Add Gremlin graph storage
Browse files- examples/lightrag_ollama_gremlin_demo.py +85 -0
- lightrag/kg/gremlin_impl.py +418 -0
- lightrag/lightrag.py +2 -0
- requirements.txt +1 -0
examples/lightrag_ollama_gremlin_demo.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import inspect
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
7 |
+
|
8 |
+
from lightrag import LightRAG, QueryParam
|
9 |
+
from lightrag.llm import ollama_embedding, ollama_model_complete
|
10 |
+
from lightrag.utils import EmbeddingFunc
|
11 |
+
|
12 |
+
WORKING_DIR = "./dickens_gremlin"
|
13 |
+
|
14 |
+
if not os.path.exists(WORKING_DIR):
|
15 |
+
os.mkdir(WORKING_DIR)
|
16 |
+
|
17 |
+
# Gremlin
|
18 |
+
os.environ["GREMLIN_HOST"] = "localhost"
|
19 |
+
os.environ["GREMLIN_PORT"] = "8182"
|
20 |
+
os.environ["GREMLIN_GRAPH"] = "dickens"
|
21 |
+
|
22 |
+
# Creating a non-default source requires manual
|
23 |
+
# configuration and a restart on the server: use the dafault "g"
|
24 |
+
os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
|
25 |
+
|
26 |
+
# No authorization by default on docker tinkerpop/gremlin-server
|
27 |
+
os.environ["GREMLIN_USER"] = ""
|
28 |
+
os.environ["GREMLIN_PASSWORD"] = ""
|
29 |
+
|
30 |
+
rag = LightRAG(
|
31 |
+
working_dir=WORKING_DIR,
|
32 |
+
llm_model_func=ollama_model_complete,
|
33 |
+
llm_model_name="llama3.1:8b",
|
34 |
+
llm_model_max_async=4,
|
35 |
+
llm_model_max_token_size=32768,
|
36 |
+
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
37 |
+
embedding_func=EmbeddingFunc(
|
38 |
+
embedding_dim=768,
|
39 |
+
max_token_size=8192,
|
40 |
+
func=lambda texts: ollama_embedding(
|
41 |
+
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
42 |
+
),
|
43 |
+
),
|
44 |
+
graph_storage="GremlinStorage",
|
45 |
+
)
|
46 |
+
|
47 |
+
with open("./book.txt", "r", encoding="utf-8") as f:
|
48 |
+
rag.insert(f.read())
|
49 |
+
|
50 |
+
# Perform naive search
|
51 |
+
print(
|
52 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
53 |
+
)
|
54 |
+
|
55 |
+
# Perform local search
|
56 |
+
print(
|
57 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
58 |
+
)
|
59 |
+
|
60 |
+
# Perform global search
|
61 |
+
print(
|
62 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
63 |
+
)
|
64 |
+
|
65 |
+
# Perform hybrid search
|
66 |
+
print(
|
67 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
68 |
+
)
|
69 |
+
|
70 |
+
# stream response
|
71 |
+
resp = rag.query(
|
72 |
+
"What are the top themes in this story?",
|
73 |
+
param=QueryParam(mode="hybrid", stream=True),
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
async def print_stream(stream):
|
78 |
+
async for chunk in stream:
|
79 |
+
print(chunk, end="", flush=True)
|
80 |
+
|
81 |
+
|
82 |
+
if inspect.isasyncgen(resp):
|
83 |
+
asyncio.run(print_stream(resp))
|
84 |
+
else:
|
85 |
+
print(resp)
|
lightrag/kg/gremlin_impl.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import inspect
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Dict, List, Tuple, Union
|
8 |
+
|
9 |
+
from gremlin_python.driver import client, serializer
|
10 |
+
from gremlin_python.driver.aiohttp.transport import AiohttpTransport
|
11 |
+
from gremlin_python.driver.protocol import GremlinServerError
|
12 |
+
from tenacity import (
|
13 |
+
retry,
|
14 |
+
retry_if_exception_type,
|
15 |
+
stop_after_attempt,
|
16 |
+
wait_exponential,
|
17 |
+
)
|
18 |
+
|
19 |
+
from lightrag.utils import logger
|
20 |
+
|
21 |
+
from ..base import BaseGraphStorage
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class GremlinStorage(BaseGraphStorage):
|
26 |
+
@staticmethod
|
27 |
+
def load_nx_graph(file_name):
|
28 |
+
print("no preloading of graph with Gremlin in production")
|
29 |
+
|
30 |
+
# Will use this to make sure single quotes are properly escaped
|
31 |
+
escape_rx = re.compile(r"(^|[^\\])((\\\\)*\\)\\'")
|
32 |
+
|
33 |
+
def __init__(self, namespace, global_config, embedding_func):
|
34 |
+
super().__init__(
|
35 |
+
namespace=namespace,
|
36 |
+
global_config=global_config,
|
37 |
+
embedding_func=embedding_func,
|
38 |
+
)
|
39 |
+
|
40 |
+
self._driver = None
|
41 |
+
self._driver_lock = asyncio.Lock()
|
42 |
+
|
43 |
+
USER = os.environ.get("GREMLIN_USER", "")
|
44 |
+
PASSWORD = os.environ.get("GREMLIN_PASSWORD", "")
|
45 |
+
HOST = os.environ["GREMLIN_HOST"]
|
46 |
+
PORT = int(os.environ["GREMLIN_PORT"])
|
47 |
+
|
48 |
+
# TraversalSource, a custom one has to be created manually,
|
49 |
+
# default it "g"
|
50 |
+
SOURCE = os.environ.get("GREMLIN_TRAVERSE_SOURCE", "g")
|
51 |
+
|
52 |
+
# All vertices will have graph={GRAPH} property, so that we can
|
53 |
+
# have several logical graphs for one source
|
54 |
+
GRAPH = GremlinStorage.escape_rx.sub(
|
55 |
+
r"\1\2'",
|
56 |
+
os.environ["GREMLIN_GRAPH"].replace("'", r"\'"),
|
57 |
+
)
|
58 |
+
|
59 |
+
self.traverse_source_name = SOURCE
|
60 |
+
self.graph_name = GRAPH
|
61 |
+
|
62 |
+
self._driver = client.Client(
|
63 |
+
f"ws://{HOST}:{PORT}/gremlin",
|
64 |
+
SOURCE,
|
65 |
+
username=USER,
|
66 |
+
password=PASSWORD,
|
67 |
+
message_serializer=serializer.GraphSONSerializersV3d0(),
|
68 |
+
transport_factory=lambda: AiohttpTransport(call_from_event_loop=True),
|
69 |
+
)
|
70 |
+
|
71 |
+
def __post_init__(self):
|
72 |
+
self._node_embed_algorithms = {
|
73 |
+
"node2vec": self._node2vec_embed,
|
74 |
+
}
|
75 |
+
|
76 |
+
async def close(self):
|
77 |
+
if self._driver:
|
78 |
+
self._driver.close()
|
79 |
+
self._driver = None
|
80 |
+
|
81 |
+
async def __aexit__(self, exc_type, exc, tb):
|
82 |
+
if self._driver:
|
83 |
+
self._driver.close()
|
84 |
+
|
85 |
+
async def index_done_callback(self):
|
86 |
+
print("KG successfully indexed.")
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def _to_value_map(value: Any) -> str:
|
90 |
+
"""Dump Python dict as Gremlin valueMap"""
|
91 |
+
json_str = json.dumps(value, ensure_ascii=False, sort_keys=False)
|
92 |
+
parsed_str = json_str.replace("'", r"\'")
|
93 |
+
|
94 |
+
# walk over the string and replace curly brackets with square brackets
|
95 |
+
# outside of strings, as well as replace double quotes with single quotes
|
96 |
+
# and "deescape" double quotes inside of strings
|
97 |
+
outside_str = True
|
98 |
+
escaped = False
|
99 |
+
remove_indices = []
|
100 |
+
for i, c in enumerate(parsed_str):
|
101 |
+
if escaped:
|
102 |
+
# previous character was an "odd" backslash
|
103 |
+
escaped = False
|
104 |
+
if c == '"':
|
105 |
+
# we want to "deescape" double quotes: store indices to delete
|
106 |
+
remove_indices.insert(0, i - 1)
|
107 |
+
elif c == "\\":
|
108 |
+
escaped = True
|
109 |
+
elif c == '"':
|
110 |
+
outside_str = not outside_str
|
111 |
+
parsed_str = parsed_str[:i] + "'" + parsed_str[i + 1 :]
|
112 |
+
elif c == "{" and outside_str:
|
113 |
+
parsed_str = parsed_str[:i] + "[" + parsed_str[i + 1 :]
|
114 |
+
elif c == "}" and outside_str:
|
115 |
+
parsed_str = parsed_str[:i] + "]" + parsed_str[i + 1 :]
|
116 |
+
for idx in remove_indices:
|
117 |
+
parsed_str = parsed_str[:idx] + parsed_str[idx + 1 :]
|
118 |
+
return parsed_str
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def _convert_properties(properties: Dict[str, Any]) -> str:
|
122 |
+
"""Create chained .property() commands from properties dict"""
|
123 |
+
props = []
|
124 |
+
for k, v in properties.items():
|
125 |
+
prop_name = GremlinStorage.escape_rx.sub(r"\1\2'", k.replace("'", r"\'"))
|
126 |
+
props.append(f".property('{prop_name}', {GremlinStorage._to_value_map(v)})")
|
127 |
+
return "".join(props)
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def _fix_label(label: str) -> str:
|
131 |
+
"""Strip double quotes and make sure single quotes are escaped"""
|
132 |
+
label = label.strip('"').replace("'", r"\'")
|
133 |
+
label = GremlinStorage.escape_rx.sub(r"\1\2'", label)
|
134 |
+
|
135 |
+
return label
|
136 |
+
|
137 |
+
async def _query(self, query: str) -> List[Dict[str, Any]]:
|
138 |
+
"""
|
139 |
+
Query the Gremlin graph
|
140 |
+
|
141 |
+
Args:
|
142 |
+
query (str): a query to be executed
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
List[Dict[str, Any]]: a list of dictionaries containing the result set
|
146 |
+
"""
|
147 |
+
|
148 |
+
result = list(await asyncio.wrap_future(self._driver.submit_async(query)))
|
149 |
+
|
150 |
+
return result
|
151 |
+
|
152 |
+
async def has_node(self, node_id: str) -> bool:
|
153 |
+
entity_name_label = GremlinStorage._fix_label(node_id)
|
154 |
+
|
155 |
+
query = f"""
|
156 |
+
{self.traverse_source_name}
|
157 |
+
.V().has('graph', '{self.graph_name}')
|
158 |
+
.hasLabel('{entity_name_label}')
|
159 |
+
.limit(1)
|
160 |
+
.hasNext()
|
161 |
+
"""
|
162 |
+
result = await self._query(query)
|
163 |
+
logger.debug(
|
164 |
+
"{%s}:query:{%s}:result:{%s}",
|
165 |
+
inspect.currentframe().f_code.co_name,
|
166 |
+
query,
|
167 |
+
result[0][0],
|
168 |
+
)
|
169 |
+
|
170 |
+
return result[0][0]
|
171 |
+
|
172 |
+
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
173 |
+
entity_name_label_source = GremlinStorage._fix_label(source_node_id)
|
174 |
+
entity_name_label_target = GremlinStorage._fix_label(target_node_id)
|
175 |
+
|
176 |
+
query = f"""
|
177 |
+
{self.traverse_source_name}
|
178 |
+
.V().has('graph', '{self.graph_name}')
|
179 |
+
.hasLabel('{entity_name_label_source}')
|
180 |
+
.bothE()
|
181 |
+
.otherV().has('graph', '{self.graph_name}')
|
182 |
+
.hasLabel('{entity_name_label_target}')
|
183 |
+
.limit(1)
|
184 |
+
.hasNext()
|
185 |
+
"""
|
186 |
+
result = await self._query(query)
|
187 |
+
logger.debug(
|
188 |
+
"{%s}:query:{%s}:result:{%s}",
|
189 |
+
inspect.currentframe().f_code.co_name,
|
190 |
+
query,
|
191 |
+
result[0][0],
|
192 |
+
)
|
193 |
+
|
194 |
+
return result[0][0]
|
195 |
+
|
196 |
+
async def get_node(self, node_id: str) -> Union[dict, None]:
|
197 |
+
entity_name_label = GremlinStorage._fix_label(node_id)
|
198 |
+
query = f"""
|
199 |
+
{self.traverse_source_name}
|
200 |
+
.V().has('graph', '{self.graph_name}')
|
201 |
+
.hasLabel('{entity_name_label}')
|
202 |
+
.limit(1)
|
203 |
+
.project('properties')
|
204 |
+
.by(elementMap())
|
205 |
+
"""
|
206 |
+
result = await self._query(query)
|
207 |
+
if result:
|
208 |
+
node = result[0][0]
|
209 |
+
node_dict = node["properties"]
|
210 |
+
logger.debug(
|
211 |
+
"{%s}: query: {%s}, result: {%s}",
|
212 |
+
inspect.currentframe().f_code.co_name,
|
213 |
+
query.format,
|
214 |
+
node_dict,
|
215 |
+
)
|
216 |
+
return node_dict
|
217 |
+
|
218 |
+
async def node_degree(self, node_id: str) -> int:
|
219 |
+
entity_name_label = GremlinStorage._fix_label(node_id)
|
220 |
+
query = f"""
|
221 |
+
{self.traverse_source_name}
|
222 |
+
.V().has('graph', '{self.graph_name}')
|
223 |
+
.hasLabel('{entity_name_label}')
|
224 |
+
.outE()
|
225 |
+
.inV().has('graph', '{self.graph_name}')
|
226 |
+
.count()
|
227 |
+
.project('total_edge_count')
|
228 |
+
.by()
|
229 |
+
"""
|
230 |
+
result = await self._query(query)
|
231 |
+
edge_count = result[0][0]["total_edge_count"]
|
232 |
+
|
233 |
+
logger.debug(
|
234 |
+
"{%s}:query:{%s}:result:{%s}",
|
235 |
+
inspect.currentframe().f_code.co_name,
|
236 |
+
query,
|
237 |
+
edge_count,
|
238 |
+
)
|
239 |
+
|
240 |
+
return edge_count
|
241 |
+
|
242 |
+
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
243 |
+
src_degree = await self.node_degree(src_id)
|
244 |
+
trg_degree = await self.node_degree(tgt_id)
|
245 |
+
|
246 |
+
# Convert None to 0 for addition
|
247 |
+
src_degree = 0 if src_degree is None else src_degree
|
248 |
+
trg_degree = 0 if trg_degree is None else trg_degree
|
249 |
+
|
250 |
+
degrees = int(src_degree) + int(trg_degree)
|
251 |
+
logger.debug(
|
252 |
+
"{%s}:query:src_Degree+trg_degree:result:{%s}",
|
253 |
+
inspect.currentframe().f_code.co_name,
|
254 |
+
degrees,
|
255 |
+
)
|
256 |
+
return degrees
|
257 |
+
|
258 |
+
async def get_edge(
|
259 |
+
self, source_node_id: str, target_node_id: str
|
260 |
+
) -> Union[dict, None]:
|
261 |
+
"""
|
262 |
+
Find all edges between nodes of two given labels
|
263 |
+
|
264 |
+
Args:
|
265 |
+
source_node_label (str): Label of the source nodes
|
266 |
+
target_node_label (str): Label of the target nodes
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
dict|None: Dict of found edge properties, or None of not found
|
270 |
+
"""
|
271 |
+
entity_name_label_source = GremlinStorage._fix_label(source_node_id)
|
272 |
+
entity_name_label_target = GremlinStorage._fix_label(target_node_id)
|
273 |
+
query = f"""
|
274 |
+
{self.traverse_source_name}
|
275 |
+
.V().has('graph', '{self.graph_name}')
|
276 |
+
.hasLabel('{entity_name_label_source}')
|
277 |
+
.outE()
|
278 |
+
.inV().has('graph', '{self.graph_name}')
|
279 |
+
.hasLabel('{entity_name_label_target}')
|
280 |
+
.limit(1)
|
281 |
+
.project('edge_properties')
|
282 |
+
.by(__.bothE().elementMap())
|
283 |
+
"""
|
284 |
+
result = await self._query(query)
|
285 |
+
if result:
|
286 |
+
edge_properties = result[0][0]["edge_properties"]
|
287 |
+
logger.debug(
|
288 |
+
"{%s}:query:{%s}:result:{%s}",
|
289 |
+
inspect.currentframe().f_code.co_name,
|
290 |
+
query,
|
291 |
+
edge_properties,
|
292 |
+
)
|
293 |
+
return edge_properties
|
294 |
+
|
295 |
+
async def get_node_edges(self, source_node_id: str) -> List[Tuple[str, str]]:
|
296 |
+
"""
|
297 |
+
Retrieves all edges (relationships) for a particular node identified by its label.
|
298 |
+
:return: List of tuples containing edge sources and targets
|
299 |
+
"""
|
300 |
+
node_label = GremlinStorage._fix_label(source_node_id)
|
301 |
+
query1 = f"""
|
302 |
+
{self.traverse_source_name}
|
303 |
+
.V().has('graph', '{self.graph_name}')
|
304 |
+
.hasLabel('{node_label}')
|
305 |
+
.out().has('graph', '{self.graph_name}')
|
306 |
+
.project('connected_label')
|
307 |
+
.by(__.label())
|
308 |
+
"""
|
309 |
+
result1 = await self._query(query1)
|
310 |
+
edges1 = (
|
311 |
+
[(node_label, res["connected_label"]) for res in result1[0]]
|
312 |
+
if result1
|
313 |
+
else []
|
314 |
+
)
|
315 |
+
|
316 |
+
query2 = f"""
|
317 |
+
{self.traverse_source_name}
|
318 |
+
.V().has('graph', '{self.graph_name}')
|
319 |
+
.as('connected')
|
320 |
+
.out().has('graph', '{self.graph_name}')
|
321 |
+
.hasLabel('{node_label}')
|
322 |
+
.project('connected_label')
|
323 |
+
.by(__.select('connected').label())
|
324 |
+
"""
|
325 |
+
result2 = await self._query(query2)
|
326 |
+
edges2 = (
|
327 |
+
[(res["connected_label"], node_label) for res in result2[0]]
|
328 |
+
if result2
|
329 |
+
else []
|
330 |
+
)
|
331 |
+
|
332 |
+
return edges1 + edges2
|
333 |
+
|
334 |
+
@retry(
|
335 |
+
stop=stop_after_attempt(3),
|
336 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
337 |
+
retry=retry_if_exception_type((GremlinServerError,)),
|
338 |
+
)
|
339 |
+
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
340 |
+
"""
|
341 |
+
Upsert a node in the Gremlin graph.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
node_id: The unique identifier for the node (used as label)
|
345 |
+
node_data: Dictionary of node properties
|
346 |
+
"""
|
347 |
+
label = GremlinStorage._fix_label(node_id)
|
348 |
+
properties = GremlinStorage._convert_properties(node_data)
|
349 |
+
|
350 |
+
query = f"""
|
351 |
+
{self.traverse_source_name}
|
352 |
+
.V().has('graph', '{self.graph_name}')
|
353 |
+
.hasLabel('{label}').fold()
|
354 |
+
.coalesce(
|
355 |
+
unfold(),
|
356 |
+
addV('{label}'))
|
357 |
+
.property('graph', '{self.graph_name}')
|
358 |
+
{properties}
|
359 |
+
"""
|
360 |
+
|
361 |
+
try:
|
362 |
+
await self._query(query)
|
363 |
+
logger.debug(
|
364 |
+
"Upserted node with label '{%s}' and properties: {%s}",
|
365 |
+
label,
|
366 |
+
properties,
|
367 |
+
)
|
368 |
+
except Exception as e:
|
369 |
+
logger.error("Error during upsert: {%s}", e)
|
370 |
+
raise
|
371 |
+
|
372 |
+
@retry(
|
373 |
+
stop=stop_after_attempt(3),
|
374 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
375 |
+
retry=retry_if_exception_type((GremlinServerError,)),
|
376 |
+
)
|
377 |
+
async def upsert_edge(
|
378 |
+
self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]
|
379 |
+
):
|
380 |
+
"""
|
381 |
+
Upsert an edge and its properties between two nodes identified by their labels.
|
382 |
+
|
383 |
+
Args:
|
384 |
+
source_node_id (str): Label of the source node (used as identifier)
|
385 |
+
target_node_id (str): Label of the target node (used as identifier)
|
386 |
+
edge_data (dict): Dictionary of properties to set on the edge
|
387 |
+
"""
|
388 |
+
source_node_label = GremlinStorage._fix_label(source_node_id)
|
389 |
+
target_node_label = GremlinStorage._fix_label(target_node_id)
|
390 |
+
edge_properties = GremlinStorage._convert_properties(edge_data)
|
391 |
+
|
392 |
+
query = f"""
|
393 |
+
{self.traverse_source_name}
|
394 |
+
.V().has('graph', '{self.graph_name}')
|
395 |
+
.hasLabel('{source_node_label}').as('source')
|
396 |
+
.V().has('graph', '{self.graph_name}')
|
397 |
+
.hasLabel('{target_node_label}').as('target')
|
398 |
+
.coalesce(
|
399 |
+
select('source').outE('DIRECTED').where(inV().as('target')),
|
400 |
+
select('source').addE('DIRECTED').to(select('target'))
|
401 |
+
)
|
402 |
+
.property('graph', '{self.graph_name}')
|
403 |
+
{edge_properties}
|
404 |
+
"""
|
405 |
+
try:
|
406 |
+
await self._query(query)
|
407 |
+
logger.debug(
|
408 |
+
"Upserted edge from '{%s}' to '{%s}' with properties: {%s}",
|
409 |
+
source_node_label,
|
410 |
+
target_node_label,
|
411 |
+
edge_properties,
|
412 |
+
)
|
413 |
+
except Exception as e:
|
414 |
+
logger.error("Error during edge upsert: {%s}", e)
|
415 |
+
raise
|
416 |
+
|
417 |
+
async def _node2vec_embed(self):
|
418 |
+
print("Implemented but never called.")
|
lightrag/lightrag.py
CHANGED
@@ -81,6 +81,7 @@ TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
|
81 |
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
82 |
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
83 |
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
|
|
84 |
|
85 |
|
86 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
@@ -284,6 +285,7 @@ class LightRAG:
|
|
284 |
"OracleGraphStorage": OracleGraphStorage,
|
285 |
"AGEStorage": AGEStorage,
|
286 |
"TiDBGraphStorage": TiDBGraphStorage,
|
|
|
287 |
# "ArangoDBStorage": ArangoDBStorage
|
288 |
}
|
289 |
|
|
|
81 |
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
82 |
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
83 |
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
84 |
+
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
85 |
|
86 |
|
87 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
|
285 |
"OracleGraphStorage": OracleGraphStorage,
|
286 |
"AGEStorage": AGEStorage,
|
287 |
"TiDBGraphStorage": TiDBGraphStorage,
|
288 |
+
"GremlinStorage": GremlinStorage,
|
289 |
# "ArangoDBStorage": ArangoDBStorage
|
290 |
}
|
291 |
|
requirements.txt
CHANGED
@@ -4,6 +4,7 @@ aiohttp
|
|
4 |
|
5 |
# database packages
|
6 |
graspologic
|
|
|
7 |
hnswlib
|
8 |
nano-vectordb
|
9 |
neo4j
|
|
|
4 |
|
5 |
# database packages
|
6 |
graspologic
|
7 |
+
gremlinpython
|
8 |
hnswlib
|
9 |
nano-vectordb
|
10 |
neo4j
|