Added API as an option to the installation, reorganized the API and fused all documentations in README.md
Browse files- README.md +288 -0
- api/README_LOLLMS.md +0 -177
- api/README_OLLAMA.md +0 -177
- api/README_OPENAI.md +0 -171
- {api β lightrag/api}/.gitignore +0 -0
- {api β lightrag/api}/lollms_lightrag_server.py +4 -1
- {api β lightrag/api}/ollama_lightrag_server.py +4 -1
- {api β lightrag/api}/openai_lightrag_server.py +4 -1
- {api β lightrag/api}/requirements.txt +0 -0
- setup.py +20 -0
README.md
CHANGED
@@ -1019,6 +1019,294 @@ def extract_queries(file_path):
|
|
1019 |
βββ test.py
|
1020 |
```
|
1021 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1022 |
|
1023 |
## Star History
|
1024 |
|
|
|
1019 |
βββ test.py
|
1020 |
```
|
1021 |
|
1022 |
+
## Install with API Support
|
1023 |
+
|
1024 |
+
LightRAG provides optional API support through FastAPI servers that add RAG capabilities to existing LLM services. You can install LightRAG with API support in two ways:
|
1025 |
+
|
1026 |
+
### 1. Installation from PyPI
|
1027 |
+
|
1028 |
+
```bash
|
1029 |
+
pip install "lightrag-hku[api]"
|
1030 |
+
```
|
1031 |
+
|
1032 |
+
### 2. Installation from Source (Development)
|
1033 |
+
|
1034 |
+
```bash
|
1035 |
+
# Clone the repository
|
1036 |
+
git clone https://github.com/ParisNeo/lightrag.git
|
1037 |
+
|
1038 |
+
# Change to the repository directory
|
1039 |
+
cd lightrag
|
1040 |
+
|
1041 |
+
# Install in editable mode with API support
|
1042 |
+
pip install -e ".[api]"
|
1043 |
+
```
|
1044 |
+
|
1045 |
+
### Prerequisites
|
1046 |
+
|
1047 |
+
Before running any of the servers, ensure you have the corresponding backend service running:
|
1048 |
+
|
1049 |
+
#### For LoLLMs Server
|
1050 |
+
- LoLLMs must be running and accessible
|
1051 |
+
- Default connection: http://localhost:11434
|
1052 |
+
- Configure using --lollms-host if running on a different host/port
|
1053 |
+
|
1054 |
+
#### For Ollama Server
|
1055 |
+
- Ollama must be running and accessible
|
1056 |
+
- Default connection: http://localhost:11434
|
1057 |
+
- Configure using --ollama-host if running on a different host/port
|
1058 |
+
|
1059 |
+
#### For OpenAI Server
|
1060 |
+
- Requires valid OpenAI API credentials set in environment variables
|
1061 |
+
- OPENAI_API_KEY must be set
|
1062 |
+
|
1063 |
+
### Configuration Options
|
1064 |
+
|
1065 |
+
Each server has its own specific configuration options:
|
1066 |
+
|
1067 |
+
#### LoLLMs Server Options
|
1068 |
+
|
1069 |
+
| Parameter | Default | Description |
|
1070 |
+
|-----------|---------|-------------|
|
1071 |
+
| --host | 0.0.0.0 | RAG server host |
|
1072 |
+
| --port | 9621 | RAG server port |
|
1073 |
+
| --model | mistral-nemo:latest | LLM model name |
|
1074 |
+
| --embedding-model | bge-m3:latest | Embedding model name |
|
1075 |
+
| --lollms-host | http://localhost:11434 | LoLLMS backend URL |
|
1076 |
+
| --working-dir | ./rag_storage | Working directory for RAG |
|
1077 |
+
| --max-async | 4 | Maximum async operations |
|
1078 |
+
| --max-tokens | 32768 | Maximum token size |
|
1079 |
+
| --embedding-dim | 1024 | Embedding dimensions |
|
1080 |
+
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
1081 |
+
| --input-file | ./book.txt | Initial input file |
|
1082 |
+
| --log-level | INFO | Logging level |
|
1083 |
+
|
1084 |
+
#### Ollama Server Options
|
1085 |
+
|
1086 |
+
| Parameter | Default | Description |
|
1087 |
+
|-----------|---------|-------------|
|
1088 |
+
| --host | 0.0.0.0 | RAG server host |
|
1089 |
+
| --port | 9621 | RAG server port |
|
1090 |
+
| --model | mistral-nemo:latest | LLM model name |
|
1091 |
+
| --embedding-model | bge-m3:latest | Embedding model name |
|
1092 |
+
| --ollama-host | http://localhost:11434 | Ollama backend URL |
|
1093 |
+
| --working-dir | ./rag_storage | Working directory for RAG |
|
1094 |
+
| --max-async | 4 | Maximum async operations |
|
1095 |
+
| --max-tokens | 32768 | Maximum token size |
|
1096 |
+
| --embedding-dim | 1024 | Embedding dimensions |
|
1097 |
+
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
1098 |
+
| --input-file | ./book.txt | Initial input file |
|
1099 |
+
| --log-level | INFO | Logging level |
|
1100 |
+
|
1101 |
+
#### OpenAI Server Options
|
1102 |
+
|
1103 |
+
| Parameter | Default | Description |
|
1104 |
+
|-----------|---------|-------------|
|
1105 |
+
| --host | 0.0.0.0 | RAG server host |
|
1106 |
+
| --port | 9621 | RAG server port |
|
1107 |
+
| --model | gpt-4 | OpenAI model name |
|
1108 |
+
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
1109 |
+
| --working-dir | ./rag_storage | Working directory for RAG |
|
1110 |
+
| --max-tokens | 32768 | Maximum token size |
|
1111 |
+
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
1112 |
+
| --input-dir | ./inputs | Input directory for documents |
|
1113 |
+
| --log-level | INFO | Logging level |
|
1114 |
+
|
1115 |
+
### Example Usage
|
1116 |
+
|
1117 |
+
#### LoLLMs RAG Server
|
1118 |
+
|
1119 |
+
```bash
|
1120 |
+
# Custom configuration with specific model and working directory
|
1121 |
+
lollms-lightrag-server --model mistral-nemo --port 8080 --working-dir ./custom_rag
|
1122 |
+
|
1123 |
+
# Using specific models (ensure they are installed in your LoLLMs instance)
|
1124 |
+
lollms-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
1125 |
+
```
|
1126 |
+
|
1127 |
+
#### Ollama RAG Server
|
1128 |
+
|
1129 |
+
```bash
|
1130 |
+
# Custom configuration with specific model and working directory
|
1131 |
+
ollama-lightrag-server --model mistral-nemo:latest --port 8080 --working-dir ./custom_rag
|
1132 |
+
|
1133 |
+
# Using specific models (ensure they are installed in your Ollama instance)
|
1134 |
+
ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
1135 |
+
```
|
1136 |
+
|
1137 |
+
#### OpenAI RAG Server
|
1138 |
+
|
1139 |
+
```bash
|
1140 |
+
# Using GPT-4 with text-embedding-3-large
|
1141 |
+
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
1142 |
+
```
|
1143 |
+
|
1144 |
+
**Important Notes:**
|
1145 |
+
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
1146 |
+
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
1147 |
+
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
1148 |
+
|
1149 |
+
For help on any server, use the --help flag:
|
1150 |
+
```bash
|
1151 |
+
lollms-lightrag-server --help
|
1152 |
+
ollama-lightrag-server --help
|
1153 |
+
openai-lightrag-server --help
|
1154 |
+
```
|
1155 |
+
|
1156 |
+
Note: If you don't need the API functionality, you can install the base package without API support using:
|
1157 |
+
```bash
|
1158 |
+
pip install lightrag-hku
|
1159 |
+
```
|
1160 |
+
|
1161 |
+
## API Endpoints
|
1162 |
+
|
1163 |
+
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
1164 |
+
|
1165 |
+
### Query Endpoints
|
1166 |
+
|
1167 |
+
#### POST /query
|
1168 |
+
Query the RAG system with options for different search modes.
|
1169 |
+
|
1170 |
+
```bash
|
1171 |
+
curl -X POST "http://localhost:9621/query" \
|
1172 |
+
-H "Content-Type: application/json" \
|
1173 |
+
-d '{"query": "Your question here", "mode": "hybrid"}'
|
1174 |
+
```
|
1175 |
+
|
1176 |
+
#### POST /query/stream
|
1177 |
+
Stream responses from the RAG system.
|
1178 |
+
|
1179 |
+
```bash
|
1180 |
+
curl -X POST "http://localhost:9621/query/stream" \
|
1181 |
+
-H "Content-Type: application/json" \
|
1182 |
+
-d '{"query": "Your question here", "mode": "hybrid"}'
|
1183 |
+
```
|
1184 |
+
|
1185 |
+
### Document Management Endpoints
|
1186 |
+
|
1187 |
+
#### POST /documents/text
|
1188 |
+
Insert text directly into the RAG system.
|
1189 |
+
|
1190 |
+
```bash
|
1191 |
+
curl -X POST "http://localhost:9621/documents/text" \
|
1192 |
+
-H "Content-Type: application/json" \
|
1193 |
+
-d '{"text": "Your text content here", "description": "Optional description"}'
|
1194 |
+
```
|
1195 |
+
|
1196 |
+
#### POST /documents/file
|
1197 |
+
Upload a single file to the RAG system.
|
1198 |
+
|
1199 |
+
```bash
|
1200 |
+
curl -X POST "http://localhost:9621/documents/file" \
|
1201 |
+
-F "file=@/path/to/your/document.txt" \
|
1202 |
+
-F "description=Optional description"
|
1203 |
+
```
|
1204 |
+
|
1205 |
+
#### POST /documents/batch
|
1206 |
+
Upload multiple files at once.
|
1207 |
+
|
1208 |
+
```bash
|
1209 |
+
curl -X POST "http://localhost:9621/documents/batch" \
|
1210 |
+
-F "files=@/path/to/doc1.txt" \
|
1211 |
+
-F "files=@/path/to/doc2.txt"
|
1212 |
+
```
|
1213 |
+
|
1214 |
+
#### DELETE /documents
|
1215 |
+
Clear all documents from the RAG system.
|
1216 |
+
|
1217 |
+
```bash
|
1218 |
+
curl -X DELETE "http://localhost:9621/documents"
|
1219 |
+
```
|
1220 |
+
|
1221 |
+
### Utility Endpoints
|
1222 |
+
|
1223 |
+
#### GET /health
|
1224 |
+
Check server health and configuration.
|
1225 |
+
|
1226 |
+
```bash
|
1227 |
+
curl "http://localhost:9621/health"
|
1228 |
+
```
|
1229 |
+
|
1230 |
+
## Development
|
1231 |
+
|
1232 |
+
### Running in Development Mode
|
1233 |
+
|
1234 |
+
For LoLLMs:
|
1235 |
+
```bash
|
1236 |
+
uvicorn lollms_lightrag_server:app --reload --port 9621
|
1237 |
+
```
|
1238 |
+
|
1239 |
+
For Ollama:
|
1240 |
+
```bash
|
1241 |
+
uvicorn ollama_lightrag_server:app --reload --port 9621
|
1242 |
+
```
|
1243 |
+
|
1244 |
+
For OpenAI:
|
1245 |
+
```bash
|
1246 |
+
uvicorn openai_lightrag_server:app --reload --port 9621
|
1247 |
+
```
|
1248 |
+
|
1249 |
+
### API Documentation
|
1250 |
+
|
1251 |
+
When any server is running, visit:
|
1252 |
+
- Swagger UI: http://localhost:9621/docs
|
1253 |
+
- ReDoc: http://localhost:9621/redoc
|
1254 |
+
|
1255 |
+
### Testing API Endpoints
|
1256 |
+
|
1257 |
+
You can test the API endpoints using the provided curl commands or through the Swagger UI interface. Make sure to:
|
1258 |
+
1. Start the appropriate backend service (LoLLMs, Ollama, or OpenAI)
|
1259 |
+
2. Start the RAG server
|
1260 |
+
3. Upload some documents using the document management endpoints
|
1261 |
+
4. Query the system using the query endpoints
|
1262 |
+
|
1263 |
+
### Important Features
|
1264 |
+
|
1265 |
+
#### Automatic Document Vectorization
|
1266 |
+
When starting any of the servers with the `--input-dir` parameter, the system will automatically:
|
1267 |
+
1. Scan the specified directory for documents
|
1268 |
+
2. Check for existing vectorized content in the database
|
1269 |
+
3. Only vectorize new documents that aren't already in the database
|
1270 |
+
4. Make all content immediately available for RAG queries
|
1271 |
+
|
1272 |
+
This intelligent caching mechanism:
|
1273 |
+
- Prevents unnecessary re-vectorization of existing documents
|
1274 |
+
- Reduces startup time for subsequent runs
|
1275 |
+
- Preserves system resources
|
1276 |
+
- Maintains consistency across restarts
|
1277 |
+
|
1278 |
+
### Example Usage
|
1279 |
+
|
1280 |
+
#### LoLLMs RAG Server
|
1281 |
+
|
1282 |
+
```bash
|
1283 |
+
# Start server with automatic document vectorization
|
1284 |
+
# Only new documents will be vectorized, existing ones will be loaded from cache
|
1285 |
+
lollms-lightrag-server --input-dir ./my_documents --port 8080
|
1286 |
+
```
|
1287 |
+
|
1288 |
+
#### Ollama RAG Server
|
1289 |
+
|
1290 |
+
```bash
|
1291 |
+
# Start server with automatic document vectorization
|
1292 |
+
# Previously vectorized documents will be loaded from the database
|
1293 |
+
ollama-lightrag-server --input-dir ./my_documents --port 8080
|
1294 |
+
```
|
1295 |
+
|
1296 |
+
#### OpenAI RAG Server
|
1297 |
+
|
1298 |
+
```bash
|
1299 |
+
# Start server with automatic document vectorization
|
1300 |
+
# Existing documents are retrieved from cache, only new ones are processed
|
1301 |
+
openai-lightrag-server --input-dir ./my_documents --port 9624
|
1302 |
+
```
|
1303 |
+
|
1304 |
+
**Important Notes:**
|
1305 |
+
- The `--input-dir` parameter enables automatic document processing at startup
|
1306 |
+
- Documents already in the database are not re-vectorized
|
1307 |
+
- Only new documents in the input directory will be processed
|
1308 |
+
- This optimization significantly reduces startup time for subsequent runs
|
1309 |
+
- The working directory (`--working-dir`) stores the vectorized documents database
|
1310 |
|
1311 |
## Star History
|
1312 |
|
api/README_LOLLMS.md
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
# LightRAG API Server
|
2 |
-
|
3 |
-
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through LoLLMS.
|
4 |
-
|
5 |
-
## Features
|
6 |
-
|
7 |
-
- π Multiple search modes (naive, local, global, hybrid)
|
8 |
-
- π‘ Streaming and non-streaming responses
|
9 |
-
- π Document management (insert, batch upload, clear)
|
10 |
-
- βοΈ Highly configurable model parameters
|
11 |
-
- π Support for text and file uploads
|
12 |
-
- π§ RESTful API with automatic documentation
|
13 |
-
- π Built with FastAPI for high performance
|
14 |
-
|
15 |
-
## Prerequisites
|
16 |
-
|
17 |
-
- Python 3.8+
|
18 |
-
- LoLLMS server running locally or remotely
|
19 |
-
- Required Python packages:
|
20 |
-
- fastapi
|
21 |
-
- uvicorn
|
22 |
-
- lightrag
|
23 |
-
- pydantic
|
24 |
-
|
25 |
-
## Installation
|
26 |
-
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
27 |
-
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab:
|
28 |
-

|
29 |
-
|
30 |
-
This is mandatory for builmding some modules.
|
31 |
-
|
32 |
-
1. Clone the repository:
|
33 |
-
```bash
|
34 |
-
git clone https://github.com/ParisNeo/LightRAG.git
|
35 |
-
cd api
|
36 |
-
```
|
37 |
-
|
38 |
-
2. Install dependencies:
|
39 |
-
```bash
|
40 |
-
pip install -r requirements.txt
|
41 |
-
```
|
42 |
-
|
43 |
-
3. Make sure LoLLMS is running and accessible.
|
44 |
-
|
45 |
-
## Configuration
|
46 |
-
|
47 |
-
The server can be configured using command-line arguments:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
python ollama_lightollama_lightrag_server.py --help
|
51 |
-
```
|
52 |
-
|
53 |
-
Available options:
|
54 |
-
|
55 |
-
| Parameter | Default | Description |
|
56 |
-
|-----------|---------|-------------|
|
57 |
-
| --host | 0.0.0.0 | Server host |
|
58 |
-
| --port | 9621 | Server port |
|
59 |
-
| --model | mistral-nemo:latest | LLM model name |
|
60 |
-
| --embedding-model | bge-m3:latest | Embedding model name |
|
61 |
-
| --lollms-host | http://localhost:11434 | LoLLMS host URL |
|
62 |
-
| --working-dir | ./rag_storage | Working directory for RAG |
|
63 |
-
| --max-async | 4 | Maximum async operations |
|
64 |
-
| --max-tokens | 32768 | Maximum token size |
|
65 |
-
| --embedding-dim | 1024 | Embedding dimensions |
|
66 |
-
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
67 |
-
| --input-file | ./book.txt | Initial input file |
|
68 |
-
| --log-level | INFO | Logging level |
|
69 |
-
|
70 |
-
## Quick Start
|
71 |
-
|
72 |
-
1. Basic usage with default settings:
|
73 |
-
```bash
|
74 |
-
python ollama_lightrag_server.py
|
75 |
-
```
|
76 |
-
|
77 |
-
2. Custom configuration:
|
78 |
-
```bash
|
79 |
-
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
|
80 |
-
```
|
81 |
-
|
82 |
-
Make sure the models are installed in your lollms instance
|
83 |
-
```bash
|
84 |
-
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
85 |
-
```
|
86 |
-
|
87 |
-
## API Endpoints
|
88 |
-
|
89 |
-
### Query Endpoints
|
90 |
-
|
91 |
-
#### POST /query
|
92 |
-
Query the RAG system with options for different search modes.
|
93 |
-
|
94 |
-
```bash
|
95 |
-
curl -X POST "http://localhost:9621/query" \
|
96 |
-
-H "Content-Type: application/json" \
|
97 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
98 |
-
```
|
99 |
-
|
100 |
-
#### POST /query/stream
|
101 |
-
Stream responses from the RAG system.
|
102 |
-
|
103 |
-
```bash
|
104 |
-
curl -X POST "http://localhost:9621/query/stream" \
|
105 |
-
-H "Content-Type: application/json" \
|
106 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
107 |
-
```
|
108 |
-
|
109 |
-
### Document Management Endpoints
|
110 |
-
|
111 |
-
#### POST /documents/text
|
112 |
-
Insert text directly into the RAG system.
|
113 |
-
|
114 |
-
```bash
|
115 |
-
curl -X POST "http://localhost:9621/documents/text" \
|
116 |
-
-H "Content-Type: application/json" \
|
117 |
-
-d '{"text": "Your text content here", "description": "Optional description"}'
|
118 |
-
```
|
119 |
-
|
120 |
-
#### POST /documents/file
|
121 |
-
Upload a single file to the RAG system.
|
122 |
-
|
123 |
-
```bash
|
124 |
-
curl -X POST "http://localhost:9621/documents/file" \
|
125 |
-
-F "file=@/path/to/your/document.txt" \
|
126 |
-
-F "description=Optional description"
|
127 |
-
```
|
128 |
-
|
129 |
-
#### POST /documents/batch
|
130 |
-
Upload multiple files at once.
|
131 |
-
|
132 |
-
```bash
|
133 |
-
curl -X POST "http://localhost:9621/documents/batch" \
|
134 |
-
-F "files=@/path/to/doc1.txt" \
|
135 |
-
-F "files=@/path/to/doc2.txt"
|
136 |
-
```
|
137 |
-
|
138 |
-
#### DELETE /documents
|
139 |
-
Clear all documents from the RAG system.
|
140 |
-
|
141 |
-
```bash
|
142 |
-
curl -X DELETE "http://localhost:9621/documents"
|
143 |
-
```
|
144 |
-
|
145 |
-
### Utility Endpoints
|
146 |
-
|
147 |
-
#### GET /health
|
148 |
-
Check server health and configuration.
|
149 |
-
|
150 |
-
```bash
|
151 |
-
curl "http://localhost:9621/health"
|
152 |
-
```
|
153 |
-
|
154 |
-
## Development
|
155 |
-
|
156 |
-
### Running in Development Mode
|
157 |
-
|
158 |
-
```bash
|
159 |
-
uvicorn ollama_lightrag_server:app --reload --port 9621
|
160 |
-
```
|
161 |
-
|
162 |
-
### API Documentation
|
163 |
-
|
164 |
-
When the server is running, visit:
|
165 |
-
- Swagger UI: http://localhost:9621/docs
|
166 |
-
- ReDoc: http://localhost:9621/redoc
|
167 |
-
|
168 |
-
|
169 |
-
## License
|
170 |
-
|
171 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
172 |
-
|
173 |
-
## Acknowledgments
|
174 |
-
|
175 |
-
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
176 |
-
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
177 |
-
- Powered by [LoLLMS](https://lollms.ai/) for LLM inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
api/README_OLLAMA.md
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
# LightRAG API Server
|
2 |
-
|
3 |
-
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through Ollama.
|
4 |
-
|
5 |
-
## Features
|
6 |
-
|
7 |
-
- π Multiple search modes (naive, local, global, hybrid)
|
8 |
-
- π‘ Streaming and non-streaming responses
|
9 |
-
- π Document management (insert, batch upload, clear)
|
10 |
-
- βοΈ Highly configurable model parameters
|
11 |
-
- π Support for text and file uploads
|
12 |
-
- π§ RESTful API with automatic documentation
|
13 |
-
- π Built with FastAPI for high performance
|
14 |
-
|
15 |
-
## Prerequisites
|
16 |
-
|
17 |
-
- Python 3.8+
|
18 |
-
- Ollama server running locally or remotely
|
19 |
-
- Required Python packages:
|
20 |
-
- fastapi
|
21 |
-
- uvicorn
|
22 |
-
- lightrag
|
23 |
-
- pydantic
|
24 |
-
|
25 |
-
## Installation
|
26 |
-
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
27 |
-
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab:
|
28 |
-

|
29 |
-
|
30 |
-
This is mandatory for builmding some modules.
|
31 |
-
|
32 |
-
1. Clone the repository:
|
33 |
-
```bash
|
34 |
-
git clone https://github.com/ParisNeo/LightRAG.git
|
35 |
-
cd api
|
36 |
-
```
|
37 |
-
|
38 |
-
2. Install dependencies:
|
39 |
-
```bash
|
40 |
-
pip install -r requirements.txt
|
41 |
-
```
|
42 |
-
|
43 |
-
3. Make sure Ollama is running and accessible.
|
44 |
-
|
45 |
-
## Configuration
|
46 |
-
|
47 |
-
The server can be configured using command-line arguments:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
python ollama_lightollama_lightrag_server.py --help
|
51 |
-
```
|
52 |
-
|
53 |
-
Available options:
|
54 |
-
|
55 |
-
| Parameter | Default | Description |
|
56 |
-
|-----------|---------|-------------|
|
57 |
-
| --host | 0.0.0.0 | Server host |
|
58 |
-
| --port | 9621 | Server port |
|
59 |
-
| --model | mistral-nemo:latest | LLM model name |
|
60 |
-
| --embedding-model | bge-m3:latest | Embedding model name |
|
61 |
-
| --ollama-host | http://localhost:11434 | Ollama host URL |
|
62 |
-
| --working-dir | ./rag_storage | Working directory for RAG |
|
63 |
-
| --max-async | 4 | Maximum async operations |
|
64 |
-
| --max-tokens | 32768 | Maximum token size |
|
65 |
-
| --embedding-dim | 1024 | Embedding dimensions |
|
66 |
-
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
67 |
-
| --input-file | ./book.txt | Initial input file |
|
68 |
-
| --log-level | INFO | Logging level |
|
69 |
-
|
70 |
-
## Quick Start
|
71 |
-
|
72 |
-
1. Basic usage with default settings:
|
73 |
-
```bash
|
74 |
-
python ollama_lightrag_server.py
|
75 |
-
```
|
76 |
-
|
77 |
-
2. Custom configuration:
|
78 |
-
```bash
|
79 |
-
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
|
80 |
-
```
|
81 |
-
|
82 |
-
Make sure the models are installed in your ollama instance
|
83 |
-
```bash
|
84 |
-
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
85 |
-
```
|
86 |
-
|
87 |
-
## API Endpoints
|
88 |
-
|
89 |
-
### Query Endpoints
|
90 |
-
|
91 |
-
#### POST /query
|
92 |
-
Query the RAG system with options for different search modes.
|
93 |
-
|
94 |
-
```bash
|
95 |
-
curl -X POST "http://localhost:9621/query" \
|
96 |
-
-H "Content-Type: application/json" \
|
97 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
98 |
-
```
|
99 |
-
|
100 |
-
#### POST /query/stream
|
101 |
-
Stream responses from the RAG system.
|
102 |
-
|
103 |
-
```bash
|
104 |
-
curl -X POST "http://localhost:9621/query/stream" \
|
105 |
-
-H "Content-Type: application/json" \
|
106 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
107 |
-
```
|
108 |
-
|
109 |
-
### Document Management Endpoints
|
110 |
-
|
111 |
-
#### POST /documents/text
|
112 |
-
Insert text directly into the RAG system.
|
113 |
-
|
114 |
-
```bash
|
115 |
-
curl -X POST "http://localhost:9621/documents/text" \
|
116 |
-
-H "Content-Type: application/json" \
|
117 |
-
-d '{"text": "Your text content here", "description": "Optional description"}'
|
118 |
-
```
|
119 |
-
|
120 |
-
#### POST /documents/file
|
121 |
-
Upload a single file to the RAG system.
|
122 |
-
|
123 |
-
```bash
|
124 |
-
curl -X POST "http://localhost:9621/documents/file" \
|
125 |
-
-F "file=@/path/to/your/document.txt" \
|
126 |
-
-F "description=Optional description"
|
127 |
-
```
|
128 |
-
|
129 |
-
#### POST /documents/batch
|
130 |
-
Upload multiple files at once.
|
131 |
-
|
132 |
-
```bash
|
133 |
-
curl -X POST "http://localhost:9621/documents/batch" \
|
134 |
-
-F "files=@/path/to/doc1.txt" \
|
135 |
-
-F "files=@/path/to/doc2.txt"
|
136 |
-
```
|
137 |
-
|
138 |
-
#### DELETE /documents
|
139 |
-
Clear all documents from the RAG system.
|
140 |
-
|
141 |
-
```bash
|
142 |
-
curl -X DELETE "http://localhost:9621/documents"
|
143 |
-
```
|
144 |
-
|
145 |
-
### Utility Endpoints
|
146 |
-
|
147 |
-
#### GET /health
|
148 |
-
Check server health and configuration.
|
149 |
-
|
150 |
-
```bash
|
151 |
-
curl "http://localhost:9621/health"
|
152 |
-
```
|
153 |
-
|
154 |
-
## Development
|
155 |
-
|
156 |
-
### Running in Development Mode
|
157 |
-
|
158 |
-
```bash
|
159 |
-
uvicorn ollama_lightrag_server:app --reload --port 9621
|
160 |
-
```
|
161 |
-
|
162 |
-
### API Documentation
|
163 |
-
|
164 |
-
When the server is running, visit:
|
165 |
-
- Swagger UI: http://localhost:9621/docs
|
166 |
-
- ReDoc: http://localhost:9621/redoc
|
167 |
-
|
168 |
-
|
169 |
-
## License
|
170 |
-
|
171 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
172 |
-
|
173 |
-
## Acknowledgments
|
174 |
-
|
175 |
-
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
176 |
-
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
177 |
-
- Powered by [Ollama](https://ollama.ai/) for LLM inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
api/README_OPENAI.md
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
|
2 |
-
# LightRAG API Server
|
3 |
-
|
4 |
-
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using OpenAI's language models.
|
5 |
-
|
6 |
-
## Features
|
7 |
-
|
8 |
-
- π Multiple search modes (naive, local, global, hybrid)
|
9 |
-
- π‘ Streaming and non-streaming responses
|
10 |
-
- π Document management (insert, batch upload, clear)
|
11 |
-
- βοΈ Highly configurable model parameters
|
12 |
-
- π Support for text and file uploads
|
13 |
-
- π§ RESTful API with automatic documentation
|
14 |
-
- π Built with FastAPI for high performance
|
15 |
-
|
16 |
-
## Prerequisites
|
17 |
-
|
18 |
-
- Python 3.8+
|
19 |
-
- OpenAI API key
|
20 |
-
- Required Python packages:
|
21 |
-
- fastapi
|
22 |
-
- uvicorn
|
23 |
-
- lightrag
|
24 |
-
- pydantic
|
25 |
-
- openai
|
26 |
-
- nest-asyncio
|
27 |
-
|
28 |
-
## Installation
|
29 |
-
If you are using Windows, you will need to download and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
30 |
-
Make sure you install the VS 2022 C++ x64/x86 Build tools from individual components tab.
|
31 |
-
|
32 |
-
1. Clone the repository:
|
33 |
-
```bash
|
34 |
-
git clone https://github.com/ParisNeo/LightRAG.git
|
35 |
-
cd api
|
36 |
-
```
|
37 |
-
|
38 |
-
2. Install dependencies:
|
39 |
-
```bash
|
40 |
-
pip install -r requirements.txt
|
41 |
-
```
|
42 |
-
|
43 |
-
3. Set up your OpenAI API key:
|
44 |
-
```bash
|
45 |
-
export OPENAI_API_KEY='your-api-key-here'
|
46 |
-
```
|
47 |
-
|
48 |
-
## Configuration
|
49 |
-
|
50 |
-
The server can be configured using command-line arguments:
|
51 |
-
|
52 |
-
```bash
|
53 |
-
python openai_lightrag_server.py --help
|
54 |
-
```
|
55 |
-
|
56 |
-
Available options:
|
57 |
-
|
58 |
-
| Parameter | Default | Description |
|
59 |
-
|-----------|---------|-------------|
|
60 |
-
| --host | 0.0.0.0 | Server host |
|
61 |
-
| --port | 9621 | Server port |
|
62 |
-
| --model | gpt-4 | OpenAI model name |
|
63 |
-
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
64 |
-
| --working-dir | ./rag_storage | Working directory for RAG |
|
65 |
-
| --max-tokens | 32768 | Maximum token size |
|
66 |
-
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
67 |
-
| --input-dir | ./inputs | Input directory for documents |
|
68 |
-
| --log-level | INFO | Logging level |
|
69 |
-
|
70 |
-
## Quick Start
|
71 |
-
|
72 |
-
1. Basic usage with default settings:
|
73 |
-
```bash
|
74 |
-
python openai_lightrag_server.py
|
75 |
-
```
|
76 |
-
|
77 |
-
2. Custom configuration:
|
78 |
-
```bash
|
79 |
-
python openai_lightrag_server.py --model gpt-4 --port 8080 --working-dir ./custom_rag
|
80 |
-
```
|
81 |
-
|
82 |
-
## API Endpoints
|
83 |
-
|
84 |
-
### Query Endpoints
|
85 |
-
|
86 |
-
#### POST /query
|
87 |
-
Query the RAG system with options for different search modes.
|
88 |
-
|
89 |
-
```bash
|
90 |
-
curl -X POST "http://localhost:9621/query" \
|
91 |
-
-H "Content-Type: application/json" \
|
92 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
93 |
-
```
|
94 |
-
|
95 |
-
#### POST /query/stream
|
96 |
-
Stream responses from the RAG system.
|
97 |
-
|
98 |
-
```bash
|
99 |
-
curl -X POST "http://localhost:9621/query/stream" \
|
100 |
-
-H "Content-Type: application/json" \
|
101 |
-
-d '{"query": "Your question here", "mode": "hybrid"}'
|
102 |
-
```
|
103 |
-
|
104 |
-
### Document Management Endpoints
|
105 |
-
|
106 |
-
#### POST /documents/text
|
107 |
-
Insert text directly into the RAG system.
|
108 |
-
|
109 |
-
```bash
|
110 |
-
curl -X POST "http://localhost:9621/documents/text" \
|
111 |
-
-H "Content-Type: application/json" \
|
112 |
-
-d '{"text": "Your text content here", "description": "Optional description"}'
|
113 |
-
```
|
114 |
-
|
115 |
-
#### POST /documents/file
|
116 |
-
Upload a single file to the RAG system.
|
117 |
-
|
118 |
-
```bash
|
119 |
-
curl -X POST "http://localhost:9621/documents/file" \
|
120 |
-
-F "file=@/path/to/your/document.txt" \
|
121 |
-
-F "description=Optional description"
|
122 |
-
```
|
123 |
-
|
124 |
-
#### POST /documents/batch
|
125 |
-
Upload multiple files at once.
|
126 |
-
|
127 |
-
```bash
|
128 |
-
curl -X POST "http://localhost:9621/documents/batch" \
|
129 |
-
-F "files=@/path/to/doc1.txt" \
|
130 |
-
-F "files=@/path/to/doc2.txt"
|
131 |
-
```
|
132 |
-
|
133 |
-
#### DELETE /documents
|
134 |
-
Clear all documents from the RAG system.
|
135 |
-
|
136 |
-
```bash
|
137 |
-
curl -X DELETE "http://localhost:9621/documents"
|
138 |
-
```
|
139 |
-
|
140 |
-
### Utility Endpoints
|
141 |
-
|
142 |
-
#### GET /health
|
143 |
-
Check server health and configuration.
|
144 |
-
|
145 |
-
```bash
|
146 |
-
curl "http://localhost:9621/health"
|
147 |
-
```
|
148 |
-
|
149 |
-
## Development
|
150 |
-
|
151 |
-
### Running in Development Mode
|
152 |
-
|
153 |
-
```bash
|
154 |
-
uvicorn openai_lightrag_server:app --reload --port 9621
|
155 |
-
```
|
156 |
-
|
157 |
-
### API Documentation
|
158 |
-
|
159 |
-
When the server is running, visit:
|
160 |
-
- Swagger UI: http://localhost:9621/docs
|
161 |
-
- ReDoc: http://localhost:9621/redoc
|
162 |
-
|
163 |
-
## License
|
164 |
-
|
165 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
166 |
-
|
167 |
-
## Acknowledgments
|
168 |
-
|
169 |
-
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
170 |
-
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
171 |
-
- Powered by [OpenAI](https://openai.com/) for language model inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{api β lightrag/api}/.gitignore
RENAMED
File without changes
|
{api β lightrag/api}/lollms_lightrag_server.py
RENAMED
@@ -393,9 +393,12 @@ def create_app(args):
|
|
393 |
return app
|
394 |
|
395 |
|
396 |
-
|
397 |
args = parse_args()
|
398 |
import uvicorn
|
399 |
|
400 |
app = create_app(args)
|
401 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
393 |
return app
|
394 |
|
395 |
|
396 |
+
def main():
|
397 |
args = parse_args()
|
398 |
import uvicorn
|
399 |
|
400 |
app = create_app(args)
|
401 |
uvicorn.run(app, host=args.host, port=args.port)
|
402 |
+
|
403 |
+
if __name__ == "__main__":
|
404 |
+
main()
|
{api β lightrag/api}/ollama_lightrag_server.py
RENAMED
@@ -393,9 +393,12 @@ def create_app(args):
|
|
393 |
return app
|
394 |
|
395 |
|
396 |
-
|
397 |
args = parse_args()
|
398 |
import uvicorn
|
399 |
|
400 |
app = create_app(args)
|
401 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
393 |
return app
|
394 |
|
395 |
|
396 |
+
def main():
|
397 |
args = parse_args()
|
398 |
import uvicorn
|
399 |
|
400 |
app = create_app(args)
|
401 |
uvicorn.run(app, host=args.host, port=args.port)
|
402 |
+
|
403 |
+
if __name__ == "__main__":
|
404 |
+
main()
|
{api β lightrag/api}/openai_lightrag_server.py
RENAMED
@@ -397,9 +397,12 @@ def create_app(args):
|
|
397 |
return app
|
398 |
|
399 |
|
400 |
-
|
401 |
args = parse_args()
|
402 |
import uvicorn
|
403 |
|
404 |
app = create_app(args)
|
405 |
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
397 |
return app
|
398 |
|
399 |
|
400 |
+
def main():
|
401 |
args = parse_args()
|
402 |
import uvicorn
|
403 |
|
404 |
app = create_app(args)
|
405 |
uvicorn.run(app, host=args.host, port=args.port)
|
406 |
+
|
407 |
+
if __name__ == "__main__":
|
408 |
+
main()
|
{api β lightrag/api}/requirements.txt
RENAMED
File without changes
|
setup.py
CHANGED
@@ -52,6 +52,16 @@ def read_requirements():
|
|
52 |
return deps
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
metadata = retrieve_metadata()
|
56 |
long_description = read_long_description()
|
57 |
requirements = read_requirements()
|
@@ -85,4 +95,14 @@ setuptools.setup(
|
|
85 |
if metadata.get("__url__")
|
86 |
else "",
|
87 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
|
|
52 |
return deps
|
53 |
|
54 |
|
55 |
+
def read_api_requirements():
|
56 |
+
api_deps = []
|
57 |
+
try:
|
58 |
+
with open("./lightrag/api/requirements.txt") as f:
|
59 |
+
api_deps = [line.strip() for line in f if line.strip()]
|
60 |
+
except FileNotFoundError:
|
61 |
+
print("Warning: API requirements.txt not found.")
|
62 |
+
return api_deps
|
63 |
+
|
64 |
+
|
65 |
metadata = retrieve_metadata()
|
66 |
long_description = read_long_description()
|
67 |
requirements = read_requirements()
|
|
|
95 |
if metadata.get("__url__")
|
96 |
else "",
|
97 |
},
|
98 |
+
extras_require={
|
99 |
+
"api": read_api_requirements(), # API requirements as optional
|
100 |
+
},
|
101 |
+
entry_points={
|
102 |
+
"console_scripts": [
|
103 |
+
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
104 |
+
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
105 |
+
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
106 |
+
],
|
107 |
+
},
|
108 |
)
|