yangdx
commited on
Commit
·
e2584a3
1
Parent(s):
62a507f
Remove api demo (reference to LightRAG Server instead)
Browse files
examples/lightrag_api_ollama_demo.py
DELETED
@@ -1,188 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, File, UploadFile
|
2 |
-
from contextlib import asynccontextmanager
|
3 |
-
from pydantic import BaseModel
|
4 |
-
import os
|
5 |
-
from lightrag import LightRAG, QueryParam
|
6 |
-
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
7 |
-
from lightrag.utils import EmbeddingFunc
|
8 |
-
from typing import Optional
|
9 |
-
import asyncio
|
10 |
-
import nest_asyncio
|
11 |
-
import aiofiles
|
12 |
-
from lightrag.kg.shared_storage import initialize_pipeline_status
|
13 |
-
|
14 |
-
# Apply nest_asyncio to solve event loop issues
|
15 |
-
nest_asyncio.apply()
|
16 |
-
|
17 |
-
DEFAULT_RAG_DIR = "index_default"
|
18 |
-
|
19 |
-
DEFAULT_INPUT_FILE = "book.txt"
|
20 |
-
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
21 |
-
print(f"INPUT_FILE: {INPUT_FILE}")
|
22 |
-
|
23 |
-
# Configure working directory
|
24 |
-
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
25 |
-
print(f"WORKING_DIR: {WORKING_DIR}")
|
26 |
-
|
27 |
-
|
28 |
-
if not os.path.exists(WORKING_DIR):
|
29 |
-
os.mkdir(WORKING_DIR)
|
30 |
-
|
31 |
-
|
32 |
-
async def init():
|
33 |
-
rag = LightRAG(
|
34 |
-
working_dir=WORKING_DIR,
|
35 |
-
llm_model_func=ollama_model_complete,
|
36 |
-
llm_model_name="gemma2:9b",
|
37 |
-
llm_model_max_async=4,
|
38 |
-
llm_model_max_token_size=8192,
|
39 |
-
llm_model_kwargs={
|
40 |
-
"host": "http://localhost:11434",
|
41 |
-
"options": {"num_ctx": 8192},
|
42 |
-
},
|
43 |
-
embedding_func=EmbeddingFunc(
|
44 |
-
embedding_dim=768,
|
45 |
-
max_token_size=8192,
|
46 |
-
func=lambda texts: ollama_embed(
|
47 |
-
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
48 |
-
),
|
49 |
-
),
|
50 |
-
)
|
51 |
-
|
52 |
-
# Add initialization code
|
53 |
-
await rag.initialize_storages()
|
54 |
-
await initialize_pipeline_status()
|
55 |
-
|
56 |
-
return rag
|
57 |
-
|
58 |
-
|
59 |
-
@asynccontextmanager
|
60 |
-
async def lifespan(app: FastAPI):
|
61 |
-
global rag
|
62 |
-
rag = await init()
|
63 |
-
print("done!")
|
64 |
-
yield
|
65 |
-
|
66 |
-
|
67 |
-
app = FastAPI(
|
68 |
-
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
69 |
-
)
|
70 |
-
|
71 |
-
|
72 |
-
# Data models
|
73 |
-
class QueryRequest(BaseModel):
|
74 |
-
query: str
|
75 |
-
mode: str = "hybrid"
|
76 |
-
only_need_context: bool = False
|
77 |
-
|
78 |
-
|
79 |
-
class InsertRequest(BaseModel):
|
80 |
-
text: str
|
81 |
-
|
82 |
-
|
83 |
-
class Response(BaseModel):
|
84 |
-
status: str
|
85 |
-
data: Optional[str] = None
|
86 |
-
message: Optional[str] = None
|
87 |
-
|
88 |
-
|
89 |
-
# API routes
|
90 |
-
@app.post("/query", response_model=Response)
|
91 |
-
async def query_endpoint(request: QueryRequest):
|
92 |
-
try:
|
93 |
-
loop = asyncio.get_event_loop()
|
94 |
-
result = await loop.run_in_executor(
|
95 |
-
None,
|
96 |
-
lambda: rag.query(
|
97 |
-
request.query,
|
98 |
-
param=QueryParam(
|
99 |
-
mode=request.mode, only_need_context=request.only_need_context
|
100 |
-
),
|
101 |
-
),
|
102 |
-
)
|
103 |
-
return Response(status="success", data=result)
|
104 |
-
except Exception as e:
|
105 |
-
raise HTTPException(status_code=500, detail=str(e))
|
106 |
-
|
107 |
-
|
108 |
-
# insert by text
|
109 |
-
@app.post("/insert", response_model=Response)
|
110 |
-
async def insert_endpoint(request: InsertRequest):
|
111 |
-
try:
|
112 |
-
loop = asyncio.get_event_loop()
|
113 |
-
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
114 |
-
return Response(status="success", message="Text inserted successfully")
|
115 |
-
except Exception as e:
|
116 |
-
raise HTTPException(status_code=500, detail=str(e))
|
117 |
-
|
118 |
-
|
119 |
-
# insert by file in payload
|
120 |
-
@app.post("/insert_file", response_model=Response)
|
121 |
-
async def insert_file(file: UploadFile = File(...)):
|
122 |
-
try:
|
123 |
-
file_content = await file.read()
|
124 |
-
# Read file content
|
125 |
-
try:
|
126 |
-
content = file_content.decode("utf-8")
|
127 |
-
except UnicodeDecodeError:
|
128 |
-
# If UTF-8 decoding fails, try other encodings
|
129 |
-
content = file_content.decode("gbk")
|
130 |
-
# Insert file content
|
131 |
-
loop = asyncio.get_event_loop()
|
132 |
-
await loop.run_in_executor(None, lambda: rag.insert(content))
|
133 |
-
|
134 |
-
return Response(
|
135 |
-
status="success",
|
136 |
-
message=f"File content from {file.filename} inserted successfully",
|
137 |
-
)
|
138 |
-
except Exception as e:
|
139 |
-
raise HTTPException(status_code=500, detail=str(e))
|
140 |
-
|
141 |
-
|
142 |
-
# insert by local default file
|
143 |
-
@app.post("/insert_default_file", response_model=Response)
|
144 |
-
@app.get("/insert_default_file", response_model=Response)
|
145 |
-
async def insert_default_file():
|
146 |
-
try:
|
147 |
-
# Read file content from book.txt
|
148 |
-
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
|
149 |
-
content = await file.read()
|
150 |
-
print(f"read input file {INPUT_FILE} successfully")
|
151 |
-
# Insert file content
|
152 |
-
loop = asyncio.get_event_loop()
|
153 |
-
await loop.run_in_executor(None, lambda: rag.insert(content))
|
154 |
-
|
155 |
-
return Response(
|
156 |
-
status="success",
|
157 |
-
message=f"File content from {INPUT_FILE} inserted successfully",
|
158 |
-
)
|
159 |
-
except Exception as e:
|
160 |
-
raise HTTPException(status_code=500, detail=str(e))
|
161 |
-
|
162 |
-
|
163 |
-
@app.get("/health")
|
164 |
-
async def health_check():
|
165 |
-
return {"status": "healthy"}
|
166 |
-
|
167 |
-
|
168 |
-
if __name__ == "__main__":
|
169 |
-
import uvicorn
|
170 |
-
|
171 |
-
uvicorn.run(app, host="0.0.0.0", port=8020)
|
172 |
-
|
173 |
-
# Usage example
|
174 |
-
# To run the server, use the following command in your terminal:
|
175 |
-
# python lightrag_api_openai_compatible_demo.py
|
176 |
-
|
177 |
-
# Example requests:
|
178 |
-
# 1. Query:
|
179 |
-
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
180 |
-
|
181 |
-
# 2. Insert text:
|
182 |
-
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
183 |
-
|
184 |
-
# 3. Insert file:
|
185 |
-
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
|
186 |
-
|
187 |
-
# 4. Health check:
|
188 |
-
# curl -X GET "http://127.0.0.1:8020/health"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/lightrag_api_openai_compatible_demo.py
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, File, UploadFile
|
2 |
-
from contextlib import asynccontextmanager
|
3 |
-
from pydantic import BaseModel
|
4 |
-
import os
|
5 |
-
from lightrag import LightRAG, QueryParam
|
6 |
-
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
7 |
-
from lightrag.utils import EmbeddingFunc
|
8 |
-
import numpy as np
|
9 |
-
from typing import Optional
|
10 |
-
import asyncio
|
11 |
-
import nest_asyncio
|
12 |
-
from lightrag.kg.shared_storage import initialize_pipeline_status
|
13 |
-
|
14 |
-
# Apply nest_asyncio to solve event loop issues
|
15 |
-
nest_asyncio.apply()
|
16 |
-
|
17 |
-
DEFAULT_RAG_DIR = "index_default"
|
18 |
-
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
19 |
-
|
20 |
-
# Configure working directory
|
21 |
-
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
22 |
-
print(f"WORKING_DIR: {WORKING_DIR}")
|
23 |
-
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
24 |
-
print(f"LLM_MODEL: {LLM_MODEL}")
|
25 |
-
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
26 |
-
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
27 |
-
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
28 |
-
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
29 |
-
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
30 |
-
print(f"BASE_URL: {BASE_URL}")
|
31 |
-
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
32 |
-
print(f"API_KEY: {API_KEY}")
|
33 |
-
|
34 |
-
if not os.path.exists(WORKING_DIR):
|
35 |
-
os.mkdir(WORKING_DIR)
|
36 |
-
|
37 |
-
|
38 |
-
# LLM model function
|
39 |
-
|
40 |
-
|
41 |
-
async def llm_model_func(
|
42 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
43 |
-
) -> str:
|
44 |
-
return await openai_complete_if_cache(
|
45 |
-
model=LLM_MODEL,
|
46 |
-
prompt=prompt,
|
47 |
-
system_prompt=system_prompt,
|
48 |
-
history_messages=history_messages,
|
49 |
-
base_url=BASE_URL,
|
50 |
-
api_key=API_KEY,
|
51 |
-
**kwargs,
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
# Embedding function
|
56 |
-
|
57 |
-
|
58 |
-
async def embedding_func(texts: list[str]) -> np.ndarray:
|
59 |
-
return await openai_embed(
|
60 |
-
texts=texts,
|
61 |
-
model=EMBEDDING_MODEL,
|
62 |
-
base_url=BASE_URL,
|
63 |
-
api_key=API_KEY,
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
async def get_embedding_dim():
|
68 |
-
test_text = ["This is a test sentence."]
|
69 |
-
embedding = await embedding_func(test_text)
|
70 |
-
embedding_dim = embedding.shape[1]
|
71 |
-
print(f"{embedding_dim=}")
|
72 |
-
return embedding_dim
|
73 |
-
|
74 |
-
|
75 |
-
# Initialize RAG instance
|
76 |
-
async def init():
|
77 |
-
embedding_dimension = await get_embedding_dim()
|
78 |
-
|
79 |
-
rag = LightRAG(
|
80 |
-
working_dir=WORKING_DIR,
|
81 |
-
llm_model_func=llm_model_func,
|
82 |
-
embedding_func=EmbeddingFunc(
|
83 |
-
embedding_dim=embedding_dimension,
|
84 |
-
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
85 |
-
func=embedding_func,
|
86 |
-
),
|
87 |
-
)
|
88 |
-
|
89 |
-
await rag.initialize_storages()
|
90 |
-
await initialize_pipeline_status()
|
91 |
-
|
92 |
-
return rag
|
93 |
-
|
94 |
-
|
95 |
-
@asynccontextmanager
|
96 |
-
async def lifespan(app: FastAPI):
|
97 |
-
global rag
|
98 |
-
rag = await init()
|
99 |
-
print("done!")
|
100 |
-
yield
|
101 |
-
|
102 |
-
|
103 |
-
app = FastAPI(
|
104 |
-
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
105 |
-
)
|
106 |
-
|
107 |
-
# Data models
|
108 |
-
|
109 |
-
|
110 |
-
class QueryRequest(BaseModel):
|
111 |
-
query: str
|
112 |
-
mode: str = "hybrid"
|
113 |
-
only_need_context: bool = False
|
114 |
-
|
115 |
-
|
116 |
-
class InsertRequest(BaseModel):
|
117 |
-
text: str
|
118 |
-
|
119 |
-
|
120 |
-
class Response(BaseModel):
|
121 |
-
status: str
|
122 |
-
data: Optional[str] = None
|
123 |
-
message: Optional[str] = None
|
124 |
-
|
125 |
-
|
126 |
-
# API routes
|
127 |
-
|
128 |
-
|
129 |
-
@app.post("/query", response_model=Response)
|
130 |
-
async def query_endpoint(request: QueryRequest):
|
131 |
-
try:
|
132 |
-
loop = asyncio.get_event_loop()
|
133 |
-
result = await loop.run_in_executor(
|
134 |
-
None,
|
135 |
-
lambda: rag.query(
|
136 |
-
request.query,
|
137 |
-
param=QueryParam(
|
138 |
-
mode=request.mode, only_need_context=request.only_need_context
|
139 |
-
),
|
140 |
-
),
|
141 |
-
)
|
142 |
-
return Response(status="success", data=result)
|
143 |
-
except Exception as e:
|
144 |
-
raise HTTPException(status_code=500, detail=str(e))
|
145 |
-
|
146 |
-
|
147 |
-
@app.post("/insert", response_model=Response)
|
148 |
-
async def insert_endpoint(request: InsertRequest):
|
149 |
-
try:
|
150 |
-
loop = asyncio.get_event_loop()
|
151 |
-
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
152 |
-
return Response(status="success", message="Text inserted successfully")
|
153 |
-
except Exception as e:
|
154 |
-
raise HTTPException(status_code=500, detail=str(e))
|
155 |
-
|
156 |
-
|
157 |
-
@app.post("/insert_file", response_model=Response)
|
158 |
-
async def insert_file(file: UploadFile = File(...)):
|
159 |
-
try:
|
160 |
-
file_content = await file.read()
|
161 |
-
# Read file content
|
162 |
-
try:
|
163 |
-
content = file_content.decode("utf-8")
|
164 |
-
except UnicodeDecodeError:
|
165 |
-
# If UTF-8 decoding fails, try other encodings
|
166 |
-
content = file_content.decode("gbk")
|
167 |
-
# Insert file content
|
168 |
-
loop = asyncio.get_event_loop()
|
169 |
-
await loop.run_in_executor(None, lambda: rag.insert(content))
|
170 |
-
|
171 |
-
return Response(
|
172 |
-
status="success",
|
173 |
-
message=f"File content from {file.filename} inserted successfully",
|
174 |
-
)
|
175 |
-
except Exception as e:
|
176 |
-
raise HTTPException(status_code=500, detail=str(e))
|
177 |
-
|
178 |
-
|
179 |
-
@app.get("/health")
|
180 |
-
async def health_check():
|
181 |
-
return {"status": "healthy"}
|
182 |
-
|
183 |
-
|
184 |
-
if __name__ == "__main__":
|
185 |
-
import uvicorn
|
186 |
-
|
187 |
-
uvicorn.run(app, host="0.0.0.0", port=8020)
|
188 |
-
|
189 |
-
# Usage example
|
190 |
-
# To run the server, use the following command in your terminal:
|
191 |
-
# python lightrag_api_openai_compatible_demo.py
|
192 |
-
|
193 |
-
# Example requests:
|
194 |
-
# 1. Query:
|
195 |
-
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
196 |
-
|
197 |
-
# 2. Insert text:
|
198 |
-
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
199 |
-
|
200 |
-
# 3. Insert file:
|
201 |
-
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
|
202 |
-
|
203 |
-
# 4. Health check:
|
204 |
-
# curl -X GET "http://127.0.0.1:8020/health"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|