Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
author: Elena Lowery
|
| 3 |
+
|
| 4 |
+
This code sample shows how to invoke Large Language Models (LLMs) deployed in watsonx.ai.
|
| 5 |
+
Documentation: https://ibm.github.io/watson-machine-learning-sdk/foundation_models.html
|
| 6 |
+
You will need to provide your IBM Cloud API key and a watonx.ai project id (any project)
|
| 7 |
+
for accessing watsonx.ai in a .env file
|
| 8 |
+
This example shows simple use cases without comprehensive prompt tuning
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
# Install the wml api in your Python environment prior to running this example:
|
| 12 |
+
# pip install ibm-watson-machine-learning
|
| 13 |
+
# pip install ibm-cloud-sdk-core
|
| 14 |
+
# pip install python-dotenv
|
| 15 |
+
# pip install gradio
|
| 16 |
+
|
| 17 |
+
# For reading credentials from the .env file
|
| 18 |
+
import os
|
| 19 |
+
from dotenv import load_dotenv
|
| 20 |
+
|
| 21 |
+
# WML python SDK
|
| 22 |
+
from ibm_watson_machine_learning.foundation_models import Model
|
| 23 |
+
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
| 24 |
+
from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes, DecodingMethods
|
| 25 |
+
|
| 26 |
+
# For invocation of LLM with REST API
|
| 27 |
+
import requests, json
|
| 28 |
+
from ibm_cloud_sdk_core import IAMTokenManager
|
| 29 |
+
|
| 30 |
+
# For creating Gradio interface
|
| 31 |
+
import gradio as gr
|
| 32 |
+
|
| 33 |
+
# URL of the hosted LLMs is hardcoded because at this time all LLMs share the same endpoint
|
| 34 |
+
url = "https://us-south.ml.cloud.ibm.com"
|
| 35 |
+
|
| 36 |
+
# These global variables will be updated in get_credentials() functions
|
| 37 |
+
watsonx_project_id = ""
|
| 38 |
+
# Replace with your IBM Cloud key
|
| 39 |
+
api_key = ""
|
| 40 |
+
|
| 41 |
+
def get_credentials():
|
| 42 |
+
load_dotenv()
|
| 43 |
+
# Update the global variables that will be used for authentication in another function
|
| 44 |
+
globals()["api_key"] = os.getenv("api_key", None)
|
| 45 |
+
globals()["watsonx_project_id"] = os.getenv("project_id", None)
|
| 46 |
+
|
| 47 |
+
# The get_model function creates an LLM model object with the specified parameters
|
| 48 |
+
def get_model(model_type, max_tokens, min_tokens, decoding, temperature):
|
| 49 |
+
generate_params = {
|
| 50 |
+
GenParams.MAX_NEW_TOKENS: max_tokens,
|
| 51 |
+
GenParams.MIN_NEW_TOKENS: min_tokens,
|
| 52 |
+
GenParams.DECODING_METHOD: decoding,
|
| 53 |
+
GenParams.TEMPERATURE: temperature
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
model = Model(
|
| 57 |
+
model_id=model_type,
|
| 58 |
+
params=generate_params,
|
| 59 |
+
credentials={
|
| 60 |
+
"apikey": api_key,
|
| 61 |
+
"url": url
|
| 62 |
+
},
|
| 63 |
+
project_id=watsonx_project_id
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
def generate_response(model_type, prompt, max_tokens, min_tokens, decoding, temperature):
|
| 69 |
+
model = get_model(model_type, max_tokens, min_tokens, decoding, temperature)
|
| 70 |
+
generated_response = model.generate(prompt=prompt)
|
| 71 |
+
return generated_response['results'][0]['generated_text']
|
| 72 |
+
|
| 73 |
+
def demo_LLM_invocation(prompt, model_type="google/flan-ul2", max_tokens=300, min_tokens=50, decoding="sample", temperature=0.7):
|
| 74 |
+
get_credentials()
|
| 75 |
+
response = generate_response(model_type, prompt, max_tokens, min_tokens, decoding, temperature)
|
| 76 |
+
return response
|
| 77 |
+
|
| 78 |
+
# Gradio interface
|
| 79 |
+
def gradio_interface(prompt):
|
| 80 |
+
response = demo_LLM_invocation(prompt)
|
| 81 |
+
return response
|
| 82 |
+
|
| 83 |
+
# Create a Gradio app
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
fn=gradio_interface,
|
| 86 |
+
inputs="text",
|
| 87 |
+
outputs="text",
|
| 88 |
+
title="🌠 Test watsonx.ai LLM",
|
| 89 |
+
description="Ask a question and get a response from the IBM Watson LLM. For example: 'What is IBM?'"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
iface.launch()
|