zrguo commited on
Commit
fbe2887
·
1 Parent(s): 483bc22

Update raganything_example.py

Browse files
Files changed (1) hide show
  1. examples/raganything_example.py +44 -8
examples/raganything_example.py CHANGED
@@ -181,19 +181,55 @@ async def process_with_rag(
181
  file_path=file_path, output_dir=output_dir, parse_method="auto"
182
  )
183
 
184
- # Example queries
185
- queries = [
 
 
 
186
  "What is the main content of the document?",
187
- "Describe the images and figures in the document",
188
- "Tell me about the experimental results and data tables",
189
  ]
190
 
191
- logger.info("\nQuerying processed document:")
192
- for query in queries:
193
- logger.info(f"\nQuery: {query}")
194
- result = await rag.query_with_multimodal(query, mode="hybrid")
195
  logger.info(f"Answer: {result}")
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  except Exception as e:
198
  logger.error(f"Error processing with RAG: {str(e)}")
199
  import traceback
 
181
  file_path=file_path, output_dir=output_dir, parse_method="auto"
182
  )
183
 
184
+ # Example queries - demonstrating different query approaches
185
+ logger.info("\nQuerying processed document:")
186
+
187
+ # 1. Pure text queries using aquery()
188
+ text_queries = [
189
  "What is the main content of the document?",
190
+ "What are the key topics discussed?",
 
191
  ]
192
 
193
+ for query in text_queries:
194
+ logger.info(f"\n[Text Query]: {query}")
195
+ result = await rag.aquery(query, mode="hybrid")
 
196
  logger.info(f"Answer: {result}")
197
 
198
+ # 2. Multimodal query with specific multimodal content using aquery_with_multimodal()
199
+ logger.info(
200
+ "\n[Multimodal Query]: Analyzing performance data in context of document"
201
+ )
202
+ multimodal_result = await rag.aquery_with_multimodal(
203
+ "Compare this performance data with any similar results mentioned in the document",
204
+ multimodal_content=[
205
+ {
206
+ "type": "table",
207
+ "table_data": """Method,Accuracy,Processing_Time
208
+ RAGAnything,95.2%,120ms
209
+ Traditional_RAG,87.3%,180ms
210
+ Baseline,82.1%,200ms""",
211
+ "table_caption": "Performance comparison results",
212
+ }
213
+ ],
214
+ mode="hybrid",
215
+ )
216
+ logger.info(f"Answer: {multimodal_result}")
217
+
218
+ # 3. Another multimodal query with equation content
219
+ logger.info("\n[Multimodal Query]: Mathematical formula analysis")
220
+ equation_result = await rag.aquery_with_multimodal(
221
+ "Explain this formula and relate it to any mathematical concepts in the document",
222
+ multimodal_content=[
223
+ {
224
+ "type": "equation",
225
+ "latex": "F1 = 2 \\cdot \\frac{precision \\cdot recall}{precision + recall}",
226
+ "equation_caption": "F1-score calculation formula",
227
+ }
228
+ ],
229
+ mode="hybrid",
230
+ )
231
+ logger.info(f"Answer: {equation_result}")
232
+
233
  except Exception as e:
234
  logger.error(f"Error processing with RAG: {str(e)}")
235
  import traceback