feat(cache): 增加 LLM 相似性检查功能并优化缓存机制
Browse files- 在 embedding 缓存配置中添加 use_llm_check 参数
- 实现 LLM 相似性检查逻辑,作为缓存命中的二次验证- 优化 naive 模式的缓存处理流程
- 调整缓存数据结构,移除不必要的 model 字段
- README.md +1 -5
- lightrag/lightrag.py +7 -2
- lightrag/llm.py +7 -258
- lightrag/operate.py +52 -7
- lightrag/prompt.py +19 -0
- lightrag/utils.py +52 -3
README.md
CHANGED
@@ -596,11 +596,7 @@ if __name__ == "__main__":
|
|
596 |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
597 |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
|
598 |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
599 |
-
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains
|
600 |
-
- `enabled`: Boolean value to enable/disable caching functionality. When enabled, questions and answers will be cached.
|
601 |
-
- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.
|
602 |
-
|
603 |
-
Default: `{"enabled": False, "similarity_threshold": 0.95}` | `{"enabled": False, "similarity_threshold": 0.95}` |
|
604 |
|
605 |
## API Server Implementation
|
606 |
|
|
|
596 |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
597 |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
|
598 |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
599 |
+
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
|
|
|
|
|
|
|
|
600 |
|
601 |
## API Server Implementation
|
602 |
|
lightrag/lightrag.py
CHANGED
@@ -87,7 +87,11 @@ class LightRAG:
|
|
87 |
)
|
88 |
# Default not to use embedding cache
|
89 |
embedding_cache_config: dict = field(
|
90 |
-
default_factory=lambda: {
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
kv_storage: str = field(default="JsonKVStorage")
|
93 |
vector_storage: str = field(default="NanoVectorDBStorage")
|
@@ -174,7 +178,6 @@ class LightRAG:
|
|
174 |
if self.enable_llm_cache
|
175 |
else None
|
176 |
)
|
177 |
-
|
178 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
179 |
self.embedding_func
|
180 |
)
|
@@ -481,6 +484,7 @@ class LightRAG:
|
|
481 |
self.text_chunks,
|
482 |
param,
|
483 |
asdict(self),
|
|
|
484 |
)
|
485 |
elif param.mode == "naive":
|
486 |
response = await naive_query(
|
@@ -489,6 +493,7 @@ class LightRAG:
|
|
489 |
self.text_chunks,
|
490 |
param,
|
491 |
asdict(self),
|
|
|
492 |
)
|
493 |
else:
|
494 |
raise ValueError(f"Unknown mode {param.mode}")
|
|
|
87 |
)
|
88 |
# Default not to use embedding cache
|
89 |
embedding_cache_config: dict = field(
|
90 |
+
default_factory=lambda: {
|
91 |
+
"enabled": False,
|
92 |
+
"similarity_threshold": 0.95,
|
93 |
+
"use_llm_check": False,
|
94 |
+
}
|
95 |
)
|
96 |
kv_storage: str = field(default="JsonKVStorage")
|
97 |
vector_storage: str = field(default="NanoVectorDBStorage")
|
|
|
178 |
if self.enable_llm_cache
|
179 |
else None
|
180 |
)
|
|
|
181 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
182 |
self.embedding_func
|
183 |
)
|
|
|
484 |
self.text_chunks,
|
485 |
param,
|
486 |
asdict(self),
|
487 |
+
hashing_kv=self.llm_response_cache,
|
488 |
)
|
489 |
elif param.mode == "naive":
|
490 |
response = await naive_query(
|
|
|
493 |
self.text_chunks,
|
494 |
param,
|
495 |
asdict(self),
|
496 |
+
hashing_kv=self.llm_response_cache,
|
497 |
)
|
498 |
else:
|
499 |
raise ValueError(f"Unknown mode {param.mode}")
|
lightrag/llm.py
CHANGED
@@ -4,8 +4,7 @@ import json
|
|
4 |
import os
|
5 |
import struct
|
6 |
from functools import lru_cache
|
7 |
-
from typing import List, Dict, Callable, Any, Union
|
8 |
-
from dataclasses import dataclass
|
9 |
import aioboto3
|
10 |
import aiohttp
|
11 |
import numpy as np
|
@@ -27,13 +26,9 @@ from tenacity import (
|
|
27 |
)
|
28 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
29 |
|
30 |
-
from .base import BaseKVStorage
|
31 |
from .utils import (
|
32 |
-
compute_args_hash,
|
33 |
wrap_embedding_func_with_attrs,
|
34 |
locate_json_string_body_from_string,
|
35 |
-
quantize_embedding,
|
36 |
-
get_best_cached_response,
|
37 |
)
|
38 |
|
39 |
import sys
|
@@ -66,23 +61,13 @@ async def openai_complete_if_cache(
|
|
66 |
openai_async_client = (
|
67 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
68 |
)
|
69 |
-
|
70 |
messages = []
|
71 |
if system_prompt:
|
72 |
messages.append({"role": "system", "content": system_prompt})
|
73 |
messages.extend(history_messages)
|
74 |
messages.append({"role": "user", "content": prompt})
|
75 |
|
76 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
77 |
-
# Handle cache
|
78 |
-
mode = kwargs.pop("mode", "default")
|
79 |
-
args_hash = compute_args_hash(model, messages)
|
80 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
81 |
-
hashing_kv, args_hash, prompt, mode
|
82 |
-
)
|
83 |
-
if cached_response is not None:
|
84 |
-
return cached_response
|
85 |
-
|
86 |
if "response_format" in kwargs:
|
87 |
response = await openai_async_client.beta.chat.completions.parse(
|
88 |
model=model, messages=messages, **kwargs
|
@@ -95,21 +80,6 @@ async def openai_complete_if_cache(
|
|
95 |
if r"\u" in content:
|
96 |
content = content.encode("utf-8").decode("unicode_escape")
|
97 |
|
98 |
-
# Save to cache
|
99 |
-
await save_to_cache(
|
100 |
-
hashing_kv,
|
101 |
-
CacheData(
|
102 |
-
args_hash=args_hash,
|
103 |
-
content=content,
|
104 |
-
model=model,
|
105 |
-
prompt=prompt,
|
106 |
-
quantized=quantized,
|
107 |
-
min_val=min_val,
|
108 |
-
max_val=max_val,
|
109 |
-
mode=mode,
|
110 |
-
),
|
111 |
-
)
|
112 |
-
|
113 |
return content
|
114 |
|
115 |
|
@@ -140,10 +110,7 @@ async def azure_openai_complete_if_cache(
|
|
140 |
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
141 |
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
142 |
)
|
143 |
-
|
144 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
145 |
-
mode = kwargs.pop("mode", "default")
|
146 |
-
|
147 |
messages = []
|
148 |
if system_prompt:
|
149 |
messages.append({"role": "system", "content": system_prompt})
|
@@ -151,34 +118,11 @@ async def azure_openai_complete_if_cache(
|
|
151 |
if prompt is not None:
|
152 |
messages.append({"role": "user", "content": prompt})
|
153 |
|
154 |
-
# Handle cache
|
155 |
-
args_hash = compute_args_hash(model, messages)
|
156 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
157 |
-
hashing_kv, args_hash, prompt, mode
|
158 |
-
)
|
159 |
-
if cached_response is not None:
|
160 |
-
return cached_response
|
161 |
-
|
162 |
response = await openai_async_client.chat.completions.create(
|
163 |
model=model, messages=messages, **kwargs
|
164 |
)
|
165 |
content = response.choices[0].message.content
|
166 |
|
167 |
-
# Save to cache
|
168 |
-
await save_to_cache(
|
169 |
-
hashing_kv,
|
170 |
-
CacheData(
|
171 |
-
args_hash=args_hash,
|
172 |
-
content=content,
|
173 |
-
model=model,
|
174 |
-
prompt=prompt,
|
175 |
-
quantized=quantized,
|
176 |
-
min_val=min_val,
|
177 |
-
max_val=max_val,
|
178 |
-
mode=mode,
|
179 |
-
),
|
180 |
-
)
|
181 |
-
|
182 |
return content
|
183 |
|
184 |
|
@@ -210,7 +154,7 @@ async def bedrock_complete_if_cache(
|
|
210 |
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
211 |
"AWS_SESSION_TOKEN", aws_session_token
|
212 |
)
|
213 |
-
|
214 |
# Fix message history format
|
215 |
messages = []
|
216 |
for history_message in history_messages:
|
@@ -220,15 +164,6 @@ async def bedrock_complete_if_cache(
|
|
220 |
|
221 |
# Add user prompt
|
222 |
messages.append({"role": "user", "content": [{"text": prompt}]})
|
223 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
224 |
-
# Handle cache
|
225 |
-
mode = kwargs.pop("mode", "default")
|
226 |
-
args_hash = compute_args_hash(model, messages)
|
227 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
228 |
-
hashing_kv, args_hash, prompt, mode
|
229 |
-
)
|
230 |
-
if cached_response is not None:
|
231 |
-
return cached_response
|
232 |
|
233 |
# Initialize Converse API arguments
|
234 |
args = {"modelId": model, "messages": messages}
|
@@ -251,15 +186,6 @@ async def bedrock_complete_if_cache(
|
|
251 |
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
252 |
kwargs.pop(param)
|
253 |
)
|
254 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
255 |
-
# Handle cache
|
256 |
-
mode = kwargs.pop("mode", "default")
|
257 |
-
args_hash = compute_args_hash(model, messages)
|
258 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
259 |
-
hashing_kv, args_hash, prompt, mode
|
260 |
-
)
|
261 |
-
if cached_response is not None:
|
262 |
-
return cached_response
|
263 |
|
264 |
# Call model via Converse API
|
265 |
session = aioboto3.Session()
|
@@ -269,21 +195,6 @@ async def bedrock_complete_if_cache(
|
|
269 |
except Exception as e:
|
270 |
raise BedrockError(e)
|
271 |
|
272 |
-
# Save to cache
|
273 |
-
await save_to_cache(
|
274 |
-
hashing_kv,
|
275 |
-
CacheData(
|
276 |
-
args_hash=args_hash,
|
277 |
-
content=response["output"]["message"]["content"][0]["text"],
|
278 |
-
model=model,
|
279 |
-
prompt=prompt,
|
280 |
-
quantized=quantized,
|
281 |
-
min_val=min_val,
|
282 |
-
max_val=max_val,
|
283 |
-
mode=mode,
|
284 |
-
),
|
285 |
-
)
|
286 |
-
|
287 |
return response["output"]["message"]["content"][0]["text"]
|
288 |
|
289 |
|
@@ -315,22 +226,12 @@ async def hf_model_if_cache(
|
|
315 |
) -> str:
|
316 |
model_name = model
|
317 |
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
318 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
319 |
messages = []
|
320 |
if system_prompt:
|
321 |
messages.append({"role": "system", "content": system_prompt})
|
322 |
messages.extend(history_messages)
|
323 |
messages.append({"role": "user", "content": prompt})
|
324 |
-
|
325 |
-
# Handle cache
|
326 |
-
mode = kwargs.pop("mode", "default")
|
327 |
-
args_hash = compute_args_hash(model, messages)
|
328 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
329 |
-
hashing_kv, args_hash, prompt, mode
|
330 |
-
)
|
331 |
-
if cached_response is not None:
|
332 |
-
return cached_response
|
333 |
-
|
334 |
input_prompt = ""
|
335 |
try:
|
336 |
input_prompt = hf_tokenizer.apply_chat_template(
|
@@ -375,21 +276,6 @@ async def hf_model_if_cache(
|
|
375 |
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
376 |
)
|
377 |
|
378 |
-
# Save to cache
|
379 |
-
await save_to_cache(
|
380 |
-
hashing_kv,
|
381 |
-
CacheData(
|
382 |
-
args_hash=args_hash,
|
383 |
-
content=response_text,
|
384 |
-
model=model,
|
385 |
-
prompt=prompt,
|
386 |
-
quantized=quantized,
|
387 |
-
min_val=min_val,
|
388 |
-
max_val=max_val,
|
389 |
-
mode=mode,
|
390 |
-
),
|
391 |
-
)
|
392 |
-
|
393 |
return response_text
|
394 |
|
395 |
|
@@ -410,25 +296,14 @@ async def ollama_model_if_cache(
|
|
410 |
# kwargs.pop("response_format", None) # allow json
|
411 |
host = kwargs.pop("host", None)
|
412 |
timeout = kwargs.pop("timeout", None)
|
413 |
-
|
414 |
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
415 |
messages = []
|
416 |
if system_prompt:
|
417 |
messages.append({"role": "system", "content": system_prompt})
|
418 |
-
|
419 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
420 |
messages.extend(history_messages)
|
421 |
messages.append({"role": "user", "content": prompt})
|
422 |
|
423 |
-
# Handle cache
|
424 |
-
mode = kwargs.pop("mode", "default")
|
425 |
-
args_hash = compute_args_hash(model, messages)
|
426 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
427 |
-
hashing_kv, args_hash, prompt, mode
|
428 |
-
)
|
429 |
-
if cached_response is not None:
|
430 |
-
return cached_response
|
431 |
-
|
432 |
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
433 |
if stream:
|
434 |
""" cannot cache stream response """
|
@@ -441,38 +316,7 @@ async def ollama_model_if_cache(
|
|
441 |
else:
|
442 |
result = response["message"]["content"]
|
443 |
# Save to cache
|
444 |
-
await save_to_cache(
|
445 |
-
hashing_kv,
|
446 |
-
CacheData(
|
447 |
-
args_hash=args_hash,
|
448 |
-
content=result,
|
449 |
-
model=model,
|
450 |
-
prompt=prompt,
|
451 |
-
quantized=quantized,
|
452 |
-
min_val=min_val,
|
453 |
-
max_val=max_val,
|
454 |
-
mode=mode,
|
455 |
-
),
|
456 |
-
)
|
457 |
return result
|
458 |
-
result = response["message"]["content"]
|
459 |
-
|
460 |
-
# Save to cache
|
461 |
-
await save_to_cache(
|
462 |
-
hashing_kv,
|
463 |
-
CacheData(
|
464 |
-
args_hash=args_hash,
|
465 |
-
content=result,
|
466 |
-
model=model,
|
467 |
-
prompt=prompt,
|
468 |
-
quantized=quantized,
|
469 |
-
min_val=min_val,
|
470 |
-
max_val=max_val,
|
471 |
-
mode=mode,
|
472 |
-
),
|
473 |
-
)
|
474 |
-
|
475 |
-
return result
|
476 |
|
477 |
|
478 |
@lru_cache(maxsize=1)
|
@@ -547,7 +391,7 @@ async def lmdeploy_model_if_cache(
|
|
547 |
from lmdeploy import version_info, GenerationConfig
|
548 |
except Exception:
|
549 |
raise ImportError("Please install lmdeploy before intialize lmdeploy backend.")
|
550 |
-
|
551 |
kwargs.pop("response_format", None)
|
552 |
max_new_tokens = kwargs.pop("max_tokens", 512)
|
553 |
tp = kwargs.pop("tp", 1)
|
@@ -579,19 +423,9 @@ async def lmdeploy_model_if_cache(
|
|
579 |
if system_prompt:
|
580 |
messages.append({"role": "system", "content": system_prompt})
|
581 |
|
582 |
-
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
583 |
messages.extend(history_messages)
|
584 |
messages.append({"role": "user", "content": prompt})
|
585 |
|
586 |
-
# Handle cache
|
587 |
-
mode = kwargs.pop("mode", "default")
|
588 |
-
args_hash = compute_args_hash(model, messages)
|
589 |
-
cached_response, quantized, min_val, max_val = await handle_cache(
|
590 |
-
hashing_kv, args_hash, prompt, mode
|
591 |
-
)
|
592 |
-
if cached_response is not None:
|
593 |
-
return cached_response
|
594 |
-
|
595 |
gen_config = GenerationConfig(
|
596 |
skip_special_tokens=skip_special_tokens,
|
597 |
max_new_tokens=max_new_tokens,
|
@@ -607,22 +441,6 @@ async def lmdeploy_model_if_cache(
|
|
607 |
session_id=1,
|
608 |
):
|
609 |
response += res.response
|
610 |
-
|
611 |
-
# Save to cache
|
612 |
-
await save_to_cache(
|
613 |
-
hashing_kv,
|
614 |
-
CacheData(
|
615 |
-
args_hash=args_hash,
|
616 |
-
content=response,
|
617 |
-
model=model,
|
618 |
-
prompt=prompt,
|
619 |
-
quantized=quantized,
|
620 |
-
min_val=min_val,
|
621 |
-
max_val=max_val,
|
622 |
-
mode=mode,
|
623 |
-
),
|
624 |
-
)
|
625 |
-
|
626 |
return response
|
627 |
|
628 |
|
@@ -1052,75 +870,6 @@ class MultiModel:
|
|
1052 |
return await next_model.gen_func(**args)
|
1053 |
|
1054 |
|
1055 |
-
async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
1056 |
-
"""Generic cache handling function"""
|
1057 |
-
if hashing_kv is None:
|
1058 |
-
return None, None, None, None
|
1059 |
-
|
1060 |
-
# Get embedding cache configuration
|
1061 |
-
embedding_cache_config = hashing_kv.global_config.get(
|
1062 |
-
"embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95}
|
1063 |
-
)
|
1064 |
-
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
1065 |
-
|
1066 |
-
quantized = min_val = max_val = None
|
1067 |
-
if is_embedding_cache_enabled:
|
1068 |
-
# Use embedding cache
|
1069 |
-
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
|
1070 |
-
current_embedding = await embedding_model_func([prompt])
|
1071 |
-
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
1072 |
-
best_cached_response = await get_best_cached_response(
|
1073 |
-
hashing_kv,
|
1074 |
-
current_embedding[0],
|
1075 |
-
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
1076 |
-
mode=mode,
|
1077 |
-
)
|
1078 |
-
if best_cached_response is not None:
|
1079 |
-
return best_cached_response, None, None, None
|
1080 |
-
else:
|
1081 |
-
# Use regular cache
|
1082 |
-
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
1083 |
-
if args_hash in mode_cache:
|
1084 |
-
return mode_cache[args_hash]["return"], None, None, None
|
1085 |
-
|
1086 |
-
return None, quantized, min_val, max_val
|
1087 |
-
|
1088 |
-
|
1089 |
-
@dataclass
|
1090 |
-
class CacheData:
|
1091 |
-
args_hash: str
|
1092 |
-
content: str
|
1093 |
-
model: str
|
1094 |
-
prompt: str
|
1095 |
-
quantized: Optional[np.ndarray] = None
|
1096 |
-
min_val: Optional[float] = None
|
1097 |
-
max_val: Optional[float] = None
|
1098 |
-
mode: str = "default"
|
1099 |
-
|
1100 |
-
|
1101 |
-
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
1102 |
-
if hashing_kv is None:
|
1103 |
-
return
|
1104 |
-
|
1105 |
-
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
|
1106 |
-
|
1107 |
-
mode_cache[cache_data.args_hash] = {
|
1108 |
-
"return": cache_data.content,
|
1109 |
-
"model": cache_data.model,
|
1110 |
-
"embedding": cache_data.quantized.tobytes().hex()
|
1111 |
-
if cache_data.quantized is not None
|
1112 |
-
else None,
|
1113 |
-
"embedding_shape": cache_data.quantized.shape
|
1114 |
-
if cache_data.quantized is not None
|
1115 |
-
else None,
|
1116 |
-
"embedding_min": cache_data.min_val,
|
1117 |
-
"embedding_max": cache_data.max_val,
|
1118 |
-
"original_prompt": cache_data.prompt,
|
1119 |
-
}
|
1120 |
-
|
1121 |
-
await hashing_kv.upsert({cache_data.mode: mode_cache})
|
1122 |
-
|
1123 |
-
|
1124 |
if __name__ == "__main__":
|
1125 |
import asyncio
|
1126 |
|
|
|
4 |
import os
|
5 |
import struct
|
6 |
from functools import lru_cache
|
7 |
+
from typing import List, Dict, Callable, Any, Union
|
|
|
8 |
import aioboto3
|
9 |
import aiohttp
|
10 |
import numpy as np
|
|
|
26 |
)
|
27 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
28 |
|
|
|
29 |
from .utils import (
|
|
|
30 |
wrap_embedding_func_with_attrs,
|
31 |
locate_json_string_body_from_string,
|
|
|
|
|
32 |
)
|
33 |
|
34 |
import sys
|
|
|
61 |
openai_async_client = (
|
62 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
63 |
)
|
64 |
+
kwargs.pop("hashing_kv", None)
|
65 |
messages = []
|
66 |
if system_prompt:
|
67 |
messages.append({"role": "system", "content": system_prompt})
|
68 |
messages.extend(history_messages)
|
69 |
messages.append({"role": "user", "content": prompt})
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if "response_format" in kwargs:
|
72 |
response = await openai_async_client.beta.chat.completions.parse(
|
73 |
model=model, messages=messages, **kwargs
|
|
|
80 |
if r"\u" in content:
|
81 |
content = content.encode("utf-8").decode("unicode_escape")
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return content
|
84 |
|
85 |
|
|
|
110 |
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
111 |
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
112 |
)
|
113 |
+
kwargs.pop("hashing_kv", None)
|
|
|
|
|
|
|
114 |
messages = []
|
115 |
if system_prompt:
|
116 |
messages.append({"role": "system", "content": system_prompt})
|
|
|
118 |
if prompt is not None:
|
119 |
messages.append({"role": "user", "content": prompt})
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
response = await openai_async_client.chat.completions.create(
|
122 |
model=model, messages=messages, **kwargs
|
123 |
)
|
124 |
content = response.choices[0].message.content
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return content
|
127 |
|
128 |
|
|
|
154 |
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
155 |
"AWS_SESSION_TOKEN", aws_session_token
|
156 |
)
|
157 |
+
kwargs.pop("hashing_kv", None)
|
158 |
# Fix message history format
|
159 |
messages = []
|
160 |
for history_message in history_messages:
|
|
|
164 |
|
165 |
# Add user prompt
|
166 |
messages.append({"role": "user", "content": [{"text": prompt}]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
# Initialize Converse API arguments
|
169 |
args = {"modelId": model, "messages": messages}
|
|
|
186 |
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
187 |
kwargs.pop(param)
|
188 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
# Call model via Converse API
|
191 |
session = aioboto3.Session()
|
|
|
195 |
except Exception as e:
|
196 |
raise BedrockError(e)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
return response["output"]["message"]["content"][0]["text"]
|
199 |
|
200 |
|
|
|
226 |
) -> str:
|
227 |
model_name = model
|
228 |
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
|
|
229 |
messages = []
|
230 |
if system_prompt:
|
231 |
messages.append({"role": "system", "content": system_prompt})
|
232 |
messages.extend(history_messages)
|
233 |
messages.append({"role": "user", "content": prompt})
|
234 |
+
kwargs.pop("hashing_kv", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
input_prompt = ""
|
236 |
try:
|
237 |
input_prompt = hf_tokenizer.apply_chat_template(
|
|
|
276 |
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
277 |
)
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
return response_text
|
280 |
|
281 |
|
|
|
296 |
# kwargs.pop("response_format", None) # allow json
|
297 |
host = kwargs.pop("host", None)
|
298 |
timeout = kwargs.pop("timeout", None)
|
299 |
+
kwargs.pop("hashing_kv", None)
|
300 |
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
301 |
messages = []
|
302 |
if system_prompt:
|
303 |
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
304 |
messages.extend(history_messages)
|
305 |
messages.append({"role": "user", "content": prompt})
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
308 |
if stream:
|
309 |
""" cannot cache stream response """
|
|
|
316 |
else:
|
317 |
result = response["message"]["content"]
|
318 |
# Save to cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
@lru_cache(maxsize=1)
|
|
|
391 |
from lmdeploy import version_info, GenerationConfig
|
392 |
except Exception:
|
393 |
raise ImportError("Please install lmdeploy before intialize lmdeploy backend.")
|
394 |
+
kwargs.pop("hashing_kv", None)
|
395 |
kwargs.pop("response_format", None)
|
396 |
max_new_tokens = kwargs.pop("max_tokens", 512)
|
397 |
tp = kwargs.pop("tp", 1)
|
|
|
423 |
if system_prompt:
|
424 |
messages.append({"role": "system", "content": system_prompt})
|
425 |
|
|
|
426 |
messages.extend(history_messages)
|
427 |
messages.append({"role": "user", "content": prompt})
|
428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
gen_config = GenerationConfig(
|
430 |
skip_special_tokens=skip_special_tokens,
|
431 |
max_new_tokens=max_new_tokens,
|
|
|
441 |
session_id=1,
|
442 |
):
|
443 |
response += res.response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
return response
|
445 |
|
446 |
|
|
|
870 |
return await next_model.gen_func(**args)
|
871 |
|
872 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
if __name__ == "__main__":
|
874 |
import asyncio
|
875 |
|
lightrag/operate.py
CHANGED
@@ -17,6 +17,10 @@ from .utils import (
|
|
17 |
split_string_by_multi_markers,
|
18 |
truncate_list_by_token_size,
|
19 |
process_combine_contexts,
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
from .base import (
|
22 |
BaseGraphStorage,
|
@@ -452,8 +456,17 @@ async def kg_query(
|
|
452 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
453 |
query_param: QueryParam,
|
454 |
global_config: dict,
|
|
|
455 |
) -> str:
|
456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
example_number = global_config["addon_params"].get("example_number", None)
|
458 |
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
459 |
examples = "\n".join(
|
@@ -471,12 +484,9 @@ async def kg_query(
|
|
471 |
return PROMPTS["fail_response"]
|
472 |
|
473 |
# LLM generate keywords
|
474 |
-
use_model_func = global_config["llm_model_func"]
|
475 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
476 |
kw_prompt = kw_prompt_temp.format(query=query, examples=examples, language=language)
|
477 |
-
result = await use_model_func(
|
478 |
-
kw_prompt, keyword_extraction=True, mode=query_param.mode
|
479 |
-
)
|
480 |
logger.info("kw_prompt result:")
|
481 |
print(result)
|
482 |
try:
|
@@ -537,7 +547,6 @@ async def kg_query(
|
|
537 |
query,
|
538 |
system_prompt=sys_prompt,
|
539 |
stream=query_param.stream,
|
540 |
-
mode=query_param.mode,
|
541 |
)
|
542 |
if isinstance(response, str) and len(response) > len(sys_prompt):
|
543 |
response = (
|
@@ -550,6 +559,20 @@ async def kg_query(
|
|
550 |
.strip()
|
551 |
)
|
552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
return response
|
554 |
|
555 |
|
@@ -1013,8 +1036,17 @@ async def naive_query(
|
|
1013 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
1014 |
query_param: QueryParam,
|
1015 |
global_config: dict,
|
|
|
1016 |
):
|
|
|
1017 |
use_model_func = global_config["llm_model_func"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
1019 |
if not len(results):
|
1020 |
return PROMPTS["fail_response"]
|
@@ -1039,7 +1071,6 @@ async def naive_query(
|
|
1039 |
response = await use_model_func(
|
1040 |
query,
|
1041 |
system_prompt=sys_prompt,
|
1042 |
-
mode=query_param.mode,
|
1043 |
)
|
1044 |
|
1045 |
if len(response) > len(sys_prompt):
|
@@ -1054,4 +1085,18 @@ async def naive_query(
|
|
1054 |
.strip()
|
1055 |
)
|
1056 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1057 |
return response
|
|
|
17 |
split_string_by_multi_markers,
|
18 |
truncate_list_by_token_size,
|
19 |
process_combine_contexts,
|
20 |
+
compute_args_hash,
|
21 |
+
handle_cache,
|
22 |
+
save_to_cache,
|
23 |
+
CacheData,
|
24 |
)
|
25 |
from .base import (
|
26 |
BaseGraphStorage,
|
|
|
456 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
457 |
query_param: QueryParam,
|
458 |
global_config: dict,
|
459 |
+
hashing_kv: BaseKVStorage = None,
|
460 |
) -> str:
|
461 |
+
# Handle cache
|
462 |
+
use_model_func = global_config["llm_model_func"]
|
463 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
464 |
+
cached_response, quantized, min_val, max_val = await handle_cache(
|
465 |
+
hashing_kv, args_hash, query, query_param.mode
|
466 |
+
)
|
467 |
+
if cached_response is not None:
|
468 |
+
return cached_response
|
469 |
+
|
470 |
example_number = global_config["addon_params"].get("example_number", None)
|
471 |
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
472 |
examples = "\n".join(
|
|
|
484 |
return PROMPTS["fail_response"]
|
485 |
|
486 |
# LLM generate keywords
|
|
|
487 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
488 |
kw_prompt = kw_prompt_temp.format(query=query, examples=examples, language=language)
|
489 |
+
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
|
|
|
|
490 |
logger.info("kw_prompt result:")
|
491 |
print(result)
|
492 |
try:
|
|
|
547 |
query,
|
548 |
system_prompt=sys_prompt,
|
549 |
stream=query_param.stream,
|
|
|
550 |
)
|
551 |
if isinstance(response, str) and len(response) > len(sys_prompt):
|
552 |
response = (
|
|
|
559 |
.strip()
|
560 |
)
|
561 |
|
562 |
+
# Save to cache
|
563 |
+
await save_to_cache(
|
564 |
+
hashing_kv,
|
565 |
+
CacheData(
|
566 |
+
args_hash=args_hash,
|
567 |
+
content=response,
|
568 |
+
prompt=query,
|
569 |
+
quantized=quantized,
|
570 |
+
min_val=min_val,
|
571 |
+
max_val=max_val,
|
572 |
+
mode=query_param.mode,
|
573 |
+
),
|
574 |
+
)
|
575 |
+
|
576 |
return response
|
577 |
|
578 |
|
|
|
1036 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
1037 |
query_param: QueryParam,
|
1038 |
global_config: dict,
|
1039 |
+
hashing_kv: BaseKVStorage = None,
|
1040 |
):
|
1041 |
+
# Handle cache
|
1042 |
use_model_func = global_config["llm_model_func"]
|
1043 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
1044 |
+
cached_response, quantized, min_val, max_val = await handle_cache(
|
1045 |
+
hashing_kv, args_hash, query, query_param.mode
|
1046 |
+
)
|
1047 |
+
if cached_response is not None:
|
1048 |
+
return cached_response
|
1049 |
+
|
1050 |
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
1051 |
if not len(results):
|
1052 |
return PROMPTS["fail_response"]
|
|
|
1071 |
response = await use_model_func(
|
1072 |
query,
|
1073 |
system_prompt=sys_prompt,
|
|
|
1074 |
)
|
1075 |
|
1076 |
if len(response) > len(sys_prompt):
|
|
|
1085 |
.strip()
|
1086 |
)
|
1087 |
|
1088 |
+
# Save to cache
|
1089 |
+
await save_to_cache(
|
1090 |
+
hashing_kv,
|
1091 |
+
CacheData(
|
1092 |
+
args_hash=args_hash,
|
1093 |
+
content=response,
|
1094 |
+
prompt=query,
|
1095 |
+
quantized=quantized,
|
1096 |
+
min_val=min_val,
|
1097 |
+
max_val=max_val,
|
1098 |
+
mode=query_param.mode,
|
1099 |
+
),
|
1100 |
+
)
|
1101 |
+
|
1102 |
return response
|
lightrag/prompt.py
CHANGED
@@ -261,3 +261,22 @@ Do not include information where the supporting evidence for it is not provided.
|
|
261 |
|
262 |
Add sections and commentary to the response as appropriate for the length and format. Style the response in markdown.
|
263 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
Add sections and commentary to the response as appropriate for the length and format. Style the response in markdown.
|
263 |
"""
|
264 |
+
|
265 |
+
PROMPTS[
|
266 |
+
"similarity_check"
|
267 |
+
] = """Please analyze the similarity between these two questions:
|
268 |
+
|
269 |
+
Question 1: {original_prompt}
|
270 |
+
Question 2: {cached_prompt}
|
271 |
+
|
272 |
+
Please evaluate:
|
273 |
+
1. Whether these two questions are semantically similar
|
274 |
+
2. Whether the answer to Question 2 can be used to answer Question 1
|
275 |
+
|
276 |
+
Please provide a similarity score between 0 and 1, where:
|
277 |
+
0: Completely unrelated or answer cannot be reused
|
278 |
+
1: Identical and answer can be directly reused
|
279 |
+
0.5: Partially related and answer needs modification to be used
|
280 |
+
|
281 |
+
Return only a number between 0-1, without any additional content.
|
282 |
+
"""
|
lightrag/utils.py
CHANGED
@@ -15,6 +15,8 @@ import xml.etree.ElementTree as ET
|
|
15 |
import numpy as np
|
16 |
import tiktoken
|
17 |
|
|
|
|
|
18 |
ENCODER = None
|
19 |
|
20 |
logger = logging.getLogger("lightrag")
|
@@ -314,6 +316,9 @@ async def get_best_cached_response(
|
|
314 |
current_embedding,
|
315 |
similarity_threshold=0.95,
|
316 |
mode="default",
|
|
|
|
|
|
|
317 |
) -> Union[str, None]:
|
318 |
# Get mode-specific cache
|
319 |
mode_cache = await hashing_kv.get_by_id(mode)
|
@@ -348,6 +353,37 @@ async def get_best_cached_response(
|
|
348 |
best_cache_id = cache_id
|
349 |
|
350 |
if best_similarity > similarity_threshold:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
prompt_display = (
|
352 |
best_prompt[:50] + "..." if len(best_prompt) > 50 else best_prompt
|
353 |
)
|
@@ -391,21 +427,33 @@ def dequantize_embedding(
|
|
391 |
scale = (max_val - min_val) / (2**bits - 1)
|
392 |
return (quantized * scale + min_val).astype(np.float32)
|
393 |
|
|
|
394 |
async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
395 |
"""Generic cache handling function"""
|
396 |
if hashing_kv is None:
|
397 |
return None, None, None, None
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
# Get embedding cache configuration
|
400 |
embedding_cache_config = hashing_kv.global_config.get(
|
401 |
-
"embedding_cache_config",
|
|
|
402 |
)
|
403 |
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
|
|
404 |
|
405 |
quantized = min_val = max_val = None
|
406 |
if is_embedding_cache_enabled:
|
407 |
# Use embedding cache
|
408 |
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
|
|
|
|
|
409 |
current_embedding = await embedding_model_func([prompt])
|
410 |
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
411 |
best_cached_response = await get_best_cached_response(
|
@@ -413,6 +461,9 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
413 |
current_embedding[0],
|
414 |
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
415 |
mode=mode,
|
|
|
|
|
|
|
416 |
)
|
417 |
if best_cached_response is not None:
|
418 |
return best_cached_response, None, None, None
|
@@ -429,7 +480,6 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
429 |
class CacheData:
|
430 |
args_hash: str
|
431 |
content: str
|
432 |
-
model: str
|
433 |
prompt: str
|
434 |
quantized: Optional[np.ndarray] = None
|
435 |
min_val: Optional[float] = None
|
@@ -445,7 +495,6 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
|
|
445 |
|
446 |
mode_cache[cache_data.args_hash] = {
|
447 |
"return": cache_data.content,
|
448 |
-
"model": cache_data.model,
|
449 |
"embedding": cache_data.quantized.tobytes().hex()
|
450 |
if cache_data.quantized is not None
|
451 |
else None,
|
|
|
15 |
import numpy as np
|
16 |
import tiktoken
|
17 |
|
18 |
+
from lightrag.prompt import PROMPTS
|
19 |
+
|
20 |
ENCODER = None
|
21 |
|
22 |
logger = logging.getLogger("lightrag")
|
|
|
316 |
current_embedding,
|
317 |
similarity_threshold=0.95,
|
318 |
mode="default",
|
319 |
+
use_llm_check=False,
|
320 |
+
llm_func=None,
|
321 |
+
original_prompt=None,
|
322 |
) -> Union[str, None]:
|
323 |
# Get mode-specific cache
|
324 |
mode_cache = await hashing_kv.get_by_id(mode)
|
|
|
353 |
best_cache_id = cache_id
|
354 |
|
355 |
if best_similarity > similarity_threshold:
|
356 |
+
# If LLM check is enabled and all required parameters are provided
|
357 |
+
if use_llm_check and llm_func and original_prompt and best_prompt:
|
358 |
+
compare_prompt = PROMPTS["similarity_check"].format(
|
359 |
+
original_prompt=original_prompt, cached_prompt=best_prompt
|
360 |
+
)
|
361 |
+
|
362 |
+
try:
|
363 |
+
llm_result = await llm_func(compare_prompt)
|
364 |
+
llm_result = llm_result.strip()
|
365 |
+
llm_similarity = float(llm_result)
|
366 |
+
|
367 |
+
# Replace vector similarity with LLM similarity score
|
368 |
+
best_similarity = llm_similarity
|
369 |
+
if best_similarity < similarity_threshold:
|
370 |
+
log_data = {
|
371 |
+
"event": "llm_check_cache_rejected",
|
372 |
+
"original_question": original_prompt[:100] + "..."
|
373 |
+
if len(original_prompt) > 100
|
374 |
+
else original_prompt,
|
375 |
+
"cached_question": best_prompt[:100] + "..."
|
376 |
+
if len(best_prompt) > 100
|
377 |
+
else best_prompt,
|
378 |
+
"similarity_score": round(best_similarity, 4),
|
379 |
+
"threshold": similarity_threshold,
|
380 |
+
}
|
381 |
+
logger.info(json.dumps(log_data, ensure_ascii=False))
|
382 |
+
return None
|
383 |
+
except Exception as e: # Catch all possible exceptions
|
384 |
+
logger.warning(f"LLM similarity check failed: {e}")
|
385 |
+
return None # Return None directly when LLM check fails
|
386 |
+
|
387 |
prompt_display = (
|
388 |
best_prompt[:50] + "..." if len(best_prompt) > 50 else best_prompt
|
389 |
)
|
|
|
427 |
scale = (max_val - min_val) / (2**bits - 1)
|
428 |
return (quantized * scale + min_val).astype(np.float32)
|
429 |
|
430 |
+
|
431 |
async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
432 |
"""Generic cache handling function"""
|
433 |
if hashing_kv is None:
|
434 |
return None, None, None, None
|
435 |
|
436 |
+
# For naive mode, only use simple cache matching
|
437 |
+
if mode == "naive":
|
438 |
+
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
439 |
+
if args_hash in mode_cache:
|
440 |
+
return mode_cache[args_hash]["return"], None, None, None
|
441 |
+
return None, None, None, None
|
442 |
+
|
443 |
# Get embedding cache configuration
|
444 |
embedding_cache_config = hashing_kv.global_config.get(
|
445 |
+
"embedding_cache_config",
|
446 |
+
{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False},
|
447 |
)
|
448 |
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
449 |
+
use_llm_check = embedding_cache_config.get("use_llm_check", False)
|
450 |
|
451 |
quantized = min_val = max_val = None
|
452 |
if is_embedding_cache_enabled:
|
453 |
# Use embedding cache
|
454 |
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
|
455 |
+
llm_model_func = hashing_kv.global_config.get("llm_model_func")
|
456 |
+
|
457 |
current_embedding = await embedding_model_func([prompt])
|
458 |
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
459 |
best_cached_response = await get_best_cached_response(
|
|
|
461 |
current_embedding[0],
|
462 |
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
463 |
mode=mode,
|
464 |
+
use_llm_check=use_llm_check,
|
465 |
+
llm_func=llm_model_func if use_llm_check else None,
|
466 |
+
original_prompt=prompt if use_llm_check else None,
|
467 |
)
|
468 |
if best_cached_response is not None:
|
469 |
return best_cached_response, None, None, None
|
|
|
480 |
class CacheData:
|
481 |
args_hash: str
|
482 |
content: str
|
|
|
483 |
prompt: str
|
484 |
quantized: Optional[np.ndarray] = None
|
485 |
min_val: Optional[float] = None
|
|
|
495 |
|
496 |
mode_cache[cache_data.args_hash] = {
|
497 |
"return": cache_data.content,
|
|
|
498 |
"embedding": cache_data.quantized.tobytes().hex()
|
499 |
if cache_data.quantized is not None
|
500 |
else None,
|