jin
commited on
Commit
·
c6d1ec5
1
Parent(s):
c77f948
Optimization logic
Browse files- .gitignore +2 -0
- examples/lightrag_api_oracle_demo..py +80 -53
- examples/lightrag_oracle_demo.py +2 -0
- lightrag/base.py +2 -0
- lightrag/kg/oracle_impl.py +38 -8
- lightrag/lightrag.py +4 -25
- lightrag/llm.py +7 -4
- lightrag/operate.py +141 -291
- lightrag/prompt.py +46 -34
- lightrag/utils.py +20 -8
.gitignore
CHANGED
@@ -12,3 +12,5 @@ ignore_this.txt
|
|
12 |
.venv/
|
13 |
*.ignore.*
|
14 |
.ruff_cache/
|
|
|
|
|
|
12 |
.venv/
|
13 |
*.ignore.*
|
14 |
.ruff_cache/
|
15 |
+
gui/
|
16 |
+
*.log
|
examples/lightrag_api_oracle_demo..py
CHANGED
@@ -1,11 +1,16 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
|
2 |
from contextlib import asynccontextmanager
|
3 |
from pydantic import BaseModel
|
4 |
-
from typing import Optional
|
|
|
5 |
|
6 |
-
import sys
|
7 |
-
|
8 |
from pathlib import Path
|
|
|
|
|
9 |
|
10 |
import asyncio
|
11 |
import nest_asyncio
|
@@ -13,15 +18,11 @@ from lightrag import LightRAG, QueryParam
|
|
13 |
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
14 |
from lightrag.utils import EmbeddingFunc
|
15 |
import numpy as np
|
|
|
16 |
|
17 |
from lightrag.kg.oracle_impl import OracleDB
|
18 |
|
19 |
|
20 |
-
print(os.getcwd())
|
21 |
-
|
22 |
-
script_directory = Path(__file__).resolve().parent.parent
|
23 |
-
sys.path.append(os.path.abspath(script_directory))
|
24 |
-
|
25 |
|
26 |
# Apply nest_asyncio to solve event loop issues
|
27 |
nest_asyncio.apply()
|
@@ -37,18 +38,16 @@ APIKEY = "ocigenerativeai"
|
|
37 |
# Configure working directory
|
38 |
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
39 |
print(f"WORKING_DIR: {WORKING_DIR}")
|
40 |
-
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus")
|
41 |
print(f"LLM_MODEL: {LLM_MODEL}")
|
42 |
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
|
43 |
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
44 |
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
|
45 |
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
46 |
|
47 |
-
|
48 |
if not os.path.exists(WORKING_DIR):
|
49 |
os.mkdir(WORKING_DIR)
|
50 |
-
|
51 |
-
|
52 |
async def llm_model_func(
|
53 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
54 |
) -> str:
|
@@ -78,10 +77,10 @@ async def get_embedding_dim():
|
|
78 |
embedding_dim = embedding.shape[1]
|
79 |
return embedding_dim
|
80 |
|
81 |
-
|
82 |
async def init():
|
|
|
83 |
# Detect embedding dimension
|
84 |
-
embedding_dimension = await get_embedding_dim()
|
85 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
86 |
# Create Oracle DB connection
|
87 |
# The `config` parameter is the connection configuration of Oracle DB
|
@@ -89,36 +88,36 @@ async def init():
|
|
89 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
90 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
91 |
|
92 |
-
oracle_db = OracleDB(
|
93 |
-
config={
|
94 |
-
"user": "",
|
95 |
-
"password": "",
|
96 |
-
"dsn": "",
|
97 |
-
"config_dir": "",
|
98 |
-
"wallet_location": "",
|
99 |
-
"wallet_password": "",
|
100 |
-
"workspace": "",
|
101 |
-
} # specify which docs you want to store and query
|
102 |
-
)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# Check if Oracle DB tables exist, if not, tables will be created
|
105 |
await oracle_db.check_tables()
|
106 |
# Initialize LightRAG
|
107 |
-
|
108 |
rag = LightRAG(
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
124 |
rag.graph_storage_cls.db = oracle_db
|
@@ -128,6 +127,17 @@ async def init():
|
|
128 |
return rag
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# Data models
|
132 |
|
133 |
|
@@ -135,7 +145,10 @@ class QueryRequest(BaseModel):
|
|
135 |
query: str
|
136 |
mode: str = "hybrid"
|
137 |
only_need_context: bool = False
|
|
|
138 |
|
|
|
|
|
139 |
|
140 |
class InsertRequest(BaseModel):
|
141 |
text: str
|
@@ -143,7 +156,7 @@ class InsertRequest(BaseModel):
|
|
143 |
|
144 |
class Response(BaseModel):
|
145 |
status: str
|
146 |
-
data: Optional[
|
147 |
message: Optional[str] = None
|
148 |
|
149 |
|
@@ -151,7 +164,6 @@ class Response(BaseModel):
|
|
151 |
|
152 |
rag = None # 定义为全局对象
|
153 |
|
154 |
-
|
155 |
@asynccontextmanager
|
156 |
async def lifespan(app: FastAPI):
|
157 |
global rag
|
@@ -160,24 +172,39 @@ async def lifespan(app: FastAPI):
|
|
160 |
yield
|
161 |
|
162 |
|
163 |
-
app = FastAPI(
|
164 |
-
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
165 |
-
)
|
166 |
-
|
167 |
|
168 |
@app.post("/query", response_model=Response)
|
169 |
async def query_endpoint(request: QueryRequest):
|
170 |
-
try:
|
171 |
# loop = asyncio.get_event_loop()
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
request.query,
|
174 |
param=QueryParam(
|
175 |
-
mode=request.mode,
|
|
|
|
|
|
|
176 |
),
|
177 |
)
|
178 |
-
|
179 |
-
except Exception as e:
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
|
183 |
@app.post("/insert", response_model=Response)
|
@@ -220,7 +247,7 @@ async def health_check():
|
|
220 |
if __name__ == "__main__":
|
221 |
import uvicorn
|
222 |
|
223 |
-
uvicorn.run(app, host="
|
224 |
|
225 |
# Usage example
|
226 |
# To run the server, use the following command in your terminal:
|
@@ -237,4 +264,4 @@ if __name__ == "__main__":
|
|
237 |
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
238 |
|
239 |
# 4. Health check:
|
240 |
-
# curl -X GET "http://127.0.0.1:8020/health"
|
|
|
1 |
+
|
2 |
from fastapi import FastAPI, HTTPException, File, UploadFile
|
3 |
+
from fastapi import Query
|
4 |
from contextlib import asynccontextmanager
|
5 |
from pydantic import BaseModel
|
6 |
+
from typing import Optional,Any
|
7 |
+
from fastapi.responses import JSONResponse
|
8 |
|
9 |
+
import sys, os
|
10 |
+
print(os.getcwd())
|
11 |
from pathlib import Path
|
12 |
+
script_directory = Path(__file__).resolve().parent.parent
|
13 |
+
sys.path.append(os.path.abspath(script_directory))
|
14 |
|
15 |
import asyncio
|
16 |
import nest_asyncio
|
|
|
18 |
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
19 |
from lightrag.utils import EmbeddingFunc
|
20 |
import numpy as np
|
21 |
+
from datetime import datetime
|
22 |
|
23 |
from lightrag.kg.oracle_impl import OracleDB
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Apply nest_asyncio to solve event loop issues
|
28 |
nest_asyncio.apply()
|
|
|
38 |
# Configure working directory
|
39 |
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
40 |
print(f"WORKING_DIR: {WORKING_DIR}")
|
41 |
+
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus-08-2024")
|
42 |
print(f"LLM_MODEL: {LLM_MODEL}")
|
43 |
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
|
44 |
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
45 |
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
|
46 |
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
47 |
|
|
|
48 |
if not os.path.exists(WORKING_DIR):
|
49 |
os.mkdir(WORKING_DIR)
|
50 |
+
|
|
|
51 |
async def llm_model_func(
|
52 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
53 |
) -> str:
|
|
|
77 |
embedding_dim = embedding.shape[1]
|
78 |
return embedding_dim
|
79 |
|
|
|
80 |
async def init():
|
81 |
+
|
82 |
# Detect embedding dimension
|
83 |
+
embedding_dimension = 1024 #await get_embedding_dim()
|
84 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
85 |
# Create Oracle DB connection
|
86 |
# The `config` parameter is the connection configuration of Oracle DB
|
|
|
88 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
89 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
oracle_db = OracleDB(config={
|
93 |
+
"user":"",
|
94 |
+
"password":"",
|
95 |
+
"dsn":"",
|
96 |
+
"config_dir":"path_to_config_dir",
|
97 |
+
"wallet_location":"path_to_wallet_location",
|
98 |
+
"wallet_password":"wallet_password",
|
99 |
+
"workspace":"company"
|
100 |
+
} # specify which docs you want to store and query
|
101 |
+
)
|
102 |
+
|
103 |
# Check if Oracle DB tables exist, if not, tables will be created
|
104 |
await oracle_db.check_tables()
|
105 |
# Initialize LightRAG
|
106 |
+
# We use Oracle DB as the KV/vector/graph storage
|
107 |
rag = LightRAG(
|
108 |
+
enable_llm_cache=False,
|
109 |
+
working_dir=WORKING_DIR,
|
110 |
+
chunk_token_size=512,
|
111 |
+
llm_model_func=llm_model_func,
|
112 |
+
embedding_func=EmbeddingFunc(
|
113 |
+
embedding_dim=embedding_dimension,
|
114 |
+
max_token_size=512,
|
115 |
+
func=embedding_func,
|
116 |
+
),
|
117 |
+
graph_storage = "OracleGraphStorage",
|
118 |
+
kv_storage="OracleKVStorage",
|
119 |
+
vector_storage="OracleVectorDBStorage"
|
120 |
+
)
|
121 |
|
122 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
123 |
rag.graph_storage_cls.db = oracle_db
|
|
|
127 |
return rag
|
128 |
|
129 |
|
130 |
+
# Extract and Insert into LightRAG storage
|
131 |
+
#with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
132 |
+
# await rag.ainsert(f.read())
|
133 |
+
|
134 |
+
# # Perform search in different modes
|
135 |
+
# modes = ["naive", "local", "global", "hybrid"]
|
136 |
+
# for mode in modes:
|
137 |
+
# print("="*20, mode, "="*20)
|
138 |
+
# print(await rag.aquery("这篇文档是关于什么内容的?", param=QueryParam(mode=mode)))
|
139 |
+
# print("-"*100, "\n")
|
140 |
+
|
141 |
# Data models
|
142 |
|
143 |
|
|
|
145 |
query: str
|
146 |
mode: str = "hybrid"
|
147 |
only_need_context: bool = False
|
148 |
+
only_need_prompt: bool = False
|
149 |
|
150 |
+
class DataRequest(BaseModel):
|
151 |
+
limit: int = 100
|
152 |
|
153 |
class InsertRequest(BaseModel):
|
154 |
text: str
|
|
|
156 |
|
157 |
class Response(BaseModel):
|
158 |
status: str
|
159 |
+
data: Optional[Any] = None
|
160 |
message: Optional[str] = None
|
161 |
|
162 |
|
|
|
164 |
|
165 |
rag = None # 定义为全局对象
|
166 |
|
|
|
167 |
@asynccontextmanager
|
168 |
async def lifespan(app: FastAPI):
|
169 |
global rag
|
|
|
172 |
yield
|
173 |
|
174 |
|
175 |
+
app = FastAPI(title="LightRAG API", description="API for RAG operations",lifespan=lifespan)
|
|
|
|
|
|
|
176 |
|
177 |
@app.post("/query", response_model=Response)
|
178 |
async def query_endpoint(request: QueryRequest):
|
179 |
+
#try:
|
180 |
# loop = asyncio.get_event_loop()
|
181 |
+
if request.mode == "naive":
|
182 |
+
top_k = 3
|
183 |
+
else:
|
184 |
+
top_k = 60
|
185 |
+
result = await rag.aquery(
|
186 |
request.query,
|
187 |
param=QueryParam(
|
188 |
+
mode=request.mode,
|
189 |
+
only_need_context=request.only_need_context,
|
190 |
+
only_need_prompt=request.only_need_prompt,
|
191 |
+
top_k=top_k
|
192 |
),
|
193 |
)
|
194 |
+
return Response(status="success", data=result)
|
195 |
+
# except Exception as e:
|
196 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
197 |
+
|
198 |
+
|
199 |
+
@app.get("/data", response_model=Response)
|
200 |
+
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
|
201 |
+
if type == "nodes":
|
202 |
+
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit = limit)
|
203 |
+
elif type == "edges":
|
204 |
+
result = await rag.chunk_entity_relation_graph.get_all_edges(limit = limit)
|
205 |
+
elif type == "statistics":
|
206 |
+
result = await rag.chunk_entity_relation_graph.get_statistics()
|
207 |
+
return Response(status="success", data=result)
|
208 |
|
209 |
|
210 |
@app.post("/insert", response_model=Response)
|
|
|
247 |
if __name__ == "__main__":
|
248 |
import uvicorn
|
249 |
|
250 |
+
uvicorn.run(app, host="127.0.0.1", port=8020)
|
251 |
|
252 |
# Usage example
|
253 |
# To run the server, use the following command in your terminal:
|
|
|
264 |
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
265 |
|
266 |
# 4. Health check:
|
267 |
+
# curl -X GET "http://127.0.0.1:8020/health"
|
examples/lightrag_oracle_demo.py
CHANGED
@@ -97,6 +97,8 @@ async def main():
|
|
97 |
graph_storage="OracleGraphStorage",
|
98 |
kv_storage="OracleKVStorage",
|
99 |
vector_storage="OracleVectorDBStorage",
|
|
|
|
|
100 |
)
|
101 |
|
102 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
|
|
97 |
graph_storage="OracleGraphStorage",
|
98 |
kv_storage="OracleKVStorage",
|
99 |
vector_storage="OracleVectorDBStorage",
|
100 |
+
|
101 |
+
addon_params = {"example_number":1, "language":"Simplfied Chinese"},
|
102 |
)
|
103 |
|
104 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
lightrag/base.py
CHANGED
@@ -21,6 +21,8 @@ class QueryParam:
|
|
21 |
response_type: str = "Multiple Paragraphs"
|
22 |
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
23 |
top_k: int = 60
|
|
|
|
|
24 |
# Number of tokens for the original chunks.
|
25 |
max_token_for_text_unit: int = 4000
|
26 |
# Number of tokens for the relationship descriptions
|
|
|
21 |
response_type: str = "Multiple Paragraphs"
|
22 |
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
23 |
top_k: int = 60
|
24 |
+
# Number of document chunks to retrieve.
|
25 |
+
# top_n: int = 10
|
26 |
# Number of tokens for the original chunks.
|
27 |
max_token_for_text_unit: int = 4000
|
28 |
# Number of tokens for the relationship descriptions
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -333,6 +333,8 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
333 |
entity_type = node_data["entity_type"]
|
334 |
description = node_data["description"]
|
335 |
source_id = node_data["source_id"]
|
|
|
|
|
336 |
content = entity_name + description
|
337 |
contents = [content]
|
338 |
batches = [
|
@@ -369,6 +371,8 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
369 |
keywords = edge_data["keywords"]
|
370 |
description = edge_data["description"]
|
371 |
source_chunk_id = edge_data["source_id"]
|
|
|
|
|
372 |
content = keywords + source_name + target_name + description
|
373 |
contents = [content]
|
374 |
batches = [
|
@@ -544,6 +548,14 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
544 |
res = await self.db.query(sql=SQL,params=params, multirows=True)
|
545 |
if res:
|
546 |
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
N_T = {
|
548 |
"full_docs": "LIGHTRAG_DOC_FULL",
|
549 |
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
@@ -715,18 +727,36 @@ SQL_TEMPLATES = {
|
|
715 |
WHEN NOT MATCHED THEN
|
716 |
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
717 |
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
|
718 |
-
"get_all_nodes":"""
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
"get_all_edges":"""SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
|
726 |
t1.weight,t1.DESCRIPTION,t2.content
|
727 |
FROM LIGHTRAG_GRAPH_EDGES t1
|
728 |
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
|
729 |
WHERE t1.workspace=:workspace
|
730 |
order by t1.CREATETIME DESC
|
731 |
-
fetch first :limit rows only"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
}
|
|
|
333 |
entity_type = node_data["entity_type"]
|
334 |
description = node_data["description"]
|
335 |
source_id = node_data["source_id"]
|
336 |
+
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
|
337 |
+
|
338 |
content = entity_name + description
|
339 |
contents = [content]
|
340 |
batches = [
|
|
|
371 |
keywords = edge_data["keywords"]
|
372 |
description = edge_data["description"]
|
373 |
source_chunk_id = edge_data["source_id"]
|
374 |
+
logger.debug(f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}")
|
375 |
+
|
376 |
content = keywords + source_name + target_name + description
|
377 |
contents = [content]
|
378 |
batches = [
|
|
|
548 |
res = await self.db.query(sql=SQL,params=params, multirows=True)
|
549 |
if res:
|
550 |
return res
|
551 |
+
|
552 |
+
async def get_statistics(self):
|
553 |
+
SQL = SQL_TEMPLATES["get_statistics"]
|
554 |
+
params = {"workspace":self.db.workspace}
|
555 |
+
res = await self.db.query(sql=SQL,params=params, multirows=True)
|
556 |
+
if res:
|
557 |
+
return res
|
558 |
+
|
559 |
N_T = {
|
560 |
"full_docs": "LIGHTRAG_DOC_FULL",
|
561 |
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
|
|
727 |
WHEN NOT MATCHED THEN
|
728 |
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
729 |
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
|
730 |
+
"get_all_nodes":"""WITH t0 AS (
|
731 |
+
SELECT name AS id, entity_type AS label, entity_type, description,
|
732 |
+
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
733 |
+
FROM lightrag_graph_nodes
|
734 |
+
WHERE workspace = :workspace
|
735 |
+
ORDER BY createtime DESC fetch first :limit rows only
|
736 |
+
), t1 AS (
|
737 |
+
SELECT t0.id, source_chunk_id
|
738 |
+
FROM t0, JSON_TABLE ( source_chunk_ids, '$[*]' COLUMNS ( source_chunk_id PATH '$' ) )
|
739 |
+
), t2 AS (
|
740 |
+
SELECT t1.id, LISTAGG(t2.content, '\n') content
|
741 |
+
FROM t1 LEFT JOIN lightrag_doc_chunks t2 ON t1.source_chunk_id = t2.id
|
742 |
+
GROUP BY t1.id
|
743 |
+
)
|
744 |
+
SELECT t0.id, label, entity_type, description, t2.content
|
745 |
+
FROM t0 LEFT JOIN t2 ON t0.id = t2.id""",
|
746 |
"get_all_edges":"""SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
|
747 |
t1.weight,t1.DESCRIPTION,t2.content
|
748 |
FROM LIGHTRAG_GRAPH_EDGES t1
|
749 |
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
|
750 |
WHERE t1.workspace=:workspace
|
751 |
order by t1.CREATETIME DESC
|
752 |
+
fetch first :limit rows only""",
|
753 |
+
"get_statistics":"""select count(distinct CASE WHEN type='node' THEN id END) as nodes_count,
|
754 |
+
count(distinct CASE WHEN type='edge' THEN id END) as edges_count
|
755 |
+
FROM (
|
756 |
+
select 'node' as type, id FROM GRAPH_TABLE (lightrag_graph
|
757 |
+
MATCH (a) WHERE a.workspace=:workspace columns(a.name as id))
|
758 |
+
UNION
|
759 |
+
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
|
760 |
+
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
|
761 |
+
)""",
|
762 |
}
|
lightrag/lightrag.py
CHANGED
@@ -12,9 +12,8 @@ from .llm import (
|
|
12 |
from .operate import (
|
13 |
chunking_by_token_size,
|
14 |
extract_entities,
|
15 |
-
local_query,
|
16 |
-
|
17 |
-
hybrid_query,
|
18 |
naive_query,
|
19 |
)
|
20 |
|
@@ -309,28 +308,8 @@ class LightRAG:
|
|
309 |
return loop.run_until_complete(self.aquery(query, param))
|
310 |
|
311 |
async def aquery(self, query: str, param: QueryParam = QueryParam()):
|
312 |
-
if param.mode
|
313 |
-
response = await
|
314 |
-
query,
|
315 |
-
self.chunk_entity_relation_graph,
|
316 |
-
self.entities_vdb,
|
317 |
-
self.relationships_vdb,
|
318 |
-
self.text_chunks,
|
319 |
-
param,
|
320 |
-
asdict(self),
|
321 |
-
)
|
322 |
-
elif param.mode == "global":
|
323 |
-
response = await global_query(
|
324 |
-
query,
|
325 |
-
self.chunk_entity_relation_graph,
|
326 |
-
self.entities_vdb,
|
327 |
-
self.relationships_vdb,
|
328 |
-
self.text_chunks,
|
329 |
-
param,
|
330 |
-
asdict(self),
|
331 |
-
)
|
332 |
-
elif param.mode == "hybrid":
|
333 |
-
response = await hybrid_query(
|
334 |
query,
|
335 |
self.chunk_entity_relation_graph,
|
336 |
self.entities_vdb,
|
|
|
12 |
from .operate import (
|
13 |
chunking_by_token_size,
|
14 |
extract_entities,
|
15 |
+
# local_query,global_query,hybrid_query,
|
16 |
+
kg_query,
|
|
|
17 |
naive_query,
|
18 |
)
|
19 |
|
|
|
308 |
return loop.run_until_complete(self.aquery(query, param))
|
309 |
|
310 |
async def aquery(self, query: str, param: QueryParam = QueryParam()):
|
311 |
+
if param.mode in ["local", "global", "hybrid"]:
|
312 |
+
response = await kg_query(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
query,
|
314 |
self.chunk_entity_relation_graph,
|
315 |
self.entities_vdb,
|
lightrag/llm.py
CHANGED
@@ -69,12 +69,15 @@ async def openai_complete_if_cache(
|
|
69 |
response = await openai_async_client.chat.completions.create(
|
70 |
model=model, messages=messages, **kwargs
|
71 |
)
|
72 |
-
|
|
|
|
|
|
|
73 |
if hashing_kv is not None:
|
74 |
await hashing_kv.upsert(
|
75 |
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
76 |
)
|
77 |
-
return
|
78 |
|
79 |
|
80 |
@retry(
|
@@ -539,7 +542,7 @@ async def openai_embedding(
|
|
539 |
texts: list[str],
|
540 |
model: str = "text-embedding-3-small",
|
541 |
base_url: str = None,
|
542 |
-
api_key: str = None
|
543 |
) -> np.ndarray:
|
544 |
if api_key:
|
545 |
os.environ["OPENAI_API_KEY"] = api_key
|
@@ -548,7 +551,7 @@ async def openai_embedding(
|
|
548 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
549 |
)
|
550 |
response = await openai_async_client.embeddings.create(
|
551 |
-
model=model, input=texts,
|
552 |
)
|
553 |
return np.array([dp.embedding for dp in response.data])
|
554 |
|
|
|
69 |
response = await openai_async_client.chat.completions.create(
|
70 |
model=model, messages=messages, **kwargs
|
71 |
)
|
72 |
+
content = response.choices[0].message.content
|
73 |
+
if r'\u' in content:
|
74 |
+
content = content.encode('utf-8').decode('unicode_escape')
|
75 |
+
print(content)
|
76 |
if hashing_kv is not None:
|
77 |
await hashing_kv.upsert(
|
78 |
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
79 |
)
|
80 |
+
return content
|
81 |
|
82 |
|
83 |
@retry(
|
|
|
542 |
texts: list[str],
|
543 |
model: str = "text-embedding-3-small",
|
544 |
base_url: str = None,
|
545 |
+
api_key: str = None
|
546 |
) -> np.ndarray:
|
547 |
if api_key:
|
548 |
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
551 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
552 |
)
|
553 |
response = await openai_async_client.embeddings.create(
|
554 |
+
model=model, input=texts, encoding_format="float"
|
555 |
)
|
556 |
return np.array([dp.embedding for dp in response.data])
|
557 |
|
lightrag/operate.py
CHANGED
@@ -248,14 +248,23 @@ async def extract_entities(
|
|
248 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
249 |
|
250 |
ordered_chunks = list(chunks.items())
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
entity_extract_prompt = PROMPTS["entity_extraction"]
|
253 |
context_base = dict(
|
254 |
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
255 |
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
256 |
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
257 |
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
|
258 |
-
|
|
|
|
|
259 |
continue_prompt = PROMPTS["entiti_continue_extraction"]
|
260 |
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
261 |
|
@@ -270,7 +279,6 @@ async def extract_entities(
|
|
270 |
content = chunk_dp["content"]
|
271 |
hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
|
272 |
final_result = await use_llm_func(hint_prompt)
|
273 |
-
|
274 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
275 |
for now_glean_index in range(entity_extract_max_gleaning):
|
276 |
glean_result = await use_llm_func(continue_prompt, history_messages=history)
|
@@ -388,8 +396,7 @@ async def extract_entities(
|
|
388 |
|
389 |
return knowledge_graph_inst
|
390 |
|
391 |
-
|
392 |
-
async def local_query(
|
393 |
query,
|
394 |
knowledge_graph_inst: BaseGraphStorage,
|
395 |
entities_vdb: BaseVectorStorage,
|
@@ -399,43 +406,61 @@ async def local_query(
|
|
399 |
global_config: dict,
|
400 |
) -> str:
|
401 |
context = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
use_model_func = global_config["llm_model_func"]
|
403 |
-
|
404 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
405 |
-
kw_prompt = kw_prompt_temp.format(query=query)
|
406 |
-
result = await use_model_func(kw_prompt)
|
407 |
-
|
408 |
-
|
409 |
try:
|
|
|
410 |
keywords_data = json.loads(json_text)
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
|
|
433 |
keywords,
|
434 |
knowledge_graph_inst,
|
435 |
entities_vdb,
|
|
|
436 |
text_chunks_db,
|
437 |
query_param,
|
438 |
)
|
|
|
439 |
if query_param.only_need_context:
|
440 |
return context
|
441 |
if context is None:
|
@@ -443,13 +468,13 @@ async def local_query(
|
|
443 |
sys_prompt_temp = PROMPTS["rag_response"]
|
444 |
sys_prompt = sys_prompt_temp.format(
|
445 |
context_data=context, response_type=query_param.response_type
|
446 |
-
|
447 |
if query_param.only_need_prompt:
|
448 |
return sys_prompt
|
449 |
response = await use_model_func(
|
450 |
query,
|
451 |
system_prompt=sys_prompt,
|
452 |
-
|
453 |
if len(response) > len(sys_prompt):
|
454 |
response = (
|
455 |
response.replace(sys_prompt, "")
|
@@ -464,22 +489,87 @@ async def local_query(
|
|
464 |
return response
|
465 |
|
466 |
|
467 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
query,
|
469 |
knowledge_graph_inst: BaseGraphStorage,
|
470 |
entities_vdb: BaseVectorStorage,
|
471 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
472 |
query_param: QueryParam,
|
473 |
):
|
|
|
474 |
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
475 |
-
|
476 |
if not len(results):
|
477 |
return None
|
|
|
478 |
node_datas = await asyncio.gather(
|
479 |
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
|
480 |
)
|
481 |
if not all([n is not None for n in node_datas]):
|
482 |
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
|
|
|
|
483 |
node_degrees = await asyncio.gather(
|
484 |
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
485 |
)
|
@@ -488,15 +578,19 @@ async def _build_local_query_context(
|
|
488 |
for k, n, d in zip(results, node_datas, node_degrees)
|
489 |
if n is not None
|
490 |
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
|
|
491 |
use_text_units = await _find_most_related_text_unit_from_entities(
|
492 |
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
493 |
)
|
|
|
494 |
use_relations = await _find_most_related_edges_from_entities(
|
495 |
node_datas, query_param, knowledge_graph_inst
|
496 |
)
|
497 |
logger.info(
|
498 |
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
|
499 |
-
)
|
|
|
|
|
500 |
entites_section_list = [["id", "entity", "type", "description", "rank"]]
|
501 |
for i, n in enumerate(node_datas):
|
502 |
entites_section_list.append(
|
@@ -531,20 +625,7 @@ async def _build_local_query_context(
|
|
531 |
for i, t in enumerate(use_text_units):
|
532 |
text_units_section_list.append([i, t["content"]])
|
533 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
534 |
-
return
|
535 |
-
-----Entities-----
|
536 |
-
```csv
|
537 |
-
{entities_context}
|
538 |
-
```
|
539 |
-
-----Relationships-----
|
540 |
-
```csv
|
541 |
-
{relations_context}
|
542 |
-
```
|
543 |
-
-----Sources-----
|
544 |
-
```csv
|
545 |
-
{text_units_context}
|
546 |
-
```
|
547 |
-
"""
|
548 |
|
549 |
|
550 |
async def _find_most_related_text_unit_from_entities(
|
@@ -659,88 +740,9 @@ async def _find_most_related_edges_from_entities(
|
|
659 |
return all_edges_data
|
660 |
|
661 |
|
662 |
-
async def
|
663 |
-
query,
|
664 |
-
knowledge_graph_inst: BaseGraphStorage,
|
665 |
-
entities_vdb: BaseVectorStorage,
|
666 |
-
relationships_vdb: BaseVectorStorage,
|
667 |
-
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
668 |
-
query_param: QueryParam,
|
669 |
-
global_config: dict,
|
670 |
-
) -> str:
|
671 |
-
context = None
|
672 |
-
use_model_func = global_config["llm_model_func"]
|
673 |
-
|
674 |
-
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
675 |
-
kw_prompt = kw_prompt_temp.format(query=query)
|
676 |
-
result = await use_model_func(kw_prompt)
|
677 |
-
json_text = locate_json_string_body_from_string(result)
|
678 |
-
logger.debug("global json_text:", json_text)
|
679 |
-
try:
|
680 |
-
keywords_data = json.loads(json_text)
|
681 |
-
keywords = keywords_data.get("high_level_keywords", [])
|
682 |
-
keywords = ", ".join(keywords)
|
683 |
-
except json.JSONDecodeError:
|
684 |
-
try:
|
685 |
-
result = (
|
686 |
-
result.replace(kw_prompt[:-1], "")
|
687 |
-
.replace("user", "")
|
688 |
-
.replace("model", "")
|
689 |
-
.strip()
|
690 |
-
)
|
691 |
-
result = "{" + result.split("{")[1].split("}")[0] + "}"
|
692 |
-
|
693 |
-
keywords_data = json.loads(result)
|
694 |
-
keywords = keywords_data.get("high_level_keywords", [])
|
695 |
-
keywords = ", ".join(keywords)
|
696 |
-
|
697 |
-
except json.JSONDecodeError as e:
|
698 |
-
# Handle parsing error
|
699 |
-
print(f"JSON parsing error: {e}")
|
700 |
-
return PROMPTS["fail_response"]
|
701 |
-
if keywords:
|
702 |
-
context = await _build_global_query_context(
|
703 |
-
keywords,
|
704 |
-
knowledge_graph_inst,
|
705 |
-
entities_vdb,
|
706 |
-
relationships_vdb,
|
707 |
-
text_chunks_db,
|
708 |
-
query_param,
|
709 |
-
)
|
710 |
-
|
711 |
-
if query_param.only_need_context:
|
712 |
-
return context
|
713 |
-
if context is None:
|
714 |
-
return PROMPTS["fail_response"]
|
715 |
-
|
716 |
-
sys_prompt_temp = PROMPTS["rag_response"]
|
717 |
-
sys_prompt = sys_prompt_temp.format(
|
718 |
-
context_data=context, response_type=query_param.response_type
|
719 |
-
)
|
720 |
-
if query_param.only_need_prompt:
|
721 |
-
return sys_prompt
|
722 |
-
response = await use_model_func(
|
723 |
-
query,
|
724 |
-
system_prompt=sys_prompt,
|
725 |
-
)
|
726 |
-
if len(response) > len(sys_prompt):
|
727 |
-
response = (
|
728 |
-
response.replace(sys_prompt, "")
|
729 |
-
.replace("user", "")
|
730 |
-
.replace("model", "")
|
731 |
-
.replace(query, "")
|
732 |
-
.replace("<system>", "")
|
733 |
-
.replace("</system>", "")
|
734 |
-
.strip()
|
735 |
-
)
|
736 |
-
|
737 |
-
return response
|
738 |
-
|
739 |
-
|
740 |
-
async def _build_global_query_context(
|
741 |
keywords,
|
742 |
knowledge_graph_inst: BaseGraphStorage,
|
743 |
-
entities_vdb: BaseVectorStorage,
|
744 |
relationships_vdb: BaseVectorStorage,
|
745 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
746 |
query_param: QueryParam,
|
@@ -782,6 +784,7 @@ async def _build_global_query_context(
|
|
782 |
logger.info(
|
783 |
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
|
784 |
)
|
|
|
785 |
relations_section_list = [
|
786 |
["id", "source", "target", "description", "keywords", "weight", "rank"]
|
787 |
]
|
@@ -816,21 +819,8 @@ async def _build_global_query_context(
|
|
816 |
for i, t in enumerate(use_text_units):
|
817 |
text_units_section_list.append([i, t["content"]])
|
818 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
|
|
819 |
|
820 |
-
return f"""
|
821 |
-
-----Entities-----
|
822 |
-
```csv
|
823 |
-
{entities_context}
|
824 |
-
```
|
825 |
-
-----Relationships-----
|
826 |
-
```csv
|
827 |
-
{relations_context}
|
828 |
-
```
|
829 |
-
-----Sources-----
|
830 |
-
```csv
|
831 |
-
{text_units_context}
|
832 |
-
```
|
833 |
-
"""
|
834 |
|
835 |
|
836 |
async def _find_most_related_entities_from_relationships(
|
@@ -901,137 +891,11 @@ async def _find_related_text_unit_from_relationships(
|
|
901 |
return all_text_units
|
902 |
|
903 |
|
904 |
-
|
905 |
-
query,
|
906 |
-
knowledge_graph_inst: BaseGraphStorage,
|
907 |
-
entities_vdb: BaseVectorStorage,
|
908 |
-
relationships_vdb: BaseVectorStorage,
|
909 |
-
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
910 |
-
query_param: QueryParam,
|
911 |
-
global_config: dict,
|
912 |
-
) -> str:
|
913 |
-
low_level_context = None
|
914 |
-
high_level_context = None
|
915 |
-
use_model_func = global_config["llm_model_func"]
|
916 |
-
|
917 |
-
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
918 |
-
kw_prompt = kw_prompt_temp.format(query=query)
|
919 |
-
|
920 |
-
result = await use_model_func(kw_prompt)
|
921 |
-
json_text = locate_json_string_body_from_string(result)
|
922 |
-
logger.debug("hybrid_query json_text:", json_text)
|
923 |
-
try:
|
924 |
-
keywords_data = json.loads(json_text)
|
925 |
-
hl_keywords = keywords_data.get("high_level_keywords", [])
|
926 |
-
ll_keywords = keywords_data.get("low_level_keywords", [])
|
927 |
-
hl_keywords = ", ".join(hl_keywords)
|
928 |
-
ll_keywords = ", ".join(ll_keywords)
|
929 |
-
except json.JSONDecodeError:
|
930 |
-
try:
|
931 |
-
result = (
|
932 |
-
result.replace(kw_prompt[:-1], "")
|
933 |
-
.replace("user", "")
|
934 |
-
.replace("model", "")
|
935 |
-
.strip()
|
936 |
-
)
|
937 |
-
result = "{" + result.split("{")[1].split("}")[0] + "}"
|
938 |
-
keywords_data = json.loads(result)
|
939 |
-
hl_keywords = keywords_data.get("high_level_keywords", [])
|
940 |
-
ll_keywords = keywords_data.get("low_level_keywords", [])
|
941 |
-
hl_keywords = ", ".join(hl_keywords)
|
942 |
-
ll_keywords = ", ".join(ll_keywords)
|
943 |
-
# Handle parsing error
|
944 |
-
except json.JSONDecodeError as e:
|
945 |
-
print(f"JSON parsing error: {e}")
|
946 |
-
return PROMPTS["fail_response"]
|
947 |
-
|
948 |
-
if ll_keywords:
|
949 |
-
low_level_context = await _build_local_query_context(
|
950 |
-
ll_keywords,
|
951 |
-
knowledge_graph_inst,
|
952 |
-
entities_vdb,
|
953 |
-
text_chunks_db,
|
954 |
-
query_param,
|
955 |
-
)
|
956 |
-
|
957 |
-
if hl_keywords:
|
958 |
-
high_level_context = await _build_global_query_context(
|
959 |
-
hl_keywords,
|
960 |
-
knowledge_graph_inst,
|
961 |
-
entities_vdb,
|
962 |
-
relationships_vdb,
|
963 |
-
text_chunks_db,
|
964 |
-
query_param,
|
965 |
-
)
|
966 |
-
|
967 |
-
context = combine_contexts(high_level_context, low_level_context)
|
968 |
-
|
969 |
-
if query_param.only_need_context:
|
970 |
-
return context
|
971 |
-
if context is None:
|
972 |
-
return PROMPTS["fail_response"]
|
973 |
-
|
974 |
-
sys_prompt_temp = PROMPTS["rag_response"]
|
975 |
-
sys_prompt = sys_prompt_temp.format(
|
976 |
-
context_data=context, response_type=query_param.response_type
|
977 |
-
)
|
978 |
-
if query_param.only_need_prompt:
|
979 |
-
return sys_prompt
|
980 |
-
response = await use_model_func(
|
981 |
-
query,
|
982 |
-
system_prompt=sys_prompt,
|
983 |
-
)
|
984 |
-
if len(response) > len(sys_prompt):
|
985 |
-
response = (
|
986 |
-
response.replace(sys_prompt, "")
|
987 |
-
.replace("user", "")
|
988 |
-
.replace("model", "")
|
989 |
-
.replace(query, "")
|
990 |
-
.replace("<system>", "")
|
991 |
-
.replace("</system>", "")
|
992 |
-
.strip()
|
993 |
-
)
|
994 |
-
return response
|
995 |
-
|
996 |
-
|
997 |
-
def combine_contexts(high_level_context, low_level_context):
|
998 |
# Function to extract entities, relationships, and sources from context strings
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
1003 |
-
)
|
1004 |
-
relationships_match = re.search(
|
1005 |
-
r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
1006 |
-
)
|
1007 |
-
sources_match = re.search(
|
1008 |
-
r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
1009 |
-
)
|
1010 |
-
|
1011 |
-
entities = entities_match.group(1) if entities_match else ""
|
1012 |
-
relationships = relationships_match.group(1) if relationships_match else ""
|
1013 |
-
sources = sources_match.group(1) if sources_match else ""
|
1014 |
-
|
1015 |
-
return entities, relationships, sources
|
1016 |
-
|
1017 |
-
# Extract sections from both contexts
|
1018 |
-
|
1019 |
-
if high_level_context is None:
|
1020 |
-
warnings.warn(
|
1021 |
-
"High Level context is None. Return empty High entity/relationship/source"
|
1022 |
-
)
|
1023 |
-
hl_entities, hl_relationships, hl_sources = "", "", ""
|
1024 |
-
else:
|
1025 |
-
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)
|
1026 |
-
|
1027 |
-
if low_level_context is None:
|
1028 |
-
warnings.warn(
|
1029 |
-
"Low Level context is None. Return empty Low entity/relationship/source"
|
1030 |
-
)
|
1031 |
-
ll_entities, ll_relationships, ll_sources = "", "", ""
|
1032 |
-
else:
|
1033 |
-
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)
|
1034 |
-
|
1035 |
# Combine and deduplicate the entities
|
1036 |
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
1037 |
|
@@ -1043,21 +907,7 @@ def combine_contexts(high_level_context, low_level_context):
|
|
1043 |
# Combine and deduplicate the sources
|
1044 |
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
1045 |
|
1046 |
-
|
1047 |
-
return f"""
|
1048 |
-
-----Entities-----
|
1049 |
-
```csv
|
1050 |
-
{combined_entities}
|
1051 |
-
```
|
1052 |
-
-----Relationships-----
|
1053 |
-
```csv
|
1054 |
-
{combined_relationships}
|
1055 |
-
```
|
1056 |
-
-----Sources-----
|
1057 |
-
```csv
|
1058 |
-
{combined_sources}
|
1059 |
-
```
|
1060 |
-
"""
|
1061 |
|
1062 |
|
1063 |
async def naive_query(
|
@@ -1080,7 +930,7 @@ async def naive_query(
|
|
1080 |
max_token_size=query_param.max_token_for_text_unit,
|
1081 |
)
|
1082 |
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
|
1083 |
-
section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
1084 |
if query_param.only_need_context:
|
1085 |
return section
|
1086 |
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
|
|
248 |
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
249 |
|
250 |
ordered_chunks = list(chunks.items())
|
251 |
+
# add language and example number params to prompt
|
252 |
+
language = global_config["addon_params"].get("language",PROMPTS["DEFAULT_LANGUAGE"])
|
253 |
+
example_number = global_config["addon_params"].get("example_number", None)
|
254 |
+
if example_number and example_number<len(PROMPTS["entity_extraction_examples"]):
|
255 |
+
examples="\n".join(PROMPTS["entity_extraction_examples"][:int(example_number)])
|
256 |
+
else:
|
257 |
+
examples="\n".join(PROMPTS["entity_extraction_examples"])
|
258 |
+
|
259 |
entity_extract_prompt = PROMPTS["entity_extraction"]
|
260 |
context_base = dict(
|
261 |
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
262 |
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
263 |
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
264 |
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
|
265 |
+
examples=examples,
|
266 |
+
language=language)
|
267 |
+
|
268 |
continue_prompt = PROMPTS["entiti_continue_extraction"]
|
269 |
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
270 |
|
|
|
279 |
content = chunk_dp["content"]
|
280 |
hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
|
281 |
final_result = await use_llm_func(hint_prompt)
|
|
|
282 |
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
283 |
for now_glean_index in range(entity_extract_max_gleaning):
|
284 |
glean_result = await use_llm_func(continue_prompt, history_messages=history)
|
|
|
396 |
|
397 |
return knowledge_graph_inst
|
398 |
|
399 |
+
async def kg_query(
|
|
|
400 |
query,
|
401 |
knowledge_graph_inst: BaseGraphStorage,
|
402 |
entities_vdb: BaseVectorStorage,
|
|
|
406 |
global_config: dict,
|
407 |
) -> str:
|
408 |
context = None
|
409 |
+
example_number = global_config["addon_params"].get("example_number", None)
|
410 |
+
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
411 |
+
examples = "\n".join(PROMPTS["keywords_extraction_examples"][:int(example_number)])
|
412 |
+
else:
|
413 |
+
examples="\n".join(PROMPTS["keywords_extraction_examples"])
|
414 |
+
|
415 |
+
# Set mode
|
416 |
+
if query_param.mode not in ["local", "global", "hybrid"]:
|
417 |
+
logger.error(f"Unknown mode {query_param.mode} in kg_query")
|
418 |
+
return PROMPTS["fail_response"]
|
419 |
+
|
420 |
+
# LLM generate keywords
|
421 |
use_model_func = global_config["llm_model_func"]
|
|
|
422 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
423 |
+
kw_prompt = kw_prompt_temp.format(query=query,examples=examples)
|
424 |
+
result = await use_model_func(kw_prompt)
|
425 |
+
logger.info(f"kw_prompt result:")
|
426 |
+
print(result)
|
427 |
try:
|
428 |
+
json_text = locate_json_string_body_from_string(result)
|
429 |
keywords_data = json.loads(json_text)
|
430 |
+
hl_keywords = keywords_data.get("high_level_keywords", [])
|
431 |
+
ll_keywords = keywords_data.get("low_level_keywords", [])
|
432 |
+
|
433 |
+
# Handle parsing error
|
434 |
+
except json.JSONDecodeError as e:
|
435 |
+
print(f"JSON parsing error: {e} {result}")
|
436 |
+
return PROMPTS["fail_response"]
|
437 |
+
|
438 |
+
# Handdle keywords missing
|
439 |
+
if hl_keywords == [] and ll_keywords == []:
|
440 |
+
logger.warning("low_level_keywords and high_level_keywords is empty")
|
441 |
+
return PROMPTS["fail_response"]
|
442 |
+
if ll_keywords == [] and query_param.mode in ["local","hybrid"]:
|
443 |
+
logger.warning("low_level_keywords is empty")
|
444 |
+
return PROMPTS["fail_response"]
|
445 |
+
else:
|
446 |
+
ll_keywords = ", ".join(ll_keywords)
|
447 |
+
if hl_keywords == [] and query_param.mode in ["global","hybrid"]:
|
448 |
+
logger.warning("high_level_keywords is empty")
|
449 |
+
return PROMPTS["fail_response"]
|
450 |
+
else:
|
451 |
+
hl_keywords = ", ".join(hl_keywords)
|
452 |
+
|
453 |
+
# Build context
|
454 |
+
keywords = [ll_keywords, hl_keywords]
|
455 |
+
context = await _build_query_context(
|
456 |
keywords,
|
457 |
knowledge_graph_inst,
|
458 |
entities_vdb,
|
459 |
+
relationships_vdb,
|
460 |
text_chunks_db,
|
461 |
query_param,
|
462 |
)
|
463 |
+
|
464 |
if query_param.only_need_context:
|
465 |
return context
|
466 |
if context is None:
|
|
|
468 |
sys_prompt_temp = PROMPTS["rag_response"]
|
469 |
sys_prompt = sys_prompt_temp.format(
|
470 |
context_data=context, response_type=query_param.response_type
|
471 |
+
)
|
472 |
if query_param.only_need_prompt:
|
473 |
return sys_prompt
|
474 |
response = await use_model_func(
|
475 |
query,
|
476 |
system_prompt=sys_prompt,
|
477 |
+
)
|
478 |
if len(response) > len(sys_prompt):
|
479 |
response = (
|
480 |
response.replace(sys_prompt, "")
|
|
|
489 |
return response
|
490 |
|
491 |
|
492 |
+
async def _build_query_context(
|
493 |
+
query: list,
|
494 |
+
knowledge_graph_inst: BaseGraphStorage,
|
495 |
+
entities_vdb: BaseVectorStorage,
|
496 |
+
relationships_vdb: BaseVectorStorage,
|
497 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
498 |
+
query_param: QueryParam,
|
499 |
+
):
|
500 |
+
ll_kewwords, hl_keywrds = query[0], query[1]
|
501 |
+
if query_param.mode in ["local", "hybrid"]:
|
502 |
+
if ll_kewwords == "":
|
503 |
+
ll_entities_context,ll_relations_context,ll_text_units_context = "","",""
|
504 |
+
warnings.warn("Low Level context is None. Return empty Low entity/relationship/source")
|
505 |
+
query_param.mode = "global"
|
506 |
+
else:
|
507 |
+
ll_entities_context,ll_relations_context,ll_text_units_context = await _get_node_data(
|
508 |
+
ll_kewwords,
|
509 |
+
knowledge_graph_inst,
|
510 |
+
entities_vdb,
|
511 |
+
text_chunks_db,
|
512 |
+
query_param
|
513 |
+
)
|
514 |
+
if query_param.mode in ["global", "hybrid"]:
|
515 |
+
if hl_keywrds == "":
|
516 |
+
hl_entities_context,hl_relations_context,hl_text_units_context = "","",""
|
517 |
+
warnings.warn("High Level context is None. Return empty High entity/relationship/source")
|
518 |
+
query_param.mode = "local"
|
519 |
+
else:
|
520 |
+
hl_entities_context,hl_relations_context,hl_text_units_context = await _get_edge_data(
|
521 |
+
hl_keywrds,
|
522 |
+
knowledge_graph_inst,
|
523 |
+
relationships_vdb,
|
524 |
+
text_chunks_db,
|
525 |
+
query_param
|
526 |
+
)
|
527 |
+
if query_param.mode == 'hybrid':
|
528 |
+
entities_context,relations_context,text_units_context = combine_contexts(
|
529 |
+
[hl_entities_context,ll_entities_context],
|
530 |
+
[hl_relations_context,ll_relations_context],
|
531 |
+
[hl_text_units_context,ll_text_units_context]
|
532 |
+
)
|
533 |
+
elif query_param.mode == 'local':
|
534 |
+
entities_context,relations_context,text_units_context = ll_entities_context,ll_relations_context,ll_text_units_context
|
535 |
+
elif query_param.mode == 'global':
|
536 |
+
entities_context,relations_context,text_units_context = hl_entities_context,hl_relations_context,hl_text_units_context
|
537 |
+
return f"""
|
538 |
+
# -----Entities-----
|
539 |
+
# ```csv
|
540 |
+
# {entities_context}
|
541 |
+
# ```
|
542 |
+
# -----Relationships-----
|
543 |
+
# ```csv
|
544 |
+
# {relations_context}
|
545 |
+
# ```
|
546 |
+
# -----Sources-----
|
547 |
+
# ```csv
|
548 |
+
# {text_units_context}
|
549 |
+
# ```
|
550 |
+
# """
|
551 |
+
|
552 |
+
|
553 |
+
|
554 |
+
async def _get_node_data(
|
555 |
query,
|
556 |
knowledge_graph_inst: BaseGraphStorage,
|
557 |
entities_vdb: BaseVectorStorage,
|
558 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
559 |
query_param: QueryParam,
|
560 |
):
|
561 |
+
# 获取相似的实体
|
562 |
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
|
|
563 |
if not len(results):
|
564 |
return None
|
565 |
+
# 获取实体信息
|
566 |
node_datas = await asyncio.gather(
|
567 |
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
|
568 |
)
|
569 |
if not all([n is not None for n in node_datas]):
|
570 |
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
571 |
+
|
572 |
+
# 获取实体的度
|
573 |
node_degrees = await asyncio.gather(
|
574 |
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
575 |
)
|
|
|
578 |
for k, n, d in zip(results, node_datas, node_degrees)
|
579 |
if n is not None
|
580 |
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
581 |
+
# 根据实体获取文本片段
|
582 |
use_text_units = await _find_most_related_text_unit_from_entities(
|
583 |
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
584 |
)
|
585 |
+
# 获取关联的边
|
586 |
use_relations = await _find_most_related_edges_from_entities(
|
587 |
node_datas, query_param, knowledge_graph_inst
|
588 |
)
|
589 |
logger.info(
|
590 |
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
|
591 |
+
)
|
592 |
+
|
593 |
+
# 构建提示词
|
594 |
entites_section_list = [["id", "entity", "type", "description", "rank"]]
|
595 |
for i, n in enumerate(node_datas):
|
596 |
entites_section_list.append(
|
|
|
625 |
for i, t in enumerate(use_text_units):
|
626 |
text_units_section_list.append([i, t["content"]])
|
627 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
628 |
+
return entities_context,relations_context,text_units_context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
|
630 |
|
631 |
async def _find_most_related_text_unit_from_entities(
|
|
|
740 |
return all_edges_data
|
741 |
|
742 |
|
743 |
+
async def _get_edge_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
744 |
keywords,
|
745 |
knowledge_graph_inst: BaseGraphStorage,
|
|
|
746 |
relationships_vdb: BaseVectorStorage,
|
747 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
748 |
query_param: QueryParam,
|
|
|
784 |
logger.info(
|
785 |
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
|
786 |
)
|
787 |
+
|
788 |
relations_section_list = [
|
789 |
["id", "source", "target", "description", "keywords", "weight", "rank"]
|
790 |
]
|
|
|
819 |
for i, t in enumerate(use_text_units):
|
820 |
text_units_section_list.append([i, t["content"]])
|
821 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
822 |
+
return entities_context,relations_context,text_units_context
|
823 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
|
825 |
|
826 |
async def _find_most_related_entities_from_relationships(
|
|
|
891 |
return all_text_units
|
892 |
|
893 |
|
894 |
+
def combine_contexts(entities, relationships, sources):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
895 |
# Function to extract entities, relationships, and sources from context strings
|
896 |
+
hl_entities, ll_entities = entities[0], entities[1]
|
897 |
+
hl_relationships, ll_relationships = relationships[0],relationships[1]
|
898 |
+
hl_sources, ll_sources = sources[0], sources[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
# Combine and deduplicate the entities
|
900 |
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
901 |
|
|
|
907 |
# Combine and deduplicate the sources
|
908 |
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
909 |
|
910 |
+
return combined_entities, combined_relationships, combined_sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
911 |
|
912 |
|
913 |
async def naive_query(
|
|
|
930 |
max_token_size=query_param.max_token_for_text_unit,
|
931 |
)
|
932 |
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
|
933 |
+
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
934 |
if query_param.only_need_context:
|
935 |
return section
|
936 |
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
lightrag/prompt.py
CHANGED
@@ -2,6 +2,7 @@ GRAPH_FIELD_SEP = "<SEP>"
|
|
2 |
|
3 |
PROMPTS = {}
|
4 |
|
|
|
5 |
PROMPTS["DEFAULT_TUPLE_DELIMITER"] = "<|>"
|
6 |
PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
|
7 |
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
|
@@ -11,6 +12,7 @@ PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event"]
|
|
11 |
|
12 |
PROMPTS["entity_extraction"] = """-Goal-
|
13 |
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
|
|
|
14 |
|
15 |
-Steps-
|
16 |
1. Identify all entities. For each identified entity, extract the following information:
|
@@ -38,7 +40,19 @@ Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_
|
|
38 |
######################
|
39 |
-Examples-
|
40 |
######################
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
Entity_types: [person, technology, mission, organization, location]
|
44 |
Text:
|
@@ -62,8 +76,8 @@ Output:
|
|
62 |
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}"ideological conflict, rebellion"{tuple_delimiter}5){record_delimiter}
|
63 |
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
|
64 |
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
|
65 |
-
#############################
|
66 |
-
Example 2:
|
67 |
|
68 |
Entity_types: [person, technology, mission, organization, location]
|
69 |
Text:
|
@@ -80,8 +94,8 @@ Output:
|
|
80 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}"decision-making, external influence"{tuple_delimiter}7){record_delimiter}
|
81 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
|
82 |
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
|
83 |
-
#############################
|
84 |
-
Example 3:
|
85 |
|
86 |
Entity_types: [person, role, technology, organization, event, location, concept]
|
87 |
Text:
|
@@ -107,22 +121,15 @@ Output:
|
|
107 |
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
|
108 |
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
|
109 |
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
|
110 |
-
#############################
|
111 |
-
|
112 |
-
######################
|
113 |
-
Entity_types: {entity_types}
|
114 |
-
Text: {input_text}
|
115 |
-
######################
|
116 |
-
Output:
|
117 |
-
"""
|
118 |
|
119 |
-
PROMPTS[
|
120 |
-
"summarize_entity_descriptions"
|
121 |
-
] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
|
122 |
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
|
123 |
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
124 |
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
125 |
Make sure it is written in third person, and include the entity names so we the have full context.
|
|
|
126 |
|
127 |
#######
|
128 |
-Data-
|
@@ -132,14 +139,10 @@ Description List: {description_list}
|
|
132 |
Output:
|
133 |
"""
|
134 |
|
135 |
-
PROMPTS[
|
136 |
-
"entiti_continue_extraction"
|
137 |
-
] = """MANY entities were missed in the last extraction. Add them below using the same format:
|
138 |
"""
|
139 |
|
140 |
-
PROMPTS[
|
141 |
-
"entiti_if_loop_extraction"
|
142 |
-
] = """It appears some entities may have still been missed. Answer YES | NO if there are still entities that need to be added.
|
143 |
"""
|
144 |
|
145 |
PROMPTS["fail_response"] = "Sorry, I'm not able to provide an answer to that question."
|
@@ -169,6 +172,7 @@ Add sections and commentary to the response as appropriate for the length and fo
|
|
169 |
PROMPTS["keywords_extraction"] = """---Role---
|
170 |
|
171 |
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
|
|
|
172 |
|
173 |
---Goal---
|
174 |
|
@@ -184,7 +188,20 @@ Given the query, list both high-level and low-level keywords. High-level keyword
|
|
184 |
######################
|
185 |
-Examples-
|
186 |
######################
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
Query: "How does international trade influence global economic stability?"
|
190 |
################
|
@@ -193,8 +210,8 @@ Output:
|
|
193 |
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
|
194 |
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
|
195 |
}}
|
196 |
-
#############################
|
197 |
-
Example 2:
|
198 |
|
199 |
Query: "What are the environmental consequences of deforestation on biodiversity?"
|
200 |
################
|
@@ -203,8 +220,8 @@ Output:
|
|
203 |
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
|
204 |
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
|
205 |
}}
|
206 |
-
#############################
|
207 |
-
Example 3:
|
208 |
|
209 |
Query: "What is the role of education in reducing poverty?"
|
210 |
################
|
@@ -213,14 +230,9 @@ Output:
|
|
213 |
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
|
214 |
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
|
215 |
}}
|
216 |
-
#############################
|
217 |
-
|
218 |
-
######################
|
219 |
-
Query: {query}
|
220 |
-
######################
|
221 |
-
Output:
|
222 |
|
223 |
-
"""
|
224 |
|
225 |
PROMPTS["naive_rag_response"] = """---Role---
|
226 |
|
|
|
2 |
|
3 |
PROMPTS = {}
|
4 |
|
5 |
+
PROMPTS["DEFAULT_LANGUAGE"] = "English"
|
6 |
PROMPTS["DEFAULT_TUPLE_DELIMITER"] = "<|>"
|
7 |
PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
|
8 |
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
|
|
|
12 |
|
13 |
PROMPTS["entity_extraction"] = """-Goal-
|
14 |
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
|
15 |
+
Use {language} as output language.
|
16 |
|
17 |
-Steps-
|
18 |
1. Identify all entities. For each identified entity, extract the following information:
|
|
|
40 |
######################
|
41 |
-Examples-
|
42 |
######################
|
43 |
+
{examples}
|
44 |
+
|
45 |
+
#############################
|
46 |
+
-Real Data-
|
47 |
+
######################
|
48 |
+
Entity_types: {entity_types}
|
49 |
+
Text: {input_text}
|
50 |
+
######################
|
51 |
+
Output:
|
52 |
+
"""
|
53 |
+
|
54 |
+
PROMPTS["entity_extraction_examples"] = [
|
55 |
+
"""Example 1:
|
56 |
|
57 |
Entity_types: [person, technology, mission, organization, location]
|
58 |
Text:
|
|
|
76 |
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}"ideological conflict, rebellion"{tuple_delimiter}5){record_delimiter}
|
77 |
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
|
78 |
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
|
79 |
+
#############################""",
|
80 |
+
"""Example 2:
|
81 |
|
82 |
Entity_types: [person, technology, mission, organization, location]
|
83 |
Text:
|
|
|
94 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}"decision-making, external influence"{tuple_delimiter}7){record_delimiter}
|
95 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
|
96 |
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
|
97 |
+
#############################""",
|
98 |
+
"""Example 3:
|
99 |
|
100 |
Entity_types: [person, role, technology, organization, event, location, concept]
|
101 |
Text:
|
|
|
121 |
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
|
122 |
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
|
123 |
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
|
124 |
+
#############################"""
|
125 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
PROMPTS["summarize_entity_descriptions"] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
|
|
|
|
|
128 |
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
|
129 |
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
130 |
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
131 |
Make sure it is written in third person, and include the entity names so we the have full context.
|
132 |
+
Use Chinese as output language.
|
133 |
|
134 |
#######
|
135 |
-Data-
|
|
|
139 |
Output:
|
140 |
"""
|
141 |
|
142 |
+
PROMPTS["entiti_continue_extraction"] = """MANY entities were missed in the last extraction. Add them below using the same format:
|
|
|
|
|
143 |
"""
|
144 |
|
145 |
+
PROMPTS["entiti_if_loop_extraction"] = """It appears some entities may have still been missed. Answer YES | NO if there are still entities that need to be added.
|
|
|
|
|
146 |
"""
|
147 |
|
148 |
PROMPTS["fail_response"] = "Sorry, I'm not able to provide an answer to that question."
|
|
|
172 |
PROMPTS["keywords_extraction"] = """---Role---
|
173 |
|
174 |
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
|
175 |
+
Use Chinese as output language.
|
176 |
|
177 |
---Goal---
|
178 |
|
|
|
188 |
######################
|
189 |
-Examples-
|
190 |
######################
|
191 |
+
{examples}
|
192 |
+
|
193 |
+
#############################
|
194 |
+
-Real Data-
|
195 |
+
######################
|
196 |
+
Query: {query}
|
197 |
+
######################
|
198 |
+
The `Output` should be human text, not unicode characters. Keep the same language as `Query`.
|
199 |
+
Output:
|
200 |
+
|
201 |
+
"""
|
202 |
+
|
203 |
+
PROMPTS["keywords_extraction_examples"] = [
|
204 |
+
"""Example 1:
|
205 |
|
206 |
Query: "How does international trade influence global economic stability?"
|
207 |
################
|
|
|
210 |
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
|
211 |
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
|
212 |
}}
|
213 |
+
#############################""",
|
214 |
+
"""Example 2:
|
215 |
|
216 |
Query: "What are the environmental consequences of deforestation on biodiversity?"
|
217 |
################
|
|
|
220 |
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
|
221 |
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
|
222 |
}}
|
223 |
+
#############################""",
|
224 |
+
"""Example 3:
|
225 |
|
226 |
Query: "What is the role of education in reducing poverty?"
|
227 |
################
|
|
|
230 |
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
|
231 |
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
|
232 |
}}
|
233 |
+
#############################"""
|
234 |
+
]
|
|
|
|
|
|
|
|
|
235 |
|
|
|
236 |
|
237 |
PROMPTS["naive_rag_response"] = """---Role---
|
238 |
|
lightrag/utils.py
CHANGED
@@ -47,14 +47,26 @@ class EmbeddingFunc:
|
|
47 |
|
48 |
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
49 |
"""Locate the JSON string body from a string"""
|
50 |
-
|
51 |
-
|
52 |
-
maybe_json_str
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return None
|
59 |
|
60 |
|
|
|
47 |
|
48 |
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
49 |
"""Locate the JSON string body from a string"""
|
50 |
+
try:
|
51 |
+
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
52 |
+
if maybe_json_str is not None:
|
53 |
+
maybe_json_str = maybe_json_str.group(0)
|
54 |
+
maybe_json_str = maybe_json_str.replace("\\n", "")
|
55 |
+
maybe_json_str = maybe_json_str.replace("\n", "")
|
56 |
+
maybe_json_str = maybe_json_str.replace("'", '"')
|
57 |
+
json.loads(maybe_json_str)
|
58 |
+
return maybe_json_str
|
59 |
+
except:
|
60 |
+
# try:
|
61 |
+
# content = (
|
62 |
+
# content.replace(kw_prompt[:-1], "")
|
63 |
+
# .replace("user", "")
|
64 |
+
# .replace("model", "")
|
65 |
+
# .strip()
|
66 |
+
# )
|
67 |
+
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
|
68 |
+
# json.loads(maybe_json_str)
|
69 |
+
|
70 |
return None
|
71 |
|
72 |
|