zrguo commited on
Commit
d5e7614
·
1 Parent(s): ba4763a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -33
README.md CHANGED
@@ -22,6 +22,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
22
  </div>
23
 
24
  ## 🎉 News
 
25
  - [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
26
  - [x] [2024.10.20]🎯📢We’ve added a new feature to LightRAG: Graph Visualization.
27
  - [x] [2024.10.18]🎯📢We’ve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
@@ -161,39 +162,6 @@ rag = LightRAG(
161
  ```
162
  </details>
163
 
164
-
165
- <details>
166
- <summary> Using Neo4J for Storage </summary>
167
-
168
- * For production level scenarios you will most likely want to leverage an enterprise solution
169
- * for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
170
- * See: https://hub.docker.com/_/neo4j
171
-
172
-
173
- ```python
174
- export NEO4J_URI="neo4j://localhost:7687"
175
- export NEO4J_USERNAME="neo4j"
176
- export NEO4J_PASSWORD="password"
177
-
178
- When you launch the project be sure to override the default KG: NetworkS
179
- by specifying kg="Neo4JStorage".
180
-
181
- # Note: Default settings use NetworkX
182
- #Initialize LightRAG with Neo4J implementation.
183
- WORKING_DIR = "./local_neo4jWorkDir"
184
-
185
- rag = LightRAG(
186
- working_dir=WORKING_DIR,
187
- llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
188
- kg="Neo4JStorage", #<-----------override KG default
189
- log_level="DEBUG" #<-----------override log_level default
190
- )
191
- ```
192
- see test_neo4j.py for a working example.
193
- </details>
194
-
195
-
196
-
197
  <details>
198
  <summary> Using Ollama Models </summary>
199
 
@@ -222,6 +190,34 @@ rag = LightRAG(
222
  )
223
  ```
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  ### Increasing context size
226
  In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
227
 
 
22
  </div>
23
 
24
  ## 🎉 News
25
+ - [x] [2024.11.04]🎯📢You can [use Neo4J for Storage](https://github.com/HKUDS/LightRAG/edit/main/README.md#using-neo4j-for-storage) now.
26
  - [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
27
  - [x] [2024.10.20]🎯📢We’ve added a new feature to LightRAG: Graph Visualization.
28
  - [x] [2024.10.18]🎯📢We’ve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
 
162
  ```
163
  </details>
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  <details>
166
  <summary> Using Ollama Models </summary>
167
 
 
190
  )
191
  ```
192
 
193
+ ### Using Neo4J for Storage
194
+
195
+ * For production level scenarios you will most likely want to leverage an enterprise solution
196
+ * for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
197
+ * See: https://hub.docker.com/_/neo4j
198
+
199
+
200
+ ```python
201
+ export NEO4J_URI="neo4j://localhost:7687"
202
+ export NEO4J_USERNAME="neo4j"
203
+ export NEO4J_PASSWORD="password"
204
+
205
+ When you launch the project be sure to override the default KG: NetworkS
206
+ by specifying kg="Neo4JStorage".
207
+
208
+ # Note: Default settings use NetworkX
209
+ #Initialize LightRAG with Neo4J implementation.
210
+ WORKING_DIR = "./local_neo4jWorkDir"
211
+
212
+ rag = LightRAG(
213
+ working_dir=WORKING_DIR,
214
+ llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
215
+ kg="Neo4JStorage", #<-----------override KG default
216
+ log_level="DEBUG" #<-----------override log_level default
217
+ )
218
+ ```
219
+ see test_neo4j.py for a working example.
220
+
221
  ### Increasing context size
222
  In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
223