Update env.example
Browse files- env.example +82 -63
env.example
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
### This is sample file of .env
|
2 |
|
|
|
3 |
### Server Configuration
|
|
|
4 |
HOST=0.0.0.0
|
5 |
PORT=9621
|
6 |
WEBUI_TITLE='My Graph KB'
|
@@ -9,29 +11,17 @@ OLLAMA_EMULATING_MODEL_TAG=latest
|
|
9 |
# WORKERS=2
|
10 |
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
|
11 |
|
12 |
-
### Login Configuration
|
13 |
-
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
|
14 |
-
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
|
15 |
-
# TOKEN_EXPIRE_HOURS=48
|
16 |
-
# GUEST_TOKEN_EXPIRE_HOURS=24
|
17 |
-
# JWT_ALGORITHM=HS256
|
18 |
-
|
19 |
-
### API-Key to access LightRAG Server API
|
20 |
-
# LIGHTRAG_API_KEY=your-secure-api-key-here
|
21 |
-
# WHITELIST_PATHS=/health,/api/*
|
22 |
-
|
23 |
### Optional SSL Configuration
|
24 |
# SSL=true
|
25 |
# SSL_CERTFILE=/path/to/cert.pem
|
26 |
# SSL_KEYFILE=/path/to/key.pem
|
27 |
|
28 |
### Directory Configuration (defaults to current working directory)
|
29 |
-
### Should not be set if deploy by docker (Set by Dockerfile instead of .env)
|
30 |
### Default value is ./inputs and ./rag_storage
|
31 |
# INPUT_DIR=<absolute_path_for_doc_input_dir>
|
32 |
# WORKING_DIR=<absolute_path_for_working_dir>
|
33 |
|
34 |
-
### Max nodes return from grap retrieval
|
35 |
# MAX_GRAPH_NODES=1000
|
36 |
|
37 |
### Logging level
|
@@ -42,68 +32,95 @@ OLLAMA_EMULATING_MODEL_TAG=latest
|
|
42 |
### Logfile location (defaults to current working directory)
|
43 |
# LOG_DIR=/path/to/log/directory
|
44 |
|
45 |
-
|
46 |
-
###
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
#
|
|
|
52 |
|
53 |
-
###
|
54 |
-
#
|
55 |
-
#
|
56 |
-
# MAX_TOTAL_TOKENS=32000
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# COSINE_THRESHOLD=0.2
|
59 |
-
### Number of entities or relations
|
60 |
# TOP_K=40
|
61 |
-
###
|
62 |
# CHUNK_TOP_K=10
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
###
|
65 |
-
|
66 |
-
|
67 |
-
### Rerank Configuration
|
68 |
-
### Rerank model configuration (required when enable_rerank=true in query parameters)
|
69 |
# RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
70 |
# RERANK_BINDING_HOST=https://api.your-rerank-provider.com/v1/rerank
|
71 |
# RERANK_BINDING_API_KEY=your_rerank_api_key_here
|
72 |
|
73 |
-
|
|
|
|
|
74 |
### Language: English, Chinese, French, German ...
|
75 |
SUMMARY_LANGUAGE=English
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
77 |
-
# FORCE_LLM_SUMMARY_ON_MERGE=
|
78 |
### Maximum number of entity extraction attempts for ambiguous content
|
79 |
# MAX_GLEANING=1
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
84 |
### LLM Configuration
|
85 |
-
|
86 |
-
ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
87 |
### Time out in seconds for LLM, None for infinite timeout
|
88 |
TIMEOUT=240
|
89 |
### Some models like o1-mini require temperature to be set to 1
|
90 |
TEMPERATURE=0
|
91 |
-
### Max concurrency requests of LLM
|
92 |
-
MAX_ASYNC=4
|
93 |
-
### MAX_TOKENS: max tokens send to LLM for entity relation summaries (less than context size of the model)
|
94 |
-
MAX_TOKENS=32000
|
95 |
### LLM Binding type: openai, ollama, lollms, azure_openai
|
96 |
LLM_BINDING=openai
|
97 |
LLM_MODEL=gpt-4o
|
98 |
LLM_BINDING_HOST=https://api.openai.com/v1
|
99 |
LLM_BINDING_API_KEY=your_api_key
|
|
|
|
|
|
|
|
|
100 |
### Optional for Azure
|
101 |
# AZURE_OPENAI_API_VERSION=2024-08-01-preview
|
102 |
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
|
103 |
-
### set as num_ctx option for Ollama LLM
|
104 |
-
# OLLAMA_NUM_CTX=32768
|
105 |
|
106 |
-
|
|
|
|
|
107 |
### Embedding Binding type: openai, ollama, lollms, azure_openai
|
108 |
EMBEDDING_BINDING=ollama
|
109 |
EMBEDDING_MODEL=bge-m3:latest
|
@@ -111,51 +128,53 @@ EMBEDDING_DIM=1024
|
|
111 |
EMBEDDING_BINDING_API_KEY=your_api_key
|
112 |
# If the embedding service is deployed within the same Docker stack, use host.docker.internal instead of localhost
|
113 |
EMBEDDING_BINDING_HOST=http://localhost:11434
|
114 |
-
### Num of chunks send to Embedding in single request
|
115 |
-
# EMBEDDING_BATCH_NUM=10
|
116 |
-
### Max concurrency requests for Embedding
|
117 |
-
# EMBEDDING_FUNC_MAX_ASYNC=8
|
118 |
### Maximum tokens sent to Embedding for each chunk (no longer in use?)
|
119 |
# MAX_EMBED_TOKENS=8192
|
|
|
120 |
### Optional for Azure
|
121 |
# AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
|
122 |
# AZURE_EMBEDDING_API_VERSION=2023-05-15
|
123 |
# AZURE_EMBEDDING_ENDPOINT=your_endpoint
|
124 |
# AZURE_EMBEDDING_API_KEY=your_api_key
|
125 |
|
126 |
-
|
127 |
### Data storage selection
|
128 |
-
|
129 |
-
###
|
130 |
# LIGHTRAG_KV_STORAGE=JsonKVStorage
|
131 |
# LIGHTRAG_DOC_STATUS_STORAGE=JsonDocStatusStorage
|
132 |
# LIGHTRAG_GRAPH_STORAGE=NetworkXStorage
|
133 |
# LIGHTRAG_VECTOR_STORAGE=NanoVectorDBStorage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# LIGHTRAG_VECTOR_STORAGE=FaissVectorDBStorage
|
|
|
|
|
|
|
|
|
|
|
135 |
### PostgreSQL
|
136 |
# LIGHTRAG_KV_STORAGE=PGKVStorage
|
137 |
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
138 |
# LIGHTRAG_GRAPH_STORAGE=PGGraphStorage
|
139 |
# LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
|
|
|
140 |
### MongoDB (Vector storage only available on Atlas Cloud)
|
141 |
# LIGHTRAG_KV_STORAGE=MongoKVStorage
|
142 |
# LIGHTRAG_DOC_STATUS_STORAGE=MongoDocStatusStorage
|
143 |
# LIGHTRAG_GRAPH_STORAGE=MongoGraphStorage
|
144 |
# LIGHTRAG_VECTOR_STORAGE=MongoVectorDBStorage
|
145 |
-
### Redis Storage (Recommended for production deployment)
|
146 |
-
# LIGHTRAG_KV_STORAGE=RedisKVStorage
|
147 |
-
# LIGHTRAG_DOC_STATUS_STORAGE=RedisDocStatusStorage
|
148 |
-
### Vector Storage (Recommended for production deployment)
|
149 |
-
# LIGHTRAG_VECTOR_STORAGE=MilvusVectorDBStorage
|
150 |
-
# LIGHTRAG_VECTOR_STORAGE=QdrantVectorDBStorage
|
151 |
-
### Graph Storage (Recommended for production deployment)
|
152 |
-
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
153 |
-
# LIGHTRAG_GRAPH_STORAGE=MemgraphStorage
|
154 |
|
155 |
####################################################################
|
156 |
-
###
|
157 |
-
###
|
158 |
-
### Valid
|
159 |
####################################################################
|
160 |
# WORKSPACE=space1
|
161 |
|
|
|
1 |
### This is sample file of .env
|
2 |
|
3 |
+
###########################
|
4 |
### Server Configuration
|
5 |
+
###########################
|
6 |
HOST=0.0.0.0
|
7 |
PORT=9621
|
8 |
WEBUI_TITLE='My Graph KB'
|
|
|
11 |
# WORKERS=2
|
12 |
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
### Optional SSL Configuration
|
15 |
# SSL=true
|
16 |
# SSL_CERTFILE=/path/to/cert.pem
|
17 |
# SSL_KEYFILE=/path/to/key.pem
|
18 |
|
19 |
### Directory Configuration (defaults to current working directory)
|
|
|
20 |
### Default value is ./inputs and ./rag_storage
|
21 |
# INPUT_DIR=<absolute_path_for_doc_input_dir>
|
22 |
# WORKING_DIR=<absolute_path_for_working_dir>
|
23 |
|
24 |
+
### Max nodes return from grap retrieval in webui
|
25 |
# MAX_GRAPH_NODES=1000
|
26 |
|
27 |
### Logging level
|
|
|
32 |
### Logfile location (defaults to current working directory)
|
33 |
# LOG_DIR=/path/to/log/directory
|
34 |
|
35 |
+
#####################################
|
36 |
+
### Login and API-Key Configuration
|
37 |
+
#####################################
|
38 |
+
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
|
39 |
+
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
|
40 |
+
# TOKEN_EXPIRE_HOURS=48
|
41 |
+
# GUEST_TOKEN_EXPIRE_HOURS=24
|
42 |
+
# JWT_ALGORITHM=HS256
|
43 |
|
44 |
+
### API-Key to access LightRAG Server API
|
45 |
+
# LIGHTRAG_API_KEY=your-secure-api-key-here
|
46 |
+
# WHITELIST_PATHS=/health,/api/*
|
|
|
47 |
|
48 |
+
########################
|
49 |
+
### Query Configuration
|
50 |
+
########################
|
51 |
+
# LLM responde cache for query (Not valid for streaming response
|
52 |
+
ENABLE_LLM_CACHE=true
|
53 |
+
# HISTORY_TURNS=3
|
54 |
# COSINE_THRESHOLD=0.2
|
55 |
+
### Number of entities or relations retrieved from KG
|
56 |
# TOP_K=40
|
57 |
+
### Maxmium number or chunks plan to send to LLM
|
58 |
# CHUNK_TOP_K=10
|
59 |
+
### control the actual enties send to LLM
|
60 |
+
# MAX_ENTITY_TOKENS=10000
|
61 |
+
### control the actual relations send to LLM
|
62 |
+
# MAX_RELATION_TOKENS=10000
|
63 |
+
### control the maximum tokens send to LLM (include entities, raltions and chunks)
|
64 |
+
# MAX_TOTAL_TOKENS=32000
|
65 |
|
66 |
+
### Reranker configuration (Set ENABLE_RERANK to true in reranking model is configed)
|
67 |
+
ENABLE_RERANK=False
|
|
|
|
|
|
|
68 |
# RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
69 |
# RERANK_BINDING_HOST=https://api.your-rerank-provider.com/v1/rerank
|
70 |
# RERANK_BINDING_API_KEY=your_rerank_api_key_here
|
71 |
|
72 |
+
########################################
|
73 |
+
### Document processing configuration
|
74 |
+
########################################
|
75 |
### Language: English, Chinese, French, German ...
|
76 |
SUMMARY_LANGUAGE=English
|
77 |
+
ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
78 |
+
### MAX_TOKENS: max tokens send to LLM for entity relation summaries (less than context size of the model)
|
79 |
+
MAX_TOKENS=32000
|
80 |
+
### Chunk size for document splitting, 500~1500 is recommended
|
81 |
+
# CHUNK_SIZE=1200
|
82 |
+
# CHUNK_OVERLAP_SIZE=100
|
83 |
+
### Entity and relation summarization configuration
|
84 |
### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
85 |
+
# FORCE_LLM_SUMMARY_ON_MERGE=4
|
86 |
### Maximum number of entity extraction attempts for ambiguous content
|
87 |
# MAX_GLEANING=1
|
88 |
|
89 |
+
###############################
|
90 |
+
### Concurrency Configuration
|
91 |
+
###############################
|
92 |
+
### Max concurrency requests of LLM (for both query and document processing)
|
93 |
+
MAX_ASYNC=4
|
94 |
+
### Number of parallel processing documents(between 2~10, MAX_ASYNC/4 is recommended)
|
95 |
+
MAX_PARALLEL_INSERT=2
|
96 |
+
### Max concurrency requests for Embedding
|
97 |
+
# EMBEDDING_FUNC_MAX_ASYNC=8
|
98 |
+
### Num of chunks send to Embedding in single request
|
99 |
+
# EMBEDDING_BATCH_NUM=10
|
100 |
|
101 |
+
#######################
|
102 |
### LLM Configuration
|
103 |
+
#######################
|
|
|
104 |
### Time out in seconds for LLM, None for infinite timeout
|
105 |
TIMEOUT=240
|
106 |
### Some models like o1-mini require temperature to be set to 1
|
107 |
TEMPERATURE=0
|
|
|
|
|
|
|
|
|
108 |
### LLM Binding type: openai, ollama, lollms, azure_openai
|
109 |
LLM_BINDING=openai
|
110 |
LLM_MODEL=gpt-4o
|
111 |
LLM_BINDING_HOST=https://api.openai.com/v1
|
112 |
LLM_BINDING_API_KEY=your_api_key
|
113 |
+
|
114 |
+
### Set as num_ctx option for Ollama LLM
|
115 |
+
# OLLAMA_NUM_CTX=32768
|
116 |
+
|
117 |
### Optional for Azure
|
118 |
# AZURE_OPENAI_API_VERSION=2024-08-01-preview
|
119 |
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
|
|
|
|
|
120 |
|
121 |
+
####################################################################################
|
122 |
+
### Embedding Configuration (Should not be changed after the first file processed)
|
123 |
+
####################################################################################
|
124 |
### Embedding Binding type: openai, ollama, lollms, azure_openai
|
125 |
EMBEDDING_BINDING=ollama
|
126 |
EMBEDDING_MODEL=bge-m3:latest
|
|
|
128 |
EMBEDDING_BINDING_API_KEY=your_api_key
|
129 |
# If the embedding service is deployed within the same Docker stack, use host.docker.internal instead of localhost
|
130 |
EMBEDDING_BINDING_HOST=http://localhost:11434
|
|
|
|
|
|
|
|
|
131 |
### Maximum tokens sent to Embedding for each chunk (no longer in use?)
|
132 |
# MAX_EMBED_TOKENS=8192
|
133 |
+
|
134 |
### Optional for Azure
|
135 |
# AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
|
136 |
# AZURE_EMBEDDING_API_VERSION=2023-05-15
|
137 |
# AZURE_EMBEDDING_ENDPOINT=your_endpoint
|
138 |
# AZURE_EMBEDDING_API_KEY=your_api_key
|
139 |
|
140 |
+
############################
|
141 |
### Data storage selection
|
142 |
+
############################
|
143 |
+
### Default storage (Recommended for small scale deployment)
|
144 |
# LIGHTRAG_KV_STORAGE=JsonKVStorage
|
145 |
# LIGHTRAG_DOC_STATUS_STORAGE=JsonDocStatusStorage
|
146 |
# LIGHTRAG_GRAPH_STORAGE=NetworkXStorage
|
147 |
# LIGHTRAG_VECTOR_STORAGE=NanoVectorDBStorage
|
148 |
+
|
149 |
+
### Redis Storage (Recommended for production deployment)
|
150 |
+
# LIGHTRAG_KV_STORAGE=RedisKVStorage
|
151 |
+
# LIGHTRAG_DOC_STATUS_STORAGE=RedisDocStatusStorage
|
152 |
+
|
153 |
+
### Vector Storage (Recommended for production deployment)
|
154 |
+
# LIGHTRAG_VECTOR_STORAGE=MilvusVectorDBStorage
|
155 |
+
# LIGHTRAG_VECTOR_STORAGE=QdrantVectorDBStorage
|
156 |
# LIGHTRAG_VECTOR_STORAGE=FaissVectorDBStorage
|
157 |
+
|
158 |
+
### Graph Storage (Recommended for production deployment)
|
159 |
+
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
160 |
+
# LIGHTRAG_GRAPH_STORAGE=MemgraphStorage
|
161 |
+
|
162 |
### PostgreSQL
|
163 |
# LIGHTRAG_KV_STORAGE=PGKVStorage
|
164 |
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
165 |
# LIGHTRAG_GRAPH_STORAGE=PGGraphStorage
|
166 |
# LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
|
167 |
+
|
168 |
### MongoDB (Vector storage only available on Atlas Cloud)
|
169 |
# LIGHTRAG_KV_STORAGE=MongoKVStorage
|
170 |
# LIGHTRAG_DOC_STATUS_STORAGE=MongoDocStatusStorage
|
171 |
# LIGHTRAG_GRAPH_STORAGE=MongoGraphStorage
|
172 |
# LIGHTRAG_VECTOR_STORAGE=MongoVectorDBStorage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
####################################################################
|
175 |
+
### WORKSPACE setting workspace name for all storage types
|
176 |
+
### in the purpose of isolating data from LightRAG instances.
|
177 |
+
### Valid workspace name constraints: a-z, A-Z, 0-9, and _
|
178 |
####################################################################
|
179 |
# WORKSPACE=space1
|
180 |
|