Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,143 +1,96 @@
|
|
| 1 |
-
import logging
|
| 2 |
import gradio as gr
|
| 3 |
-
import tensorflow as tf
|
| 4 |
-
import numpy as np
|
| 5 |
import nltk
|
|
|
|
| 6 |
import pickle
|
| 7 |
from nltk.corpus import stopwords
|
| 8 |
from nltk.tokenize import word_tokenize
|
| 9 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
| 10 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
from tensorflow.keras.metrics import Precision, Recall
|
| 14 |
-
|
| 15 |
-
# Set up logging
|
| 16 |
-
logging.basicConfig(level=logging.DEBUG)
|
| 17 |
-
|
| 18 |
-
# Load the model
|
| 19 |
-
try:
|
| 20 |
-
model = tf.keras.models.load_model('new_phishing_detection_model.keras')
|
| 21 |
-
logging.info("Model loaded successfully.")
|
| 22 |
-
except Exception as e:
|
| 23 |
-
logging.error(f"Error loading model: {e}")
|
| 24 |
-
|
| 25 |
-
# Compile the model with standard loss and metrics
|
| 26 |
-
try:
|
| 27 |
-
model.compile(optimizer=optimizers.Adam(learning_rate=0.0005),
|
| 28 |
-
loss='binary_crossentropy',
|
| 29 |
-
metrics=['accuracy', Precision(), Recall()])
|
| 30 |
-
logging.info("Model compiled successfully.")
|
| 31 |
-
except Exception as e:
|
| 32 |
-
logging.error(f"Error compiling model: {e}")
|
| 33 |
|
| 34 |
-
#
|
| 35 |
nltk.download('punkt')
|
| 36 |
nltk.download('stopwords')
|
| 37 |
nltk.download('wordnet')
|
| 38 |
|
|
|
|
| 39 |
STOPWORDS = set(stopwords.words('english'))
|
| 40 |
lemmatizer = WordNetLemmatizer()
|
| 41 |
|
|
|
|
| 42 |
def preprocess_url(url):
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return ' '.join(tokens)
|
| 53 |
-
except Exception as e:
|
| 54 |
-
logging.error(f"Error in URL preprocessing: {e}")
|
| 55 |
-
return ""
|
| 56 |
|
|
|
|
| 57 |
def preprocess_html(html):
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
return ' '.join(tokens)
|
| 68 |
-
except Exception as e:
|
| 69 |
-
logging.error(f"Error in HTML preprocessing: {e}")
|
| 70 |
-
return ""
|
| 71 |
|
| 72 |
-
#
|
|
|
|
|
|
|
|
|
|
| 73 |
max_url_length = 180
|
| 74 |
max_html_length = 2000
|
| 75 |
max_words = 10000
|
| 76 |
|
| 77 |
-
# Load tokenizers
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
url_tokenizer = pickle.load(f)
|
| 81 |
-
with open('html_tokenizer.pkl', 'rb') as f:
|
| 82 |
-
html_tokenizer = pickle.load(f)
|
| 83 |
-
logging.info("Tokenizers loaded successfully.")
|
| 84 |
-
except Exception as e:
|
| 85 |
-
logging.error(f"Error loading tokenizers: {e}")
|
| 86 |
-
|
| 87 |
-
def preprocess_input(input_text, tokenizer, max_length):
|
| 88 |
-
try:
|
| 89 |
-
sequences = tokenizer.texts_to_sequences([input_text])
|
| 90 |
-
padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post', truncating='post')
|
| 91 |
-
return padded_sequences
|
| 92 |
-
except Exception as e:
|
| 93 |
-
logging.error(f"Error in input preprocessing: {e}")
|
| 94 |
-
return np.zeros((1, max_length))
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
is_url = input_type == "URL"
|
| 99 |
-
if is_url:
|
| 100 |
-
cleaned_text = preprocess_url(input_text)
|
| 101 |
-
input_data = preprocess_input(cleaned_text, url_tokenizer, max_url_length)
|
| 102 |
-
input_data = [input_data, np.zeros((1, max_html_length))] # dummy HTML input
|
| 103 |
-
else:
|
| 104 |
-
cleaned_text = preprocess_html(input_text)
|
| 105 |
-
input_data = preprocess_input(cleaned_text, html_tokenizer, max_html_length)
|
| 106 |
-
input_data = [np.zeros((1, max_url_length)), input_data] # dummy URL input
|
| 107 |
-
|
| 108 |
-
prediction = model.predict(input_data)[0][0]
|
| 109 |
-
return prediction
|
| 110 |
-
except Exception as e:
|
| 111 |
-
logging.error(f"Error in prediction: {e}")
|
| 112 |
-
return 0.0
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
if prediction > threshold:
|
| 127 |
-
return f"Warning: This site is likely a phishing site! ({prediction:.2f})"
|
| 128 |
-
else:
|
| 129 |
-
return f"Safe: This site is not likely a phishing site. ({prediction:.2f})"
|
| 130 |
-
|
| 131 |
-
iface = gr.Interface(
|
| 132 |
-
fn=phishing_detection,
|
| 133 |
inputs=[
|
| 134 |
-
gr.
|
| 135 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
],
|
| 137 |
-
outputs=gr.components.Textbox(label="Phishing Detection Result"),
|
| 138 |
title="Phishing Detection Model",
|
| 139 |
-
description="
|
| 140 |
-
theme="default"
|
| 141 |
)
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import nltk
|
| 3 |
+
import re
|
| 4 |
import pickle
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
from nltk.tokenize import word_tokenize
|
| 7 |
from nltk.stem import WordNetLemmatizer
|
| 8 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 9 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 10 |
+
from tensorflow import keras
|
| 11 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Ensure necessary NLTK resources are downloaded
|
| 14 |
nltk.download('punkt')
|
| 15 |
nltk.download('stopwords')
|
| 16 |
nltk.download('wordnet')
|
| 17 |
|
| 18 |
+
# Load Stopwords and Initialize Lemmatizer
|
| 19 |
STOPWORDS = set(stopwords.words('english'))
|
| 20 |
lemmatizer = WordNetLemmatizer()
|
| 21 |
|
| 22 |
+
# Function to clean and preprocess URL data
|
| 23 |
def preprocess_url(url):
|
| 24 |
+
url = url.lower() # Convert to lowercase
|
| 25 |
+
url = re.sub(r'https?://', '', url) # Remove http or https
|
| 26 |
+
url = re.sub(r'www\.', '', url) # Remove www
|
| 27 |
+
url = re.sub(r'[^a-zA-Z0-9]', ' ', url) # Remove special characters
|
| 28 |
+
url = re.sub(r'\s+', ' ', url).strip() # Remove extra spaces
|
| 29 |
+
tokens = word_tokenize(url) # Tokenize
|
| 30 |
+
tokens = [word for word in tokens if word not in STOPWORDS] # Remove stopwords
|
| 31 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization
|
| 32 |
+
return ' '.join(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Function to clean and preprocess HTML data
|
| 35 |
def preprocess_html(html):
|
| 36 |
+
html = re.sub(r'<[^>]+>', ' ', html) # Remove HTML tags
|
| 37 |
+
html = html.lower() # Convert to lowercase
|
| 38 |
+
html = re.sub(r'https?://', '', html) # Remove http or https
|
| 39 |
+
html = re.sub(r'[^a-zA-Z0-9]', ' ', html) # Remove special characters
|
| 40 |
+
html = re.sub(r'\s+', ' ', html).strip() # Remove extra spaces
|
| 41 |
+
tokens = word_tokenize(html) # Tokenize
|
| 42 |
+
tokens = [word for word in tokens if word not in STOPWORDS] # Remove stopwords
|
| 43 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization
|
| 44 |
+
return ' '.join(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Load trained model
|
| 47 |
+
model = keras.models.load_model('/content/drive/MyDrive/fix_phishing_detection_model.keras')
|
| 48 |
+
|
| 49 |
+
# Define maximum length and number of words
|
| 50 |
max_url_length = 180
|
| 51 |
max_html_length = 2000
|
| 52 |
max_words = 10000
|
| 53 |
|
| 54 |
+
# Load the fitted tokenizers
|
| 55 |
+
with open('url_tokenizer.pkl', 'rb') as file:
|
| 56 |
+
url_tokenizer = pickle.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
with open('html_tokenizer.pkl', 'rb') as file:
|
| 59 |
+
html_tokenizer = pickle.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Define the prediction function
|
| 62 |
+
def predict_phishing(url, html):
|
| 63 |
+
cleaned_url = preprocess_url(url)
|
| 64 |
+
cleaned_html = preprocess_html(html)
|
| 65 |
+
|
| 66 |
+
new_url_sequences = url_tokenizer.texts_to_sequences([cleaned_url])
|
| 67 |
+
new_url_padded = pad_sequences(new_url_sequences, maxlen=max_url_length, padding='post', truncating='post')
|
| 68 |
+
|
| 69 |
+
new_html_sequences = html_tokenizer.texts_to_sequences([cleaned_html])
|
| 70 |
+
new_html_padded = pad_sequences(new_html_sequences, maxlen=max_html_length, padding='post', truncating='post')
|
| 71 |
+
|
| 72 |
+
new_predictions_prob = model.predict([new_url_padded, new_html_padded])
|
| 73 |
+
new_predictions = (new_predictions_prob > 0.5).astype(int)
|
| 74 |
+
|
| 75 |
+
predicted_category = "Spam" if new_predictions[0][0] == 1 else "Legitimate"
|
| 76 |
+
predicted_probability = f"{new_predictions_prob[0][0]:.4f}"
|
| 77 |
+
|
| 78 |
+
return predicted_category, predicted_probability
|
| 79 |
|
| 80 |
+
# Create Gradio Interface
|
| 81 |
+
interface = gr.Interface(
|
| 82 |
+
fn=predict_phishing,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
inputs=[
|
| 84 |
+
gr.inputs.Textbox(label="URL"),
|
| 85 |
+
gr.inputs.Textbox(label="HTML Snippet")
|
| 86 |
+
],
|
| 87 |
+
outputs=[
|
| 88 |
+
gr.outputs.Textbox(label="Predicted Category"),
|
| 89 |
+
gr.outputs.Textbox(label="Predicted Probability")
|
| 90 |
],
|
|
|
|
| 91 |
title="Phishing Detection Model",
|
| 92 |
+
description="Enter a URL and its HTML content to predict if it's spam or legitimate."
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
+
# Launch the Gradio interface
|
| 96 |
+
interface.launch()
|