edges]
|
375 |
+
|
376 |
+
#
|
377 |
+
# -------------------------------------------------------------------------
|
378 |
+
# UPSERTS
|
379 |
+
# -------------------------------------------------------------------------
|
380 |
+
#
|
381 |
+
|
382 |
+
async def upsert_node(self, node_id: str, node_data: dict):
|
383 |
+
"""
|
384 |
+
Insert or update a node document. If new, create an empty edges array.
|
385 |
+
"""
|
386 |
+
# By default, preserve existing 'edges'.
|
387 |
+
# We'll only set 'edges' to [] on insert (no overwrite).
|
388 |
+
update_doc = {"$set": {**node_data}, "$setOnInsert": {"edges": []}}
|
389 |
+
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
|
390 |
+
|
391 |
+
async def upsert_edge(
|
392 |
+
self, source_node_id: str, target_node_id: str, edge_data: dict
|
393 |
+
):
|
394 |
+
"""
|
395 |
+
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
|
396 |
+
If an edge with the same target exists, we remove it and re-insert with updated data.
|
397 |
+
"""
|
398 |
+
# Ensure source node exists
|
399 |
+
await self.upsert_node(source_node_id, {})
|
400 |
+
|
401 |
+
# Remove existing edge (if any)
|
402 |
+
await self.collection.update_one(
|
403 |
+
{"_id": source_node_id}, {"$pull": {"edges": {"target": target_node_id}}}
|
404 |
+
)
|
405 |
+
|
406 |
+
# Insert new edge
|
407 |
+
new_edge = {"target": target_node_id}
|
408 |
+
new_edge.update(edge_data)
|
409 |
+
await self.collection.update_one(
|
410 |
+
{"_id": source_node_id}, {"$push": {"edges": new_edge}}
|
411 |
+
)
|
412 |
+
|
413 |
+
#
|
414 |
+
# -------------------------------------------------------------------------
|
415 |
+
# DELETION
|
416 |
+
# -------------------------------------------------------------------------
|
417 |
+
#
|
418 |
+
|
419 |
+
async def delete_node(self, node_id: str):
|
420 |
+
"""
|
421 |
+
1) Remove node’s doc entirely.
|
422 |
+
2) Remove inbound edges from any doc that references node_id.
|
423 |
+
"""
|
424 |
+
# Remove inbound edges from all other docs
|
425 |
+
await self.collection.update_many({}, {"$pull": {"edges": {"target": node_id}}})
|
426 |
+
|
427 |
+
# Remove the node doc
|
428 |
+
await self.collection.delete_one({"_id": node_id})
|
429 |
+
|
430 |
+
#
|
431 |
+
# -------------------------------------------------------------------------
|
432 |
+
# EMBEDDINGS (NOT IMPLEMENTED)
|
433 |
+
# -------------------------------------------------------------------------
|
434 |
+
#
|
435 |
+
|
436 |
+
async def embed_nodes(self, algorithm: str) -> Tuple[np.ndarray, List[str]]:
|
437 |
+
"""
|
438 |
+
Placeholder for demonstration, raises NotImplementedError.
|
439 |
+
"""
|
440 |
+
raise NotImplementedError("Node embedding is not used in lightrag.")
|
lightrag/lightrag.py
CHANGED
@@ -48,6 +48,7 @@ STORAGES = {
|
|
48 |
"OracleVectorDBStorage": ".kg.oracle_impl",
|
49 |
"MilvusVectorDBStorge": ".kg.milvus_impl",
|
50 |
"MongoKVStorage": ".kg.mongo_impl",
|
|
|
51 |
"RedisKVStorage": ".kg.redis_impl",
|
52 |
"ChromaVectorDBStorage": ".kg.chroma_impl",
|
53 |
"TiDBKVStorage": ".kg.tidb_impl",
|
|
|
48 |
"OracleVectorDBStorage": ".kg.oracle_impl",
|
49 |
"MilvusVectorDBStorge": ".kg.milvus_impl",
|
50 |
"MongoKVStorage": ".kg.mongo_impl",
|
51 |
+
"MongoGraphStorage": ".kg.mongo_impl",
|
52 |
"RedisKVStorage": ".kg.redis_impl",
|
53 |
"ChromaVectorDBStorage": ".kg.chroma_impl",
|
54 |
"TiDBKVStorage": ".kg.tidb_impl",
|