zrguo
commited on
Commit
·
fc091ae
1
Parent(s):
8089f33
add rerank model
Browse files- docs/rerank_integration.md +271 -0
- env.example +11 -0
- examples/rerank_example.py +193 -0
- lightrag/lightrag.py +45 -0
- lightrag/operate.py +85 -0
- lightrag/rerank.py +307 -0
docs/rerank_integration.md
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Rerank Integration in LightRAG
|
2 |
+
|
3 |
+
This document explains how to configure and use the rerank functionality in LightRAG to improve retrieval quality.
|
4 |
+
|
5 |
+
## ⚠️ Important: Parameter Priority
|
6 |
+
|
7 |
+
**QueryParam.top_k has higher priority than rerank_top_k configuration:**
|
8 |
+
|
9 |
+
- When you set `QueryParam(top_k=5)`, it will override the `rerank_top_k=10` setting in LightRAG configuration
|
10 |
+
- This means the actual number of documents sent to rerank will be determined by QueryParam.top_k
|
11 |
+
- For optimal rerank performance, always consider the top_k value in your QueryParam calls
|
12 |
+
- Example: `rag.aquery(query, param=QueryParam(mode="naive", top_k=20))` will use 20, not rerank_top_k
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
|
16 |
+
Reranking is an optional feature that improves the quality of retrieved documents by re-ordering them based on their relevance to the query. This is particularly useful when you want higher precision in document retrieval across all query modes (naive, local, global, hybrid, mix).
|
17 |
+
|
18 |
+
## Architecture
|
19 |
+
|
20 |
+
The rerank integration follows the same design pattern as the LLM integration:
|
21 |
+
|
22 |
+
- **Configurable Models**: Support for multiple rerank providers through a generic API
|
23 |
+
- **Async Processing**: Non-blocking rerank operations
|
24 |
+
- **Error Handling**: Graceful fallback to original results
|
25 |
+
- **Optional Feature**: Can be enabled/disabled via configuration
|
26 |
+
- **Code Reuse**: Single generic implementation for Jina/Cohere compatible APIs
|
27 |
+
|
28 |
+
## Configuration
|
29 |
+
|
30 |
+
### Environment Variables
|
31 |
+
|
32 |
+
Set these variables in your `.env` file or environment:
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# Enable/disable reranking
|
36 |
+
ENABLE_RERANK=True
|
37 |
+
|
38 |
+
# Rerank model configuration
|
39 |
+
RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
40 |
+
RERANK_MAX_ASYNC=4
|
41 |
+
RERANK_TOP_K=10
|
42 |
+
|
43 |
+
# API configuration
|
44 |
+
RERANK_API_KEY=your_rerank_api_key_here
|
45 |
+
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
|
46 |
+
|
47 |
+
# Provider-specific keys (optional alternatives)
|
48 |
+
JINA_API_KEY=your_jina_api_key_here
|
49 |
+
COHERE_API_KEY=your_cohere_api_key_here
|
50 |
+
```
|
51 |
+
|
52 |
+
### Programmatic Configuration
|
53 |
+
|
54 |
+
```python
|
55 |
+
from lightrag import LightRAG
|
56 |
+
from lightrag.rerank import custom_rerank, RerankModel
|
57 |
+
|
58 |
+
# Method 1: Using environment variables (recommended)
|
59 |
+
rag = LightRAG(
|
60 |
+
working_dir="./rag_storage",
|
61 |
+
llm_model_func=your_llm_func,
|
62 |
+
embedding_func=your_embedding_func,
|
63 |
+
# Rerank automatically configured from environment variables
|
64 |
+
)
|
65 |
+
|
66 |
+
# Method 2: Explicit configuration
|
67 |
+
rerank_model = RerankModel(
|
68 |
+
rerank_func=custom_rerank,
|
69 |
+
kwargs={
|
70 |
+
"model": "BAAI/bge-reranker-v2-m3",
|
71 |
+
"base_url": "https://api.your-provider.com/v1/rerank",
|
72 |
+
"api_key": "your_api_key_here",
|
73 |
+
}
|
74 |
+
)
|
75 |
+
|
76 |
+
rag = LightRAG(
|
77 |
+
working_dir="./rag_storage",
|
78 |
+
llm_model_func=your_llm_func,
|
79 |
+
embedding_func=your_embedding_func,
|
80 |
+
enable_rerank=True,
|
81 |
+
rerank_model_func=rerank_model.rerank,
|
82 |
+
rerank_top_k=10,
|
83 |
+
)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Supported Providers
|
87 |
+
|
88 |
+
### 1. Custom/Generic API (Recommended)
|
89 |
+
|
90 |
+
For Jina/Cohere compatible APIs:
|
91 |
+
|
92 |
+
```python
|
93 |
+
from lightrag.rerank import custom_rerank
|
94 |
+
|
95 |
+
# Your custom API endpoint
|
96 |
+
result = await custom_rerank(
|
97 |
+
query="your query",
|
98 |
+
documents=documents,
|
99 |
+
model="BAAI/bge-reranker-v2-m3",
|
100 |
+
base_url="https://api.your-provider.com/v1/rerank",
|
101 |
+
api_key="your_api_key_here",
|
102 |
+
top_k=10
|
103 |
+
)
|
104 |
+
```
|
105 |
+
|
106 |
+
### 2. Jina AI
|
107 |
+
|
108 |
+
```python
|
109 |
+
from lightrag.rerank import jina_rerank
|
110 |
+
|
111 |
+
result = await jina_rerank(
|
112 |
+
query="your query",
|
113 |
+
documents=documents,
|
114 |
+
model="BAAI/bge-reranker-v2-m3",
|
115 |
+
api_key="your_jina_api_key"
|
116 |
+
)
|
117 |
+
```
|
118 |
+
|
119 |
+
### 3. Cohere
|
120 |
+
|
121 |
+
```python
|
122 |
+
from lightrag.rerank import cohere_rerank
|
123 |
+
|
124 |
+
result = await cohere_rerank(
|
125 |
+
query="your query",
|
126 |
+
documents=documents,
|
127 |
+
model="rerank-english-v2.0",
|
128 |
+
api_key="your_cohere_api_key"
|
129 |
+
)
|
130 |
+
```
|
131 |
+
|
132 |
+
## Integration Points
|
133 |
+
|
134 |
+
Reranking is automatically applied at these key retrieval stages:
|
135 |
+
|
136 |
+
1. **Naive Mode**: After vector similarity search in `_get_vector_context`
|
137 |
+
2. **Local Mode**: After entity retrieval in `_get_node_data`
|
138 |
+
3. **Global Mode**: After relationship retrieval in `_get_edge_data`
|
139 |
+
4. **Hybrid/Mix Modes**: Applied to all relevant components
|
140 |
+
|
141 |
+
## Configuration Parameters
|
142 |
+
|
143 |
+
| Parameter | Type | Default | Description |
|
144 |
+
|-----------|------|---------|-------------|
|
145 |
+
| `enable_rerank` | bool | False | Enable/disable reranking |
|
146 |
+
| `rerank_model_name` | str | "BAAI/bge-reranker-v2-m3" | Model identifier |
|
147 |
+
| `rerank_model_max_async` | int | 4 | Max concurrent rerank calls |
|
148 |
+
| `rerank_top_k` | int | 10 | Number of top results to return ⚠️ **Overridden by QueryParam.top_k** |
|
149 |
+
| `rerank_model_func` | callable | None | Custom rerank function |
|
150 |
+
| `rerank_model_kwargs` | dict | {} | Additional rerank parameters |
|
151 |
+
|
152 |
+
## Example Usage
|
153 |
+
|
154 |
+
### Basic Usage
|
155 |
+
|
156 |
+
```python
|
157 |
+
import asyncio
|
158 |
+
from lightrag import LightRAG, QueryParam
|
159 |
+
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
|
160 |
+
|
161 |
+
async def main():
|
162 |
+
# Initialize with rerank enabled
|
163 |
+
rag = LightRAG(
|
164 |
+
working_dir="./rag_storage",
|
165 |
+
llm_model_func=gpt_4o_mini_complete,
|
166 |
+
embedding_func=openai_embedding,
|
167 |
+
enable_rerank=True,
|
168 |
+
)
|
169 |
+
|
170 |
+
# Insert documents
|
171 |
+
await rag.ainsert([
|
172 |
+
"Document 1 content...",
|
173 |
+
"Document 2 content...",
|
174 |
+
])
|
175 |
+
|
176 |
+
# Query with rerank (automatically applied)
|
177 |
+
result = await rag.aquery(
|
178 |
+
"Your question here",
|
179 |
+
param=QueryParam(mode="hybrid", top_k=5) # ⚠️ This top_k=5 overrides rerank_top_k
|
180 |
+
)
|
181 |
+
|
182 |
+
print(result)
|
183 |
+
|
184 |
+
asyncio.run(main())
|
185 |
+
```
|
186 |
+
|
187 |
+
### Direct Rerank Usage
|
188 |
+
|
189 |
+
```python
|
190 |
+
from lightrag.rerank import custom_rerank
|
191 |
+
|
192 |
+
async def test_rerank():
|
193 |
+
documents = [
|
194 |
+
{"content": "Text about topic A"},
|
195 |
+
{"content": "Text about topic B"},
|
196 |
+
{"content": "Text about topic C"},
|
197 |
+
]
|
198 |
+
|
199 |
+
reranked = await custom_rerank(
|
200 |
+
query="Tell me about topic A",
|
201 |
+
documents=documents,
|
202 |
+
model="BAAI/bge-reranker-v2-m3",
|
203 |
+
base_url="https://api.your-provider.com/v1/rerank",
|
204 |
+
api_key="your_api_key_here",
|
205 |
+
top_k=2
|
206 |
+
)
|
207 |
+
|
208 |
+
for doc in reranked:
|
209 |
+
print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
|
210 |
+
```
|
211 |
+
|
212 |
+
## Best Practices
|
213 |
+
|
214 |
+
1. **Parameter Priority Awareness**: Remember that QueryParam.top_k always overrides rerank_top_k configuration
|
215 |
+
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
|
216 |
+
3. **API Limits**: Monitor API usage and implement rate limiting if needed
|
217 |
+
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
|
218 |
+
5. **Top-k Selection**: Choose appropriate `top_k` values in QueryParam based on your use case
|
219 |
+
6. **Cost Management**: Consider rerank API costs in your budget planning
|
220 |
+
|
221 |
+
## Troubleshooting
|
222 |
+
|
223 |
+
### Common Issues
|
224 |
+
|
225 |
+
1. **API Key Missing**: Ensure `RERANK_API_KEY` or provider-specific keys are set
|
226 |
+
2. **Network Issues**: Check `RERANK_BASE_URL` and network connectivity
|
227 |
+
3. **Model Errors**: Verify the rerank model name is supported by your API
|
228 |
+
4. **Document Format**: Ensure documents have `content` or `text` fields
|
229 |
+
|
230 |
+
### Debug Mode
|
231 |
+
|
232 |
+
Enable debug logging to see rerank operations:
|
233 |
+
|
234 |
+
```python
|
235 |
+
import logging
|
236 |
+
logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG)
|
237 |
+
```
|
238 |
+
|
239 |
+
### Error Handling
|
240 |
+
|
241 |
+
The rerank integration includes automatic fallback:
|
242 |
+
|
243 |
+
```python
|
244 |
+
# If rerank fails, original documents are returned
|
245 |
+
# No exceptions are raised to the user
|
246 |
+
# Errors are logged for debugging
|
247 |
+
```
|
248 |
+
|
249 |
+
## API Compatibility
|
250 |
+
|
251 |
+
The generic rerank API expects this response format:
|
252 |
+
|
253 |
+
```json
|
254 |
+
{
|
255 |
+
"results": [
|
256 |
+
{
|
257 |
+
"index": 0,
|
258 |
+
"relevance_score": 0.95
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"index": 2,
|
262 |
+
"relevance_score": 0.87
|
263 |
+
}
|
264 |
+
]
|
265 |
+
}
|
266 |
+
```
|
267 |
+
|
268 |
+
This is compatible with:
|
269 |
+
- Jina AI Rerank API
|
270 |
+
- Cohere Rerank API
|
271 |
+
- Custom APIs following the same format
|
env.example
CHANGED
@@ -179,3 +179,14 @@ QDRANT_URL=http://localhost:6333
|
|
179 |
### Redis
|
180 |
REDIS_URI=redis://localhost:6379
|
181 |
# REDIS_WORKSPACE=forced_workspace_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
### Redis
|
180 |
REDIS_URI=redis://localhost:6379
|
181 |
# REDIS_WORKSPACE=forced_workspace_name
|
182 |
+
|
183 |
+
# Rerank Configuration
|
184 |
+
ENABLE_RERANK=False
|
185 |
+
RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
186 |
+
RERANK_MAX_ASYNC=4
|
187 |
+
RERANK_TOP_K=10
|
188 |
+
# Note: QueryParam.top_k in your code will override RERANK_TOP_K setting
|
189 |
+
|
190 |
+
# Rerank API Configuration
|
191 |
+
RERANK_API_KEY=your_rerank_api_key_here
|
192 |
+
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
|
examples/rerank_example.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LightRAG Rerank Integration Example
|
3 |
+
|
4 |
+
This example demonstrates how to use rerank functionality with LightRAG
|
5 |
+
to improve retrieval quality across different query modes.
|
6 |
+
|
7 |
+
IMPORTANT: Parameter Priority
|
8 |
+
- QueryParam(top_k=N) has higher priority than rerank_top_k in LightRAG configuration
|
9 |
+
- If you set QueryParam(top_k=5), it will override rerank_top_k setting
|
10 |
+
- For optimal rerank performance, use appropriate top_k values in QueryParam
|
11 |
+
|
12 |
+
Configuration Required:
|
13 |
+
1. Set your LLM API key and base URL in llm_model_func()
|
14 |
+
2. Set your embedding API key and base URL in embedding_func()
|
15 |
+
3. Set your rerank API key and base URL in the rerank configuration
|
16 |
+
4. Or use environment variables (.env file):
|
17 |
+
- RERANK_API_KEY=your_actual_rerank_api_key
|
18 |
+
- RERANK_BASE_URL=https://your-actual-rerank-endpoint/v1/rerank
|
19 |
+
- RERANK_MODEL=your_rerank_model_name
|
20 |
+
"""
|
21 |
+
|
22 |
+
import asyncio
|
23 |
+
import os
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
from lightrag import LightRAG, QueryParam
|
27 |
+
from lightrag.rerank import custom_rerank, RerankModel
|
28 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
29 |
+
from lightrag.utils import EmbeddingFunc, setup_logger
|
30 |
+
|
31 |
+
# Set up your working directory
|
32 |
+
WORKING_DIR = "./test_rerank"
|
33 |
+
setup_logger("test_rerank")
|
34 |
+
|
35 |
+
if not os.path.exists(WORKING_DIR):
|
36 |
+
os.mkdir(WORKING_DIR)
|
37 |
+
|
38 |
+
async def llm_model_func(
|
39 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
40 |
+
) -> str:
|
41 |
+
return await openai_complete_if_cache(
|
42 |
+
"gpt-4o-mini",
|
43 |
+
prompt,
|
44 |
+
system_prompt=system_prompt,
|
45 |
+
history_messages=history_messages,
|
46 |
+
api_key="your_llm_api_key_here",
|
47 |
+
base_url="https://api.your-llm-provider.com/v1",
|
48 |
+
**kwargs,
|
49 |
+
)
|
50 |
+
|
51 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
52 |
+
return await openai_embed(
|
53 |
+
texts,
|
54 |
+
model="text-embedding-3-large",
|
55 |
+
api_key="your_embedding_api_key_here",
|
56 |
+
base_url="https://api.your-embedding-provider.com/v1",
|
57 |
+
)
|
58 |
+
|
59 |
+
async def create_rag_with_rerank():
|
60 |
+
"""Create LightRAG instance with rerank configuration"""
|
61 |
+
|
62 |
+
# Get embedding dimension
|
63 |
+
test_embedding = await embedding_func(["test"])
|
64 |
+
embedding_dim = test_embedding.shape[1]
|
65 |
+
print(f"Detected embedding dimension: {embedding_dim}")
|
66 |
+
|
67 |
+
# Create rerank model
|
68 |
+
rerank_model = RerankModel(
|
69 |
+
rerank_func=custom_rerank,
|
70 |
+
kwargs={
|
71 |
+
"model": "BAAI/bge-reranker-v2-m3",
|
72 |
+
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
|
73 |
+
"api_key": "your_rerank_api_key_here",
|
74 |
+
}
|
75 |
+
)
|
76 |
+
|
77 |
+
# Initialize LightRAG with rerank
|
78 |
+
rag = LightRAG(
|
79 |
+
working_dir=WORKING_DIR,
|
80 |
+
llm_model_func=llm_model_func,
|
81 |
+
embedding_func=EmbeddingFunc(
|
82 |
+
embedding_dim=embedding_dim,
|
83 |
+
max_token_size=8192,
|
84 |
+
func=embedding_func,
|
85 |
+
),
|
86 |
+
# Rerank Configuration
|
87 |
+
enable_rerank=True,
|
88 |
+
rerank_model_func=rerank_model.rerank,
|
89 |
+
rerank_top_k=10, # Note: QueryParam.top_k will override this
|
90 |
+
)
|
91 |
+
|
92 |
+
return rag
|
93 |
+
|
94 |
+
async def test_rerank_with_different_topk():
|
95 |
+
"""
|
96 |
+
Test rerank functionality with different top_k settings to demonstrate parameter priority
|
97 |
+
"""
|
98 |
+
print("🚀 Setting up LightRAG with Rerank functionality...")
|
99 |
+
|
100 |
+
rag = await create_rag_with_rerank()
|
101 |
+
|
102 |
+
# Insert sample documents
|
103 |
+
sample_docs = [
|
104 |
+
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
|
105 |
+
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
|
106 |
+
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
|
107 |
+
"Natural language processing has evolved with large language models and transformers.",
|
108 |
+
"Machine learning algorithms can learn patterns from data without explicit programming."
|
109 |
+
]
|
110 |
+
|
111 |
+
print("📄 Inserting sample documents...")
|
112 |
+
await rag.ainsert(sample_docs)
|
113 |
+
|
114 |
+
query = "How does reranking improve retrieval quality?"
|
115 |
+
print(f"\n🔍 Testing query: '{query}'")
|
116 |
+
print("=" * 80)
|
117 |
+
|
118 |
+
# Test different top_k values to show parameter priority
|
119 |
+
top_k_values = [2, 5, 10]
|
120 |
+
|
121 |
+
for top_k in top_k_values:
|
122 |
+
print(f"\n📊 Testing with QueryParam(top_k={top_k}) - overrides rerank_top_k=10:")
|
123 |
+
|
124 |
+
# Test naive mode with specific top_k
|
125 |
+
result = await rag.aquery(
|
126 |
+
query,
|
127 |
+
param=QueryParam(mode="naive", top_k=top_k)
|
128 |
+
)
|
129 |
+
print(f" Result length: {len(result)} characters")
|
130 |
+
print(f" Preview: {result[:100]}...")
|
131 |
+
|
132 |
+
async def test_direct_rerank():
|
133 |
+
"""Test rerank function directly"""
|
134 |
+
print("\n🔧 Direct Rerank API Test")
|
135 |
+
print("=" * 40)
|
136 |
+
|
137 |
+
documents = [
|
138 |
+
{"content": "Reranking significantly improves retrieval quality"},
|
139 |
+
{"content": "LightRAG supports advanced reranking capabilities"},
|
140 |
+
{"content": "Vector search finds semantically similar documents"},
|
141 |
+
{"content": "Natural language processing with modern transformers"},
|
142 |
+
{"content": "The quick brown fox jumps over the lazy dog"}
|
143 |
+
]
|
144 |
+
|
145 |
+
query = "rerank improve quality"
|
146 |
+
print(f"Query: '{query}'")
|
147 |
+
print(f"Documents: {len(documents)}")
|
148 |
+
|
149 |
+
try:
|
150 |
+
reranked_docs = await custom_rerank(
|
151 |
+
query=query,
|
152 |
+
documents=documents,
|
153 |
+
model="BAAI/bge-reranker-v2-m3",
|
154 |
+
base_url="https://api.your-rerank-provider.com/v1/rerank",
|
155 |
+
api_key="your_rerank_api_key_here",
|
156 |
+
top_k=3
|
157 |
+
)
|
158 |
+
|
159 |
+
print("\n✅ Rerank Results:")
|
160 |
+
for i, doc in enumerate(reranked_docs):
|
161 |
+
score = doc.get("rerank_score", "N/A")
|
162 |
+
content = doc.get("content", "")[:60]
|
163 |
+
print(f" {i+1}. Score: {score:.4f} | {content}...")
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
print(f"❌ Rerank failed: {e}")
|
167 |
+
|
168 |
+
async def main():
|
169 |
+
"""Main example function"""
|
170 |
+
print("🎯 LightRAG Rerank Integration Example")
|
171 |
+
print("=" * 60)
|
172 |
+
|
173 |
+
try:
|
174 |
+
# Test rerank with different top_k values
|
175 |
+
await test_rerank_with_different_topk()
|
176 |
+
|
177 |
+
# Test direct rerank
|
178 |
+
await test_direct_rerank()
|
179 |
+
|
180 |
+
print("\n✅ Example completed successfully!")
|
181 |
+
print("\n💡 Key Points:")
|
182 |
+
print(" ✓ QueryParam.top_k has higher priority than rerank_top_k")
|
183 |
+
print(" ✓ Rerank improves document relevance ordering")
|
184 |
+
print(" ✓ Configure API keys in your .env file for production")
|
185 |
+
print(" ✓ Monitor API usage and costs when using rerank services")
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
print(f"\n❌ Example failed: {e}")
|
189 |
+
import traceback
|
190 |
+
traceback.print_exc()
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
asyncio.run(main())
|
lightrag/lightrag.py
CHANGED
@@ -240,6 +240,35 @@ class LightRAG:
|
|
240 |
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
241 |
"""Additional keyword arguments passed to the LLM model function."""
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
# Storage
|
244 |
# ---
|
245 |
|
@@ -444,6 +473,22 @@ class LightRAG:
|
|
444 |
)
|
445 |
)
|
446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
self._storages_status = StoragesStatus.CREATED
|
448 |
|
449 |
if self.auto_manage_storages_states:
|
|
|
240 |
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
241 |
"""Additional keyword arguments passed to the LLM model function."""
|
242 |
|
243 |
+
# Rerank Configuration
|
244 |
+
# ---
|
245 |
+
|
246 |
+
enable_rerank: bool = field(
|
247 |
+
default=bool(os.getenv("ENABLE_RERANK", "False").lower() == "true")
|
248 |
+
)
|
249 |
+
"""Enable reranking for improved retrieval quality. Defaults to False."""
|
250 |
+
|
251 |
+
rerank_model_func: Callable[..., object] | None = field(default=None)
|
252 |
+
"""Function for reranking retrieved documents. Optional."""
|
253 |
+
|
254 |
+
rerank_model_name: str = field(
|
255 |
+
default=os.getenv("RERANK_MODEL", "BAAI/bge-reranker-v2-m3")
|
256 |
+
)
|
257 |
+
"""Name of the rerank model used for reranking documents."""
|
258 |
+
|
259 |
+
rerank_model_max_async: int = field(default=int(os.getenv("RERANK_MAX_ASYNC", 4)))
|
260 |
+
"""Maximum number of concurrent rerank calls."""
|
261 |
+
|
262 |
+
rerank_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
263 |
+
"""Additional keyword arguments passed to the rerank model function."""
|
264 |
+
|
265 |
+
rerank_top_k: int = field(default=int(os.getenv("RERANK_TOP_K", 10)))
|
266 |
+
"""Number of top documents to return after reranking.
|
267 |
+
|
268 |
+
Note: This value will be overridden by QueryParam.top_k in query calls.
|
269 |
+
Example: QueryParam(top_k=5) will override rerank_top_k=10 setting.
|
270 |
+
"""
|
271 |
+
|
272 |
# Storage
|
273 |
# ---
|
274 |
|
|
|
473 |
)
|
474 |
)
|
475 |
|
476 |
+
# Init Rerank
|
477 |
+
if self.enable_rerank and self.rerank_model_func:
|
478 |
+
self.rerank_model_func = priority_limit_async_func_call(
|
479 |
+
self.rerank_model_max_async
|
480 |
+
)(
|
481 |
+
partial(
|
482 |
+
self.rerank_model_func, # type: ignore
|
483 |
+
**self.rerank_model_kwargs,
|
484 |
+
)
|
485 |
+
)
|
486 |
+
logger.info("Rerank model initialized for improved retrieval quality")
|
487 |
+
elif self.enable_rerank and not self.rerank_model_func:
|
488 |
+
logger.warning(
|
489 |
+
"Rerank is enabled but no rerank_model_func provided. Reranking will be skipped."
|
490 |
+
)
|
491 |
+
|
492 |
self._storages_status = StoragesStatus.CREATED
|
493 |
|
494 |
if self.auto_manage_storages_states:
|
lightrag/operate.py
CHANGED
@@ -1783,6 +1783,15 @@ async def _get_vector_context(
|
|
1783 |
if not valid_chunks:
|
1784 |
return [], [], []
|
1785 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1786 |
maybe_trun_chunks = truncate_list_by_token_size(
|
1787 |
valid_chunks,
|
1788 |
key=lambda x: x["content"],
|
@@ -1966,6 +1975,15 @@ async def _get_node_data(
|
|
1966 |
if not len(results):
|
1967 |
return "", "", ""
|
1968 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1969 |
# Extract all entity IDs from your results list
|
1970 |
node_ids = [r["entity_name"] for r in results]
|
1971 |
|
@@ -2269,6 +2287,15 @@ async def _get_edge_data(
|
|
2269 |
if not len(results):
|
2270 |
return "", "", ""
|
2271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2272 |
# Prepare edge pairs in two forms:
|
2273 |
# For the batch edge properties function, use dicts.
|
2274 |
edge_pairs_dicts = [{"src": r["src_id"], "tgt": r["tgt_id"]} for r in results]
|
@@ -2806,3 +2833,61 @@ async def query_with_keywords(
|
|
2806 |
)
|
2807 |
else:
|
2808 |
raise ValueError(f"Unknown mode {param.mode}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1783 |
if not valid_chunks:
|
1784 |
return [], [], []
|
1785 |
|
1786 |
+
# Apply reranking if enabled
|
1787 |
+
global_config = chunks_vdb.global_config
|
1788 |
+
valid_chunks = await apply_rerank_if_enabled(
|
1789 |
+
query=query,
|
1790 |
+
retrieved_docs=valid_chunks,
|
1791 |
+
global_config=global_config,
|
1792 |
+
top_k=query_param.top_k,
|
1793 |
+
)
|
1794 |
+
|
1795 |
maybe_trun_chunks = truncate_list_by_token_size(
|
1796 |
valid_chunks,
|
1797 |
key=lambda x: x["content"],
|
|
|
1975 |
if not len(results):
|
1976 |
return "", "", ""
|
1977 |
|
1978 |
+
# Apply reranking if enabled for entity results
|
1979 |
+
global_config = entities_vdb.global_config
|
1980 |
+
results = await apply_rerank_if_enabled(
|
1981 |
+
query=query,
|
1982 |
+
retrieved_docs=results,
|
1983 |
+
global_config=global_config,
|
1984 |
+
top_k=query_param.top_k,
|
1985 |
+
)
|
1986 |
+
|
1987 |
# Extract all entity IDs from your results list
|
1988 |
node_ids = [r["entity_name"] for r in results]
|
1989 |
|
|
|
2287 |
if not len(results):
|
2288 |
return "", "", ""
|
2289 |
|
2290 |
+
# Apply reranking if enabled for relationship results
|
2291 |
+
global_config = relationships_vdb.global_config
|
2292 |
+
results = await apply_rerank_if_enabled(
|
2293 |
+
query=keywords,
|
2294 |
+
retrieved_docs=results,
|
2295 |
+
global_config=global_config,
|
2296 |
+
top_k=query_param.top_k,
|
2297 |
+
)
|
2298 |
+
|
2299 |
# Prepare edge pairs in two forms:
|
2300 |
# For the batch edge properties function, use dicts.
|
2301 |
edge_pairs_dicts = [{"src": r["src_id"], "tgt": r["tgt_id"]} for r in results]
|
|
|
2833 |
)
|
2834 |
else:
|
2835 |
raise ValueError(f"Unknown mode {param.mode}")
|
2836 |
+
|
2837 |
+
|
2838 |
+
async def apply_rerank_if_enabled(
|
2839 |
+
query: str,
|
2840 |
+
retrieved_docs: list[dict],
|
2841 |
+
global_config: dict,
|
2842 |
+
top_k: int = None,
|
2843 |
+
) -> list[dict]:
|
2844 |
+
"""
|
2845 |
+
Apply reranking to retrieved documents if rerank is enabled.
|
2846 |
+
|
2847 |
+
Args:
|
2848 |
+
query: The search query
|
2849 |
+
retrieved_docs: List of retrieved documents
|
2850 |
+
global_config: Global configuration containing rerank settings
|
2851 |
+
top_k: Number of top documents to return after reranking
|
2852 |
+
|
2853 |
+
Returns:
|
2854 |
+
Reranked documents if rerank is enabled, otherwise original documents
|
2855 |
+
"""
|
2856 |
+
if not global_config.get("enable_rerank", False) or not retrieved_docs:
|
2857 |
+
return retrieved_docs
|
2858 |
+
|
2859 |
+
rerank_func = global_config.get("rerank_model_func")
|
2860 |
+
if not rerank_func:
|
2861 |
+
logger.debug(
|
2862 |
+
"Rerank is enabled but no rerank function provided, skipping rerank"
|
2863 |
+
)
|
2864 |
+
return retrieved_docs
|
2865 |
+
|
2866 |
+
try:
|
2867 |
+
# Determine top_k for reranking
|
2868 |
+
rerank_top_k = top_k or global_config.get("rerank_top_k", 10)
|
2869 |
+
rerank_top_k = min(rerank_top_k, len(retrieved_docs))
|
2870 |
+
|
2871 |
+
logger.debug(
|
2872 |
+
f"Applying rerank to {len(retrieved_docs)} documents, returning top {rerank_top_k}"
|
2873 |
+
)
|
2874 |
+
|
2875 |
+
# Apply reranking
|
2876 |
+
reranked_docs = await rerank_func(
|
2877 |
+
query=query,
|
2878 |
+
documents=retrieved_docs,
|
2879 |
+
top_k=rerank_top_k,
|
2880 |
+
)
|
2881 |
+
|
2882 |
+
if reranked_docs and len(reranked_docs) > 0:
|
2883 |
+
logger.info(
|
2884 |
+
f"Successfully reranked {len(retrieved_docs)} documents to {len(reranked_docs)}"
|
2885 |
+
)
|
2886 |
+
return reranked_docs
|
2887 |
+
else:
|
2888 |
+
logger.warning("Rerank returned empty results, using original documents")
|
2889 |
+
return retrieved_docs[:rerank_top_k] if rerank_top_k else retrieved_docs
|
2890 |
+
|
2891 |
+
except Exception as e:
|
2892 |
+
logger.error(f"Error during reranking: {e}, using original documents")
|
2893 |
+
return retrieved_docs
|
lightrag/rerank.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import aiohttp
|
6 |
+
import numpy as np
|
7 |
+
from typing import Callable, Any, List, Dict, Optional
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
from dataclasses import asdict
|
10 |
+
|
11 |
+
from .utils import logger
|
12 |
+
|
13 |
+
|
14 |
+
class RerankModel(BaseModel):
|
15 |
+
"""
|
16 |
+
Pydantic model class for defining a custom rerank model.
|
17 |
+
|
18 |
+
Attributes:
|
19 |
+
rerank_func (Callable[[Any], List[Dict]]): A callable function that reranks documents.
|
20 |
+
The function should take query and documents as input and return reranked results.
|
21 |
+
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
|
22 |
+
This could include parameters such as the model name, API key, etc.
|
23 |
+
|
24 |
+
Example usage:
|
25 |
+
Rerank model example from jina:
|
26 |
+
```python
|
27 |
+
rerank_model = RerankModel(
|
28 |
+
rerank_func=jina_rerank,
|
29 |
+
kwargs={
|
30 |
+
"model": "BAAI/bge-reranker-v2-m3",
|
31 |
+
"api_key": "your_api_key_here",
|
32 |
+
"base_url": "https://api.jina.ai/v1/rerank"
|
33 |
+
}
|
34 |
+
)
|
35 |
+
```
|
36 |
+
"""
|
37 |
+
|
38 |
+
rerank_func: Callable[[Any], List[Dict]]
|
39 |
+
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
40 |
+
|
41 |
+
async def rerank(
|
42 |
+
self,
|
43 |
+
query: str,
|
44 |
+
documents: List[Dict[str, Any]],
|
45 |
+
top_k: Optional[int] = None,
|
46 |
+
**extra_kwargs
|
47 |
+
) -> List[Dict[str, Any]]:
|
48 |
+
"""Rerank documents using the configured model function."""
|
49 |
+
# Merge extra kwargs with model kwargs
|
50 |
+
kwargs = {**self.kwargs, **extra_kwargs}
|
51 |
+
return await self.rerank_func(
|
52 |
+
query=query,
|
53 |
+
documents=documents,
|
54 |
+
top_k=top_k,
|
55 |
+
**kwargs
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
class MultiRerankModel(BaseModel):
|
60 |
+
"""Multiple rerank models for different modes/scenarios."""
|
61 |
+
|
62 |
+
# Primary rerank model (used if mode-specific models are not defined)
|
63 |
+
rerank_model: Optional[RerankModel] = None
|
64 |
+
|
65 |
+
# Mode-specific rerank models
|
66 |
+
entity_rerank_model: Optional[RerankModel] = None
|
67 |
+
relation_rerank_model: Optional[RerankModel] = None
|
68 |
+
chunk_rerank_model: Optional[RerankModel] = None
|
69 |
+
|
70 |
+
async def rerank(
|
71 |
+
self,
|
72 |
+
query: str,
|
73 |
+
documents: List[Dict[str, Any]],
|
74 |
+
mode: str = "default",
|
75 |
+
top_k: Optional[int] = None,
|
76 |
+
**kwargs
|
77 |
+
) -> List[Dict[str, Any]]:
|
78 |
+
"""Rerank using the appropriate model based on mode."""
|
79 |
+
|
80 |
+
# Select model based on mode
|
81 |
+
if mode == "entity" and self.entity_rerank_model:
|
82 |
+
model = self.entity_rerank_model
|
83 |
+
elif mode == "relation" and self.relation_rerank_model:
|
84 |
+
model = self.relation_rerank_model
|
85 |
+
elif mode == "chunk" and self.chunk_rerank_model:
|
86 |
+
model = self.chunk_rerank_model
|
87 |
+
elif self.rerank_model:
|
88 |
+
model = self.rerank_model
|
89 |
+
else:
|
90 |
+
logger.warning(f"No rerank model available for mode: {mode}")
|
91 |
+
return documents
|
92 |
+
|
93 |
+
return await model.rerank(query, documents, top_k, **kwargs)
|
94 |
+
|
95 |
+
|
96 |
+
async def generic_rerank_api(
|
97 |
+
query: str,
|
98 |
+
documents: List[Dict[str, Any]],
|
99 |
+
model: str,
|
100 |
+
base_url: str,
|
101 |
+
api_key: str,
|
102 |
+
top_k: Optional[int] = None,
|
103 |
+
**kwargs
|
104 |
+
) -> List[Dict[str, Any]]:
|
105 |
+
"""
|
106 |
+
Generic rerank function that works with Jina/Cohere compatible APIs.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
query: The search query
|
110 |
+
documents: List of documents to rerank
|
111 |
+
model: Model identifier
|
112 |
+
base_url: API endpoint URL
|
113 |
+
api_key: API authentication key
|
114 |
+
top_k: Number of top results to return
|
115 |
+
**kwargs: Additional API-specific parameters
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
List of reranked documents with relevance scores
|
119 |
+
"""
|
120 |
+
if not api_key:
|
121 |
+
logger.warning("No API key provided for rerank service")
|
122 |
+
return documents
|
123 |
+
|
124 |
+
if not documents:
|
125 |
+
return documents
|
126 |
+
|
127 |
+
# Prepare documents for reranking - handle both text and dict formats
|
128 |
+
prepared_docs = []
|
129 |
+
for doc in documents:
|
130 |
+
if isinstance(doc, dict):
|
131 |
+
# Use 'content' field if available, otherwise use 'text' or convert to string
|
132 |
+
text = doc.get('content') or doc.get('text') or str(doc)
|
133 |
+
else:
|
134 |
+
text = str(doc)
|
135 |
+
prepared_docs.append(text)
|
136 |
+
|
137 |
+
# Prepare request
|
138 |
+
headers = {
|
139 |
+
"Content-Type": "application/json",
|
140 |
+
"Authorization": f"Bearer {api_key}"
|
141 |
+
}
|
142 |
+
|
143 |
+
data = {
|
144 |
+
"model": model,
|
145 |
+
"query": query,
|
146 |
+
"documents": prepared_docs,
|
147 |
+
**kwargs
|
148 |
+
}
|
149 |
+
|
150 |
+
if top_k is not None:
|
151 |
+
data["top_k"] = min(top_k, len(prepared_docs))
|
152 |
+
|
153 |
+
try:
|
154 |
+
async with aiohttp.ClientSession() as session:
|
155 |
+
async with session.post(base_url, headers=headers, json=data) as response:
|
156 |
+
if response.status != 200:
|
157 |
+
error_text = await response.text()
|
158 |
+
logger.error(f"Rerank API error {response.status}: {error_text}")
|
159 |
+
return documents
|
160 |
+
|
161 |
+
result = await response.json()
|
162 |
+
|
163 |
+
# Extract reranked results
|
164 |
+
if "results" in result:
|
165 |
+
# Standard format: results contain index and relevance_score
|
166 |
+
reranked_docs = []
|
167 |
+
for item in result["results"]:
|
168 |
+
if "index" in item:
|
169 |
+
doc_idx = item["index"]
|
170 |
+
if 0 <= doc_idx < len(documents):
|
171 |
+
reranked_doc = documents[doc_idx].copy()
|
172 |
+
if "relevance_score" in item:
|
173 |
+
reranked_doc["rerank_score"] = item["relevance_score"]
|
174 |
+
reranked_docs.append(reranked_doc)
|
175 |
+
return reranked_docs
|
176 |
+
else:
|
177 |
+
logger.warning("Unexpected rerank API response format")
|
178 |
+
return documents
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Error during reranking: {e}")
|
182 |
+
return documents
|
183 |
+
|
184 |
+
|
185 |
+
async def jina_rerank(
|
186 |
+
query: str,
|
187 |
+
documents: List[Dict[str, Any]],
|
188 |
+
model: str = "BAAI/bge-reranker-v2-m3",
|
189 |
+
top_k: Optional[int] = None,
|
190 |
+
base_url: str = "https://api.jina.ai/v1/rerank",
|
191 |
+
api_key: Optional[str] = None,
|
192 |
+
**kwargs
|
193 |
+
) -> List[Dict[str, Any]]:
|
194 |
+
"""
|
195 |
+
Rerank documents using Jina AI API.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
query: The search query
|
199 |
+
documents: List of documents to rerank
|
200 |
+
model: Jina rerank model name
|
201 |
+
top_k: Number of top results to return
|
202 |
+
base_url: Jina API endpoint
|
203 |
+
api_key: Jina API key
|
204 |
+
**kwargs: Additional parameters
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
List of reranked documents with relevance scores
|
208 |
+
"""
|
209 |
+
if api_key is None:
|
210 |
+
api_key = os.getenv("JINA_API_KEY") or os.getenv("RERANK_API_KEY")
|
211 |
+
|
212 |
+
return await generic_rerank_api(
|
213 |
+
query=query,
|
214 |
+
documents=documents,
|
215 |
+
model=model,
|
216 |
+
base_url=base_url,
|
217 |
+
api_key=api_key,
|
218 |
+
top_k=top_k,
|
219 |
+
**kwargs
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
async def cohere_rerank(
|
224 |
+
query: str,
|
225 |
+
documents: List[Dict[str, Any]],
|
226 |
+
model: str = "rerank-english-v2.0",
|
227 |
+
top_k: Optional[int] = None,
|
228 |
+
base_url: str = "https://api.cohere.ai/v1/rerank",
|
229 |
+
api_key: Optional[str] = None,
|
230 |
+
**kwargs
|
231 |
+
) -> List[Dict[str, Any]]:
|
232 |
+
"""
|
233 |
+
Rerank documents using Cohere API.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
query: The search query
|
237 |
+
documents: List of documents to rerank
|
238 |
+
model: Cohere rerank model name
|
239 |
+
top_k: Number of top results to return
|
240 |
+
base_url: Cohere API endpoint
|
241 |
+
api_key: Cohere API key
|
242 |
+
**kwargs: Additional parameters
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
List of reranked documents with relevance scores
|
246 |
+
"""
|
247 |
+
if api_key is None:
|
248 |
+
api_key = os.getenv("COHERE_API_KEY") or os.getenv("RERANK_API_KEY")
|
249 |
+
|
250 |
+
return await generic_rerank_api(
|
251 |
+
query=query,
|
252 |
+
documents=documents,
|
253 |
+
model=model,
|
254 |
+
base_url=base_url,
|
255 |
+
api_key=api_key,
|
256 |
+
top_k=top_k,
|
257 |
+
**kwargs
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
# Convenience function for custom API endpoints
|
262 |
+
async def custom_rerank(
|
263 |
+
query: str,
|
264 |
+
documents: List[Dict[str, Any]],
|
265 |
+
model: str,
|
266 |
+
base_url: str,
|
267 |
+
api_key: str,
|
268 |
+
top_k: Optional[int] = None,
|
269 |
+
**kwargs
|
270 |
+
) -> List[Dict[str, Any]]:
|
271 |
+
"""
|
272 |
+
Rerank documents using a custom API endpoint.
|
273 |
+
This is useful for self-hosted or custom rerank services.
|
274 |
+
"""
|
275 |
+
return await generic_rerank_api(
|
276 |
+
query=query,
|
277 |
+
documents=documents,
|
278 |
+
model=model,
|
279 |
+
base_url=base_url,
|
280 |
+
api_key=api_key,
|
281 |
+
top_k=top_k,
|
282 |
+
**kwargs
|
283 |
+
)
|
284 |
+
|
285 |
+
|
286 |
+
if __name__ == "__main__":
|
287 |
+
import asyncio
|
288 |
+
|
289 |
+
async def main():
|
290 |
+
# Example usage
|
291 |
+
docs = [
|
292 |
+
{"content": "The capital of France is Paris."},
|
293 |
+
{"content": "Tokyo is the capital of Japan."},
|
294 |
+
{"content": "London is the capital of England."},
|
295 |
+
]
|
296 |
+
|
297 |
+
query = "What is the capital of France?"
|
298 |
+
|
299 |
+
result = await jina_rerank(
|
300 |
+
query=query,
|
301 |
+
documents=docs,
|
302 |
+
top_k=2,
|
303 |
+
api_key="your-api-key-here"
|
304 |
+
)
|
305 |
+
print(result)
|
306 |
+
|
307 |
+
asyncio.run(main())
|