Added azure openai lightrag server to the api install and fused documentation.
Browse files- README.md +65 -117
- examples/openai_README.md +114 -0
- lightrag/api/README_AZURE_OPENAI.md +0 -202
- lightrag/api/azure_openai_lightrag_server.py +5 -1
- setup.py +1 -0
README.md
CHANGED
@@ -598,120 +598,6 @@ if __name__ == "__main__":
|
|
598 |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
599 |
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
600 |
|
601 |
-
## API Server Implementation
|
602 |
-
|
603 |
-
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
604 |
-
|
605 |
-
### Setting up the API Server
|
606 |
-
<details>
|
607 |
-
<summary>Click to expand setup instructions</summary>
|
608 |
-
|
609 |
-
1. First, ensure you have the required dependencies:
|
610 |
-
```bash
|
611 |
-
pip install fastapi uvicorn pydantic
|
612 |
-
```
|
613 |
-
|
614 |
-
2. Set up your environment variables:
|
615 |
-
```bash
|
616 |
-
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
617 |
-
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
618 |
-
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
619 |
-
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
620 |
-
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
621 |
-
```
|
622 |
-
|
623 |
-
3. Run the API server:
|
624 |
-
```bash
|
625 |
-
python examples/lightrag_api_openai_compatible_demo.py
|
626 |
-
```
|
627 |
-
|
628 |
-
The server will start on `http://0.0.0.0:8020`.
|
629 |
-
</details>
|
630 |
-
|
631 |
-
### API Endpoints
|
632 |
-
|
633 |
-
The API server provides the following endpoints:
|
634 |
-
|
635 |
-
#### 1. Query Endpoint
|
636 |
-
<details>
|
637 |
-
<summary>Click to view Query endpoint details</summary>
|
638 |
-
|
639 |
-
- **URL:** `/query`
|
640 |
-
- **Method:** POST
|
641 |
-
- **Body:**
|
642 |
-
```json
|
643 |
-
{
|
644 |
-
"query": "Your question here",
|
645 |
-
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
646 |
-
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
647 |
-
}
|
648 |
-
```
|
649 |
-
- **Example:**
|
650 |
-
```bash
|
651 |
-
curl -X POST "http://127.0.0.1:8020/query" \
|
652 |
-
-H "Content-Type: application/json" \
|
653 |
-
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
654 |
-
```
|
655 |
-
</details>
|
656 |
-
|
657 |
-
#### 2. Insert Text Endpoint
|
658 |
-
<details>
|
659 |
-
<summary>Click to view Insert Text endpoint details</summary>
|
660 |
-
|
661 |
-
- **URL:** `/insert`
|
662 |
-
- **Method:** POST
|
663 |
-
- **Body:**
|
664 |
-
```json
|
665 |
-
{
|
666 |
-
"text": "Your text content here"
|
667 |
-
}
|
668 |
-
```
|
669 |
-
- **Example:**
|
670 |
-
```bash
|
671 |
-
curl -X POST "http://127.0.0.1:8020/insert" \
|
672 |
-
-H "Content-Type: application/json" \
|
673 |
-
-d '{"text": "Content to be inserted into RAG"}'
|
674 |
-
```
|
675 |
-
</details>
|
676 |
-
|
677 |
-
#### 3. Insert File Endpoint
|
678 |
-
<details>
|
679 |
-
<summary>Click to view Insert File endpoint details</summary>
|
680 |
-
|
681 |
-
- **URL:** `/insert_file`
|
682 |
-
- **Method:** POST
|
683 |
-
- **Body:**
|
684 |
-
```json
|
685 |
-
{
|
686 |
-
"file_path": "path/to/your/file.txt"
|
687 |
-
}
|
688 |
-
```
|
689 |
-
- **Example:**
|
690 |
-
```bash
|
691 |
-
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
692 |
-
-H "Content-Type: application/json" \
|
693 |
-
-d '{"file_path": "./book.txt"}'
|
694 |
-
```
|
695 |
-
</details>
|
696 |
-
|
697 |
-
#### 4. Health Check Endpoint
|
698 |
-
<details>
|
699 |
-
<summary>Click to view Health Check endpoint details</summary>
|
700 |
-
|
701 |
-
- **URL:** `/health`
|
702 |
-
- **Method:** GET
|
703 |
-
- **Example:**
|
704 |
-
```bash
|
705 |
-
curl -X GET "http://127.0.0.1:8020/health"
|
706 |
-
```
|
707 |
-
</details>
|
708 |
-
|
709 |
-
### Configuration
|
710 |
-
|
711 |
-
The API server can be configured using environment variables:
|
712 |
-
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
713 |
-
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
714 |
-
|
715 |
### Error Handling
|
716 |
<details>
|
717 |
<summary>Click to view error handling details</summary>
|
@@ -989,6 +875,12 @@ def extract_queries(file_path):
|
|
989 |
│ ├── lightrag_siliconcloud_demo.py
|
990 |
│ └── vram_management_demo.py
|
991 |
├── lightrag/
|
|
|
|
|
|
|
|
|
|
|
|
|
992 |
│ ├── kg/
|
993 |
│ │ ├── __init__.py
|
994 |
│ │ ├── oracle_impl.py
|
@@ -1033,7 +925,7 @@ pip install "lightrag-hku[api]"
|
|
1033 |
|
1034 |
```bash
|
1035 |
# Clone the repository
|
1036 |
-
git clone https://github.com/
|
1037 |
|
1038 |
# Change to the repository directory
|
1039 |
cd lightrag
|
@@ -1060,6 +952,27 @@ Before running any of the servers, ensure you have the corresponding backend ser
|
|
1060 |
- Requires valid OpenAI API credentials set in environment variables
|
1061 |
- OPENAI_API_KEY must be set
|
1062 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1063 |
### Configuration Options
|
1064 |
|
1065 |
Each server has its own specific configuration options:
|
@@ -1112,6 +1025,22 @@ Each server has its own specific configuration options:
|
|
1112 |
| --input-dir | ./inputs | Input directory for documents |
|
1113 |
| --log-level | INFO | Logging level |
|
1114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1115 |
### Example Usage
|
1116 |
|
1117 |
#### LoLLMs RAG Server
|
@@ -1140,17 +1069,25 @@ ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --em
|
|
1140 |
# Using GPT-4 with text-embedding-3-large
|
1141 |
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
1142 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
1143 |
|
1144 |
**Important Notes:**
|
1145 |
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
1146 |
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
1147 |
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
|
|
1148 |
|
1149 |
For help on any server, use the --help flag:
|
1150 |
```bash
|
1151 |
lollms-lightrag-server --help
|
1152 |
ollama-lightrag-server --help
|
1153 |
openai-lightrag-server --help
|
|
|
1154 |
```
|
1155 |
|
1156 |
Note: If you don't need the API functionality, you can install the base package without API support using:
|
@@ -1160,7 +1097,7 @@ pip install lightrag-hku
|
|
1160 |
|
1161 |
## API Endpoints
|
1162 |
|
1163 |
-
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
1164 |
|
1165 |
### Query Endpoints
|
1166 |
|
@@ -1245,7 +1182,10 @@ For OpenAI:
|
|
1245 |
```bash
|
1246 |
uvicorn openai_lightrag_server:app --reload --port 9621
|
1247 |
```
|
1248 |
-
|
|
|
|
|
|
|
1249 |
### API Documentation
|
1250 |
|
1251 |
When any server is running, visit:
|
@@ -1301,6 +1241,14 @@ ollama-lightrag-server --input-dir ./my_documents --port 8080
|
|
1301 |
openai-lightrag-server --input-dir ./my_documents --port 9624
|
1302 |
```
|
1303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1304 |
**Important Notes:**
|
1305 |
- The `--input-dir` parameter enables automatic document processing at startup
|
1306 |
- Documents already in the database are not re-vectorized
|
|
|
598 |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
599 |
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
600 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
### Error Handling
|
602 |
<details>
|
603 |
<summary>Click to view error handling details</summary>
|
|
|
875 |
│ ├── lightrag_siliconcloud_demo.py
|
876 |
│ └── vram_management_demo.py
|
877 |
├── lightrag/
|
878 |
+
│ ├── api/
|
879 |
+
│ │ ├── lollms_lightrag_server.py
|
880 |
+
│ │ ├── ollama_lightrag_server.py
|
881 |
+
│ │ ├── openai_lightrag_server.py
|
882 |
+
│ │ ├── azure_openai_lightrag_server.py
|
883 |
+
│ │ └── requirements.txt
|
884 |
│ ├── kg/
|
885 |
│ │ ├── __init__.py
|
886 |
│ │ ├── oracle_impl.py
|
|
|
925 |
|
926 |
```bash
|
927 |
# Clone the repository
|
928 |
+
git clone https://github.com/HKUDS/lightrag.git
|
929 |
|
930 |
# Change to the repository directory
|
931 |
cd lightrag
|
|
|
952 |
- Requires valid OpenAI API credentials set in environment variables
|
953 |
- OPENAI_API_KEY must be set
|
954 |
|
955 |
+
#### For Azure OpenAI Server
|
956 |
+
Azure OpenAI API can be created using the following commands in Azure CLI (you need to install Azure CLI first from [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)):
|
957 |
+
```bash
|
958 |
+
# Change the resource group name, location and OpenAI resource name as needed
|
959 |
+
RESOURCE_GROUP_NAME=LightRAG
|
960 |
+
LOCATION=swedencentral
|
961 |
+
RESOURCE_NAME=LightRAG-OpenAI
|
962 |
+
|
963 |
+
az login
|
964 |
+
az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
|
965 |
+
az cognitiveservices account create --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --kind OpenAI --sku S0 --location swedencentral
|
966 |
+
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name gpt-4o --model-name gpt-4o --model-version "2024-08-06" --sku-capacity 100 --sku-name "Standard"
|
967 |
+
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name text-embedding-3-large --model-name text-embedding-3-large --model-version "1" --sku-capacity 80 --sku-name "Standard"
|
968 |
+
az cognitiveservices account show --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --query "properties.endpoint"
|
969 |
+
az cognitiveservices account keys list --name $RESOURCE_NAME -g $RESOURCE_GROUP_NAME
|
970 |
+
|
971 |
+
```
|
972 |
+
The output of the last command will give you the endpoint and the key for the OpenAI API. You can use these values to set the environment variables in the `.env` file.
|
973 |
+
|
974 |
+
|
975 |
+
|
976 |
### Configuration Options
|
977 |
|
978 |
Each server has its own specific configuration options:
|
|
|
1025 |
| --input-dir | ./inputs | Input directory for documents |
|
1026 |
| --log-level | INFO | Logging level |
|
1027 |
|
1028 |
+
#### OpenAI AZURE Server Options
|
1029 |
+
|
1030 |
+
| Parameter | Default | Description |
|
1031 |
+
|-----------|---------|-------------|
|
1032 |
+
| --host | 0.0.0.0 | Server host |
|
1033 |
+
| --port | 9621 | Server port |
|
1034 |
+
| --model | gpt-4 | OpenAI model name |
|
1035 |
+
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
1036 |
+
| --working-dir | ./rag_storage | Working directory for RAG |
|
1037 |
+
| --max-tokens | 32768 | Maximum token size |
|
1038 |
+
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
1039 |
+
| --input-dir | ./inputs | Input directory for documents |
|
1040 |
+
| --enable-cache | True | Enable response cache |
|
1041 |
+
| --log-level | INFO | Logging level |
|
1042 |
+
|
1043 |
+
|
1044 |
### Example Usage
|
1045 |
|
1046 |
#### LoLLMs RAG Server
|
|
|
1069 |
# Using GPT-4 with text-embedding-3-large
|
1070 |
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
1071 |
```
|
1072 |
+
#### Azure OpenAI RAG Server
|
1073 |
+
```bash
|
1074 |
+
# Using GPT-4 with text-embedding-3-large
|
1075 |
+
azure-openai-lightrag-server --model gpt-4o --port 8080 --working-dir ./custom_rag --embedding-model text-embedding-3-large
|
1076 |
+
```
|
1077 |
+
|
1078 |
|
1079 |
**Important Notes:**
|
1080 |
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
1081 |
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
1082 |
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
1083 |
+
- For Azure OpenAI: Build and configure your server as stated in the Prequisites section
|
1084 |
|
1085 |
For help on any server, use the --help flag:
|
1086 |
```bash
|
1087 |
lollms-lightrag-server --help
|
1088 |
ollama-lightrag-server --help
|
1089 |
openai-lightrag-server --help
|
1090 |
+
azure-openai-lightrag-server --help
|
1091 |
```
|
1092 |
|
1093 |
Note: If you don't need the API functionality, you can install the base package without API support using:
|
|
|
1097 |
|
1098 |
## API Endpoints
|
1099 |
|
1100 |
+
All servers (LoLLMs, Ollama, OpenAI and Azure OpenAI) provide the same REST API endpoints for RAG functionality.
|
1101 |
|
1102 |
### Query Endpoints
|
1103 |
|
|
|
1182 |
```bash
|
1183 |
uvicorn openai_lightrag_server:app --reload --port 9621
|
1184 |
```
|
1185 |
+
For Azure OpenAI:
|
1186 |
+
```bash
|
1187 |
+
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
1188 |
+
```
|
1189 |
### API Documentation
|
1190 |
|
1191 |
When any server is running, visit:
|
|
|
1241 |
openai-lightrag-server --input-dir ./my_documents --port 9624
|
1242 |
```
|
1243 |
|
1244 |
+
#### Azure OpenAI RAG Server
|
1245 |
+
|
1246 |
+
```bash
|
1247 |
+
# Start server with automatic document vectorization
|
1248 |
+
# Existing documents are retrieved from cache, only new ones are processed
|
1249 |
+
azure-openai-lightrag-server --input-dir ./my_documents --port 9624
|
1250 |
+
```
|
1251 |
+
|
1252 |
**Important Notes:**
|
1253 |
- The `--input-dir` parameter enables automatic document processing at startup
|
1254 |
- Documents already in the database are not re-vectorized
|
examples/openai_README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## API Server Implementation
|
3 |
+
|
4 |
+
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
5 |
+
|
6 |
+
### Setting up the API Server
|
7 |
+
<details>
|
8 |
+
<summary>Click to expand setup instructions</summary>
|
9 |
+
|
10 |
+
1. First, ensure you have the required dependencies:
|
11 |
+
```bash
|
12 |
+
pip install fastapi uvicorn pydantic
|
13 |
+
```
|
14 |
+
|
15 |
+
2. Set up your environment variables:
|
16 |
+
```bash
|
17 |
+
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
18 |
+
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
19 |
+
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
20 |
+
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
21 |
+
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
22 |
+
```
|
23 |
+
|
24 |
+
3. Run the API server:
|
25 |
+
```bash
|
26 |
+
python examples/lightrag_api_openai_compatible_demo.py
|
27 |
+
```
|
28 |
+
|
29 |
+
The server will start on `http://0.0.0.0:8020`.
|
30 |
+
</details>
|
31 |
+
|
32 |
+
### API Endpoints
|
33 |
+
|
34 |
+
The API server provides the following endpoints:
|
35 |
+
|
36 |
+
#### 1. Query Endpoint
|
37 |
+
<details>
|
38 |
+
<summary>Click to view Query endpoint details</summary>
|
39 |
+
|
40 |
+
- **URL:** `/query`
|
41 |
+
- **Method:** POST
|
42 |
+
- **Body:**
|
43 |
+
```json
|
44 |
+
{
|
45 |
+
"query": "Your question here",
|
46 |
+
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
47 |
+
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
48 |
+
}
|
49 |
+
```
|
50 |
+
- **Example:**
|
51 |
+
```bash
|
52 |
+
curl -X POST "http://127.0.0.1:8020/query" \
|
53 |
+
-H "Content-Type: application/json" \
|
54 |
+
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
55 |
+
```
|
56 |
+
</details>
|
57 |
+
|
58 |
+
#### 2. Insert Text Endpoint
|
59 |
+
<details>
|
60 |
+
<summary>Click to view Insert Text endpoint details</summary>
|
61 |
+
|
62 |
+
- **URL:** `/insert`
|
63 |
+
- **Method:** POST
|
64 |
+
- **Body:**
|
65 |
+
```json
|
66 |
+
{
|
67 |
+
"text": "Your text content here"
|
68 |
+
}
|
69 |
+
```
|
70 |
+
- **Example:**
|
71 |
+
```bash
|
72 |
+
curl -X POST "http://127.0.0.1:8020/insert" \
|
73 |
+
-H "Content-Type: application/json" \
|
74 |
+
-d '{"text": "Content to be inserted into RAG"}'
|
75 |
+
```
|
76 |
+
</details>
|
77 |
+
|
78 |
+
#### 3. Insert File Endpoint
|
79 |
+
<details>
|
80 |
+
<summary>Click to view Insert File endpoint details</summary>
|
81 |
+
|
82 |
+
- **URL:** `/insert_file`
|
83 |
+
- **Method:** POST
|
84 |
+
- **Body:**
|
85 |
+
```json
|
86 |
+
{
|
87 |
+
"file_path": "path/to/your/file.txt"
|
88 |
+
}
|
89 |
+
```
|
90 |
+
- **Example:**
|
91 |
+
```bash
|
92 |
+
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
93 |
+
-H "Content-Type: application/json" \
|
94 |
+
-d '{"file_path": "./book.txt"}'
|
95 |
+
```
|
96 |
+
</details>
|
97 |
+
|
98 |
+
#### 4. Health Check Endpoint
|
99 |
+
<details>
|
100 |
+
<summary>Click to view Health Check endpoint details</summary>
|
101 |
+
|
102 |
+
- **URL:** `/health`
|
103 |
+
- **Method:** GET
|
104 |
+
- **Example:**
|
105 |
+
```bash
|
106 |
+
curl -X GET "http://127.0.0.1:8020/health"
|
107 |
+
```
|
108 |
+
</details>
|
109 |
+
|
110 |
+
### Configuration
|
111 |
+
|
112 |
+
The API server can be configured using environment variables:
|
113 |
+
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
114 |
+
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
lightrag/api/README_AZURE_OPENAI.md
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
|
2 |
-
# LightRAG API Server
|
3 |
-
|
4 |
-
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using OpenAI's language models.
|
5 |
-
|
6 |
-
## Features
|
7 |
-
|
8 |
-
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
9 |
-
- 📡 Streaming and non-streaming responses
|
10 |
-
- 📝 Document management (insert, batch upload, clear)
|
11 |
-
- ⚙️ Highly configurable model parameters
|
12 |
-
- 📚 Support for text and file uploads
|
13 |
-
- 🔧 RESTful API with automatic documentation
|
14 |
-
- 🚀 Built with FastAPI for high performance
|
15 |
-
|
16 |
-
## Prerequisites
|
17 |
-
|
18 |
-
- Python 3.8+
|
19 |
-
- Azure OpenAI API key
|
20 |
-
- Azure OpenAI Deployments (gpt-4o, text-embedding-3-large)
|
21 |
-
- Required Python packages:
|
22 |
-
- fastapi
|
23 |
-
- uvicorn
|
24 |
-
- lightrag
|
25 |
-
- pydantic
|
26 |
-
- openai
|
27 |
-
- nest-asyncio
|
28 |
-
|
29 |
-
## Installation
|
30 |
-
If you are using Windows, you will need to download and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
31 |
-
Make sure you install the VS 2022 C++ x64/x86 Build tools from individual components tab.
|
32 |
-
|
33 |
-
1. Clone the repository:
|
34 |
-
```bash
|
35 |
-
git clone https://github.com/ParisNeo/LightRAG.git
|
36 |
-
cd api
|
37 |
-
```
|
38 |
-
|
39 |
-
2. Install dependencies:
|
40 |
-
```bash
|
41 |
-
python -m venv venv
|
42 |
-
source venv/bin/activate
|
43 |
-
#venv\Scripts\activate for Windows
|
44 |
-
pip install -r requirements.txt
|
45 |
-
```
|
46 |
-
|
47 |
-
3. Set up environment variables:
|
48 |
-
use the `.env` file to set the environment variables (you can copy the `.env.aoi.example` file and rename it to `.env`),
|
49 |
-
or set them manually:
|
50 |
-
```bash
|
51 |
-
export AZURE_OPENAI_API_VERSION='2024-08-01-preview'
|
52 |
-
export AZURE_OPENAI_DEPLOYMENT='gpt-4o'
|
53 |
-
export AZURE_OPENAI_API_KEY='myapikey'
|
54 |
-
export AZURE_OPENAI_ENDPOINT='https://myendpoint.openai.azure.com'
|
55 |
-
export AZURE_EMBEDDING_DEPLOYMENT='text-embedding-3-large'
|
56 |
-
export AZURE_EMBEDDING_API_VERSION='2023-05-15'
|
57 |
-
```
|
58 |
-
|
59 |
-
## Configuration
|
60 |
-
|
61 |
-
The server can be configured using command-line arguments:
|
62 |
-
|
63 |
-
```bash
|
64 |
-
python azure_openai_lightrag_server.py --help
|
65 |
-
```
|
66 |
-
|
67 |
-
Available options:
|
68 |
-
|
69 |
-
| Parameter | Default | Description |
|
70 |
-
|-----------|---------|-------------|
|
71 |
-
| --host | 0.0.0.0 | Server host |
|
72 |
-
| --port | 9621 | Server port |
|
73 |
-
| --model | gpt-4 | OpenAI model name |
|
74 |
-
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
75 |
-
| --working-dir | ./rag_storage | Working directory for RAG |
|
76 |
-
| --max-tokens | 32768 | Maximum token size |
|
77 |
-
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
78 |
-
| --input-dir | ./inputs | Input directory for documents |
|
79 |
-
| --enable-cache | True | Enable response cache |
|
80 |
-
| --log-level | INFO | Logging level |
|
81 |
-
|
82 |
-
## Quick Start
|
83 |
-
|
84 |
-
1. Basic usage with default settings:
|
85 |
-
```bash
|
86 |
-
python azure_openai_lightrag_server.py
|
87 |
-
```
|
88 |
-
|
89 |
-
2. Custom configuration:
|
90 |
-
```bash
|
91 |
-
python azure_openai_lightrag_server.py --model gpt-4o --port 8080 --working-dir ./custom_rag
|
92 |
-
```
|
93 |
-
|
94 |
-
## API Endpoints
|
95 |
-
|
96 |
-
### Query Endpoints
|
97 |
-
|
98 |
-
#### POST /query
|
99 |
-
Query the RAG system with options for different search modes.
|
100 |
-
|
101 |
-
```bash
|
102 |
-
curl -X POST "http://localhost:9621/query" \
|
103 |
-
-H "Content-Type: application/json" \
|
104 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
105 |
-
```
|
106 |
-
|
107 |
-
#### POST /query/stream
|
108 |
-
Stream responses from the RAG system.
|
109 |
-
|
110 |
-
```bash
|
111 |
-
curl -X POST "http://localhost:9621/query/stream" \
|
112 |
-
-H "Content-Type: application/json" \
|
113 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
114 |
-
```
|
115 |
-
|
116 |
-
### Document Management Endpoints
|
117 |
-
|
118 |
-
#### POST /documents/text
|
119 |
-
Insert text directly into the RAG system.
|
120 |
-
|
121 |
-
```bash
|
122 |
-
curl -X POST "http://localhost:9621/documents/text" \
|
123 |
-
-H "Content-Type: application/json" \
|
124 |
-
-d '{"text": "Your text content here", "description": "Optional description"}'
|
125 |
-
```
|
126 |
-
|
127 |
-
#### POST /documents/file
|
128 |
-
Upload a single file to the RAG system.
|
129 |
-
|
130 |
-
```bash
|
131 |
-
curl -X POST "http://localhost:9621/documents/file" \
|
132 |
-
-F "file=@/path/to/your/document.txt" \
|
133 |
-
-F "description=Optional description"
|
134 |
-
```
|
135 |
-
|
136 |
-
#### POST /documents/batch
|
137 |
-
Upload multiple files at once.
|
138 |
-
|
139 |
-
```bash
|
140 |
-
curl -X POST "http://localhost:9621/documents/batch" \
|
141 |
-
-F "files=@/path/to/doc1.txt" \
|
142 |
-
-F "files=@/path/to/doc2.txt"
|
143 |
-
```
|
144 |
-
|
145 |
-
#### DELETE /documents
|
146 |
-
Clear all documents from the RAG system.
|
147 |
-
|
148 |
-
```bash
|
149 |
-
curl -X DELETE "http://localhost:9621/documents"
|
150 |
-
```
|
151 |
-
|
152 |
-
### Utility Endpoints
|
153 |
-
|
154 |
-
#### GET /health
|
155 |
-
Check server health and configuration.
|
156 |
-
|
157 |
-
```bash
|
158 |
-
curl "http://localhost:9621/health"
|
159 |
-
```
|
160 |
-
|
161 |
-
## Development
|
162 |
-
|
163 |
-
### Running in Development Mode
|
164 |
-
|
165 |
-
```bash
|
166 |
-
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
167 |
-
```
|
168 |
-
|
169 |
-
### API Documentation
|
170 |
-
|
171 |
-
When the server is running, visit:
|
172 |
-
- Swagger UI: http://localhost:9621/docs
|
173 |
-
- ReDoc: http://localhost:9621/redoc
|
174 |
-
|
175 |
-
## Deployment
|
176 |
-
Azure OpenAI API can be created using the following commands in Azure CLI (you need to install Azure CLI first from [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)):
|
177 |
-
```bash
|
178 |
-
# Change the resource group name, location and OpenAI resource name as needed
|
179 |
-
RESOURCE_GROUP_NAME=LightRAG
|
180 |
-
LOCATION=swedencentral
|
181 |
-
RESOURCE_NAME=LightRAG-OpenAI
|
182 |
-
|
183 |
-
az login
|
184 |
-
az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
|
185 |
-
az cognitiveservices account create --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --kind OpenAI --sku S0 --location swedencentral
|
186 |
-
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name gpt-4o --model-name gpt-4o --model-version "2024-08-06" --sku-capacity 100 --sku-name "Standard"
|
187 |
-
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name text-embedding-3-large --model-name text-embedding-3-large --model-version "1" --sku-capacity 80 --sku-name "Standard"
|
188 |
-
az cognitiveservices account show --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --query "properties.endpoint"
|
189 |
-
az cognitiveservices account keys list --name $RESOURCE_NAME -g $RESOURCE_GROUP_NAME
|
190 |
-
|
191 |
-
```
|
192 |
-
The output of the last command will give you the endpoint and the key for the OpenAI API. You can use these values to set the environment variables in the `.env` file.
|
193 |
-
|
194 |
-
## License
|
195 |
-
|
196 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
197 |
-
|
198 |
-
## Acknowledgments
|
199 |
-
|
200 |
-
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
201 |
-
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
202 |
-
- Powered by [OpenAI](https://openai.com/) for language model inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lightrag/api/azure_openai_lightrag_server.py
CHANGED
@@ -435,9 +435,13 @@ def create_app(args):
|
|
435 |
return app
|
436 |
|
437 |
|
438 |
-
|
439 |
args = parse_args()
|
440 |
import uvicorn
|
441 |
|
442 |
app = create_app(args)
|
443 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
|
|
435 |
return app
|
436 |
|
437 |
|
438 |
+
def main():
|
439 |
args = parse_args()
|
440 |
import uvicorn
|
441 |
|
442 |
app = create_app(args)
|
443 |
uvicorn.run(app, host=args.host, port=args.port)
|
444 |
+
|
445 |
+
|
446 |
+
if __name__ == "__main__":
|
447 |
+
main()
|
setup.py
CHANGED
@@ -103,6 +103,7 @@ setuptools.setup(
|
|
103 |
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
104 |
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
105 |
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
|
|
106 |
],
|
107 |
},
|
108 |
)
|
|
|
103 |
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
104 |
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
105 |
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
106 |
+
"azure-openai-lightrag-server=lightrag.api.azure_openai_lightrag_server:main [api]",
|
107 |
],
|
108 |
},
|
109 |
)
|