LarFii
commited on
Commit
·
fe5faf4
1
Parent(s):
0792fda
update README.md
Browse files
README.md
CHANGED
@@ -20,8 +20,8 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|
20 |
</div>
|
21 |
|
22 |
## 🎉 News
|
23 |
-
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports Ollama models!
|
24 |
-
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
|
25 |
|
26 |
## Install
|
27 |
|
@@ -75,6 +75,42 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
|
|
75 |
# Perform hybrid search
|
76 |
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
77 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
### Using Hugging Face Models
|
79 |
If you want to use Hugging Face models, you only need to set LightRAG as follows:
|
80 |
```python
|
@@ -98,6 +134,7 @@ rag = LightRAG(
|
|
98 |
),
|
99 |
)
|
100 |
```
|
|
|
101 |
### Using Ollama Models
|
102 |
If you want to use Ollama models, you only need to set LightRAG as follows:
|
103 |
```python
|
@@ -119,11 +156,13 @@ rag = LightRAG(
|
|
119 |
),
|
120 |
)
|
121 |
```
|
|
|
122 |
### Batch Insert
|
123 |
```python
|
124 |
# Batch Insert: Insert multiple texts at once
|
125 |
rag.insert(["TEXT1", "TEXT2",...])
|
126 |
```
|
|
|
127 |
### Incremental Insert
|
128 |
|
129 |
```python
|
@@ -207,6 +246,7 @@ Output your evaluation in the following JSON format:
|
|
207 |
}}
|
208 |
}}
|
209 |
```
|
|
|
210 |
### Overall Performance Table
|
211 |
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
212 |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
@@ -233,6 +273,7 @@ Output your evaluation in the following JSON format:
|
|
233 |
|
234 |
## Reproduce
|
235 |
All the code can be found in the `./reproduce` directory.
|
|
|
236 |
### Step-0 Extract Unique Contexts
|
237 |
First, we need to extract unique contexts in the datasets.
|
238 |
```python
|
@@ -286,6 +327,7 @@ def extract_unique_contexts(input_directory, output_directory):
|
|
286 |
print("All files have been processed.")
|
287 |
|
288 |
```
|
|
|
289 |
### Step-1 Insert Contexts
|
290 |
For the extracted contexts, we insert them into the LightRAG system.
|
291 |
|
@@ -307,6 +349,7 @@ def insert_text(rag, file_path):
|
|
307 |
if retries == max_retries:
|
308 |
print("Insertion failed after exceeding the maximum number of retries")
|
309 |
```
|
|
|
310 |
### Step-2 Generate Queries
|
311 |
|
312 |
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
|
|
|
20 |
</div>
|
21 |
|
22 |
## 🎉 News
|
23 |
+
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-ollama-models)!
|
24 |
+
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-hugging-face-models)!
|
25 |
|
26 |
## Install
|
27 |
|
|
|
75 |
# Perform hybrid search
|
76 |
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
77 |
```
|
78 |
+
|
79 |
+
### Open AI-like APIs
|
80 |
+
LightRAG also support Open AI-like chat/embeddings APIs:
|
81 |
+
```python
|
82 |
+
async def llm_model_func(
|
83 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
84 |
+
) -> str:
|
85 |
+
return await openai_complete_if_cache(
|
86 |
+
"solar-mini",
|
87 |
+
prompt,
|
88 |
+
system_prompt=system_prompt,
|
89 |
+
history_messages=history_messages,
|
90 |
+
api_key=os.getenv("UPSTAGE_API_KEY"),
|
91 |
+
base_url="https://api.upstage.ai/v1/solar",
|
92 |
+
**kwargs
|
93 |
+
)
|
94 |
+
|
95 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
96 |
+
return await openai_embedding(
|
97 |
+
texts,
|
98 |
+
model="solar-embedding-1-large-query",
|
99 |
+
api_key=os.getenv("UPSTAGE_API_KEY"),
|
100 |
+
base_url="https://api.upstage.ai/v1/solar"
|
101 |
+
)
|
102 |
+
|
103 |
+
rag = LightRAG(
|
104 |
+
working_dir=WORKING_DIR,
|
105 |
+
llm_model_func=llm_model_func,
|
106 |
+
embedding_func=EmbeddingFunc(
|
107 |
+
embedding_dim=4096,
|
108 |
+
max_token_size=8192,
|
109 |
+
func=embedding_func
|
110 |
+
)
|
111 |
+
)
|
112 |
+
```
|
113 |
+
|
114 |
### Using Hugging Face Models
|
115 |
If you want to use Hugging Face models, you only need to set LightRAG as follows:
|
116 |
```python
|
|
|
134 |
),
|
135 |
)
|
136 |
```
|
137 |
+
|
138 |
### Using Ollama Models
|
139 |
If you want to use Ollama models, you only need to set LightRAG as follows:
|
140 |
```python
|
|
|
156 |
),
|
157 |
)
|
158 |
```
|
159 |
+
|
160 |
### Batch Insert
|
161 |
```python
|
162 |
# Batch Insert: Insert multiple texts at once
|
163 |
rag.insert(["TEXT1", "TEXT2",...])
|
164 |
```
|
165 |
+
|
166 |
### Incremental Insert
|
167 |
|
168 |
```python
|
|
|
246 |
}}
|
247 |
}}
|
248 |
```
|
249 |
+
|
250 |
### Overall Performance Table
|
251 |
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
252 |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
|
|
273 |
|
274 |
## Reproduce
|
275 |
All the code can be found in the `./reproduce` directory.
|
276 |
+
|
277 |
### Step-0 Extract Unique Contexts
|
278 |
First, we need to extract unique contexts in the datasets.
|
279 |
```python
|
|
|
327 |
print("All files have been processed.")
|
328 |
|
329 |
```
|
330 |
+
|
331 |
### Step-1 Insert Contexts
|
332 |
For the extracted contexts, we insert them into the LightRAG system.
|
333 |
|
|
|
349 |
if retries == max_retries:
|
350 |
print("Insertion failed after exceeding the maximum number of retries")
|
351 |
```
|
352 |
+
|
353 |
### Step-2 Generate Queries
|
354 |
|
355 |
We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
|