Spaces:
Running
Running
Commit
·
58eae37
1
Parent(s):
2371c3d
Deploy with original FastAPI UI
Browse files- Dockerfile +45 -0
- README.md +75 -4
- app.py +368 -0
- requirements.txt +9 -0
- sample_reviews.txt +19 -0
Dockerfile
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Install system dependencies
|
7 |
+
RUN apt-get update && apt-get install -y \
|
8 |
+
gcc \
|
9 |
+
g++ \
|
10 |
+
curl \
|
11 |
+
&& rm -rf /var/lib/apt/lists/*
|
12 |
+
|
13 |
+
# Copy requirements first for better caching
|
14 |
+
COPY requirements.txt .
|
15 |
+
|
16 |
+
# Install Python dependencies
|
17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
18 |
+
|
19 |
+
# Download spaCy model
|
20 |
+
RUN python -m spacy download en_core_web_lg
|
21 |
+
|
22 |
+
# Copy application code
|
23 |
+
COPY app.py .
|
24 |
+
COPY sample_reviews.txt .
|
25 |
+
|
26 |
+
# Create a non-root user
|
27 |
+
RUN useradd -m -u 1000 user
|
28 |
+
USER user
|
29 |
+
ENV HOME=/home/user \
|
30 |
+
PATH=/home/user/.local/bin:$PATH
|
31 |
+
|
32 |
+
WORKDIR $HOME/app
|
33 |
+
|
34 |
+
# Copy files as user
|
35 |
+
COPY --chown=user . $HOME/app
|
36 |
+
|
37 |
+
# Expose port 7860 (required by HF Spaces)
|
38 |
+
EXPOSE 7860
|
39 |
+
|
40 |
+
# Health check
|
41 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
42 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
43 |
+
|
44 |
+
# Command to run the application
|
45 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,11 +1,82 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ABSA Restaurant Reviews (FastAPI)
|
3 |
+
emoji: 🍽️
|
4 |
+
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: docker
|
7 |
+
app_port: 7860
|
8 |
pinned: false
|
9 |
license: mit
|
10 |
+
models:
|
11 |
+
- ronalhung/setfit-absa-restaurants-aspect
|
12 |
+
- ronalhung/setfit-absa-restaurants-polarity
|
13 |
+
tags:
|
14 |
+
- sentiment-analysis
|
15 |
+
- aspect-based-sentiment-analysis
|
16 |
+
- setfit
|
17 |
+
- restaurant-reviews
|
18 |
+
- nlp
|
19 |
+
- fastapi
|
20 |
+
- react
|
21 |
---
|
22 |
|
23 |
+
# 🍽️ Aspect-Based Sentiment Analysis for Restaurant Reviews (FastAPI + React)
|
24 |
+
|
25 |
+
This application performs **Aspect-Based Sentiment Analysis (ABSA)** on restaurant reviews using SetFit models from Hugging Face.
|
26 |
+
|
27 |
+
**Original FastAPI + React interface** preserved with beautiful modern UI.
|
28 |
+
|
29 |
+
## Features
|
30 |
+
|
31 |
+
- 📝 **Text Input**: Enter restaurant reviews directly
|
32 |
+
- 📁 **File Upload**: Upload .txt files containing reviews
|
33 |
+
- 🎯 **Aspect Extraction**: Automatically detect aspects (food, service, atmosphere, etc.)
|
34 |
+
- 💭 **Sentiment Analysis**: Classify sentiment for each aspect (positive, negative, neutral, conflict)
|
35 |
+
- 🎨 **Modern UI**: Beautiful React interface with TailwindCSS
|
36 |
+
- ⚡ **Fast API**: High-performance backend with FastAPI
|
37 |
+
|
38 |
+
## Models Used
|
39 |
+
|
40 |
+
1. **[ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect)** - Aspect extraction (86.1% accuracy)
|
41 |
+
2. **[ronalhung/setfit-absa-restaurants-polarity](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity)** - Sentiment classification (69.6% accuracy)
|
42 |
+
|
43 |
+
## How to Use
|
44 |
+
|
45 |
+
1. **Text Input**: Type or paste a restaurant review in the text area
|
46 |
+
2. **File Upload**: Click "Upload Text File" to load a .txt file
|
47 |
+
3. **Analyze**: Click "Analyze Text" to get results
|
48 |
+
4. **Results**: View detected aspects and their sentiments with color-coded labels
|
49 |
+
|
50 |
+
## Example
|
51 |
+
|
52 |
+
**Input:** "The food was excellent but the service was terrible."
|
53 |
+
|
54 |
+
**Output:**
|
55 |
+
- Aspect: "food" → Sentiment: positive (green)
|
56 |
+
- Aspect: "service" → Sentiment: negative (red)
|
57 |
+
|
58 |
+
## API Endpoints
|
59 |
+
|
60 |
+
- `GET /` - Web interface
|
61 |
+
- `POST /analyze` - Analyze text (JSON API)
|
62 |
+
- `GET /health` - Health check
|
63 |
+
|
64 |
+
## Technology Stack
|
65 |
+
|
66 |
+
- **Backend**: FastAPI + SetFit models
|
67 |
+
- **Frontend**: React + TailwindCSS (inline)
|
68 |
+
- **Models**: SetFit with sentence-transformers/all-MiniLM-L6-v2
|
69 |
+
- **Deployment**: Docker on Hugging Face Spaces
|
70 |
+
|
71 |
+
## Citation
|
72 |
+
|
73 |
+
```bibtex
|
74 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
75 |
+
doi = {10.48550/ARXIV.2209.11055},
|
76 |
+
url = {https://arxiv.org/abs/2209.11055},
|
77 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
78 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
79 |
+
publisher = {arXiv},
|
80 |
+
year = {2022},
|
81 |
+
}
|
82 |
+
```
|
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import HTMLResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from setfit import AbsaModel
|
7 |
+
import logging
|
8 |
+
from typing import List, Dict, Any
|
9 |
+
import uvicorn
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Initialize FastAPI app
|
17 |
+
app = FastAPI(title="ABSA Web Application", description="Aspect-Based Sentiment Analysis using SetFit models")
|
18 |
+
|
19 |
+
# Add CORS middleware
|
20 |
+
app.add_middleware(
|
21 |
+
CORSMiddleware,
|
22 |
+
allow_origins=["*"],
|
23 |
+
allow_credentials=True,
|
24 |
+
allow_methods=["*"],
|
25 |
+
allow_headers=["*"],
|
26 |
+
)
|
27 |
+
|
28 |
+
# Global variable to store the model
|
29 |
+
absa_model = None
|
30 |
+
|
31 |
+
class TextInput(BaseModel):
|
32 |
+
text: str
|
33 |
+
|
34 |
+
class ABSAResponse(BaseModel):
|
35 |
+
text: str
|
36 |
+
predictions: List[Dict[str, Any]]
|
37 |
+
success: bool
|
38 |
+
message: str
|
39 |
+
|
40 |
+
async def load_model():
|
41 |
+
"""Load the ABSA model on startup"""
|
42 |
+
global absa_model
|
43 |
+
try:
|
44 |
+
logger.info("Loading ABSA models...")
|
45 |
+
absa_model = AbsaModel.from_pretrained(
|
46 |
+
"ronalhung/setfit-absa-restaurants-aspect",
|
47 |
+
"ronalhung/setfit-absa-restaurants-polarity",
|
48 |
+
)
|
49 |
+
logger.info("Models loaded successfully!")
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"Failed to load models: {str(e)}")
|
52 |
+
raise e
|
53 |
+
|
54 |
+
@app.on_event("startup")
|
55 |
+
async def startup_event():
|
56 |
+
"""Load model when the application starts"""
|
57 |
+
await load_model()
|
58 |
+
|
59 |
+
@app.get("/", response_class=HTMLResponse)
|
60 |
+
async def get_home():
|
61 |
+
"""Serve the main HTML page"""
|
62 |
+
html_content = """
|
63 |
+
<!DOCTYPE html>
|
64 |
+
<html lang="en">
|
65 |
+
<head>
|
66 |
+
<meta charset="UTF-8">
|
67 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
68 |
+
<title>ABSA - Aspect-Based Sentiment Analysis</title>
|
69 |
+
<script src="https://cdn.tailwindcss.com"></script>
|
70 |
+
<script src="https://unpkg.com/react@18/umd/react.development.js"></script>
|
71 |
+
<script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"></script>
|
72 |
+
<script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>
|
73 |
+
</head>
|
74 |
+
<body class="bg-gray-50">
|
75 |
+
<div id="root"></div>
|
76 |
+
<script type="text/babel">
|
77 |
+
const { useState, useRef } = React;
|
78 |
+
|
79 |
+
const App = () => {
|
80 |
+
const [text, setText] = useState('');
|
81 |
+
const [results, setResults] = useState(null);
|
82 |
+
const [loading, setLoading] = useState(false);
|
83 |
+
const [error, setError] = useState('');
|
84 |
+
const fileInputRef = useRef(null);
|
85 |
+
|
86 |
+
const handleAnalyze = async () => {
|
87 |
+
if (!text.trim()) {
|
88 |
+
setError('Please enter some text to analyze');
|
89 |
+
return;
|
90 |
+
}
|
91 |
+
|
92 |
+
setLoading(true);
|
93 |
+
setError('');
|
94 |
+
|
95 |
+
try {
|
96 |
+
const response = await fetch('/analyze', {
|
97 |
+
method: 'POST',
|
98 |
+
headers: {
|
99 |
+
'Content-Type': 'application/json',
|
100 |
+
},
|
101 |
+
body: JSON.stringify({ text: text.trim() }),
|
102 |
+
});
|
103 |
+
|
104 |
+
const data = await response.json();
|
105 |
+
|
106 |
+
if (data.success) {
|
107 |
+
setResults(data);
|
108 |
+
} else {
|
109 |
+
setError(data.message || 'Analysis failed');
|
110 |
+
}
|
111 |
+
} catch (err) {
|
112 |
+
setError('Failed to analyze text. Please try again.');
|
113 |
+
console.error('Error:', err);
|
114 |
+
} finally {
|
115 |
+
setLoading(false);
|
116 |
+
}
|
117 |
+
};
|
118 |
+
|
119 |
+
const handleFileUpload = async (event) => {
|
120 |
+
const file = event.target.files[0];
|
121 |
+
if (!file) return;
|
122 |
+
|
123 |
+
if (!file.name.endsWith('.txt')) {
|
124 |
+
setError('Please upload a .txt file');
|
125 |
+
return;
|
126 |
+
}
|
127 |
+
|
128 |
+
try {
|
129 |
+
const text = await file.text();
|
130 |
+
setText(text);
|
131 |
+
setError('');
|
132 |
+
} catch (err) {
|
133 |
+
setError('Failed to read file. Please try again.');
|
134 |
+
console.error('Error reading file:', err);
|
135 |
+
}
|
136 |
+
};
|
137 |
+
|
138 |
+
const clearResults = () => {
|
139 |
+
setText('');
|
140 |
+
setResults(null);
|
141 |
+
setError('');
|
142 |
+
};
|
143 |
+
|
144 |
+
const getSentimentColor = (polarity) => {
|
145 |
+
switch (polarity) {
|
146 |
+
case 'positive': return 'text-green-600 bg-green-100';
|
147 |
+
case 'negative': return 'text-red-600 bg-red-100';
|
148 |
+
case 'neutral': return 'text-gray-600 bg-gray-100';
|
149 |
+
case 'conflict': return 'text-yellow-600 bg-yellow-100';
|
150 |
+
default: return 'text-gray-600 bg-gray-100';
|
151 |
+
}
|
152 |
+
};
|
153 |
+
|
154 |
+
return (
|
155 |
+
<div className="min-h-screen bg-gradient-to-br from-blue-50 to-indigo-100">
|
156 |
+
<div className="container mx-auto px-4 py-8">
|
157 |
+
<div className="max-w-4xl mx-auto">
|
158 |
+
{/* Header */}
|
159 |
+
<div className="text-center mb-8">
|
160 |
+
<h1 className="text-4xl font-bold text-gray-800 mb-4">
|
161 |
+
Aspect-Based Sentiment Analysis
|
162 |
+
</h1>
|
163 |
+
<p className="text-lg text-gray-600">
|
164 |
+
Analyze aspects and sentiments in restaurant reviews using SetFit models
|
165 |
+
</p>
|
166 |
+
</div>
|
167 |
+
|
168 |
+
{/* Input Section */}
|
169 |
+
<div className="bg-white rounded-lg shadow-lg p-6 mb-6">
|
170 |
+
<h2 className="text-2xl font-semibold text-gray-800 mb-4">Input Text</h2>
|
171 |
+
|
172 |
+
{/* File Upload */}
|
173 |
+
<div className="mb-4">
|
174 |
+
<label className="block text-sm font-medium text-gray-700 mb-2">
|
175 |
+
Upload Text File (.txt)
|
176 |
+
</label>
|
177 |
+
<input
|
178 |
+
ref={fileInputRef}
|
179 |
+
type="file"
|
180 |
+
accept=".txt"
|
181 |
+
onChange={handleFileUpload}
|
182 |
+
className="block w-full text-sm text-gray-500
|
183 |
+
file:mr-4 file:py-2 file:px-4
|
184 |
+
file:rounded-md file:border-0
|
185 |
+
file:text-sm file:font-semibold
|
186 |
+
file:bg-blue-50 file:text-blue-700
|
187 |
+
hover:file:bg-blue-100
|
188 |
+
cursor-pointer"
|
189 |
+
/>
|
190 |
+
</div>
|
191 |
+
|
192 |
+
{/* Text Area */}
|
193 |
+
<div className="mb-4">
|
194 |
+
<label className="block text-sm font-medium text-gray-700 mb-2">
|
195 |
+
Or type/paste your text here:
|
196 |
+
</label>
|
197 |
+
<textarea
|
198 |
+
value={text}
|
199 |
+
onChange={(e) => setText(e.target.value)}
|
200 |
+
placeholder="Enter restaurant review text for analysis..."
|
201 |
+
className="w-full h-32 p-3 border border-gray-300 rounded-md focus:ring-2 focus:ring-blue-500 focus:border-blue-500 resize-none"
|
202 |
+
/>
|
203 |
+
</div>
|
204 |
+
|
205 |
+
{/* Error Message */}
|
206 |
+
{error && (
|
207 |
+
<div className="mb-4 p-3 bg-red-100 border border-red-400 text-red-700 rounded-md">
|
208 |
+
{error}
|
209 |
+
</div>
|
210 |
+
)}
|
211 |
+
|
212 |
+
{/* Action Buttons */}
|
213 |
+
<div className="flex gap-3">
|
214 |
+
<button
|
215 |
+
onClick={handleAnalyze}
|
216 |
+
disabled={loading || !text.trim()}
|
217 |
+
className="px-6 py-2 bg-blue-600 text-white rounded-md hover:bg-blue-700
|
218 |
+
disabled:bg-gray-400 disabled:cursor-not-allowed
|
219 |
+
flex items-center gap-2 font-medium transition-colors"
|
220 |
+
>
|
221 |
+
{loading ? (
|
222 |
+
<>
|
223 |
+
<div className="animate-spin rounded-full h-4 w-4 border-b-2 border-white"></div>
|
224 |
+
Analyzing...
|
225 |
+
</>
|
226 |
+
) : (
|
227 |
+
'Analyze Text'
|
228 |
+
)}
|
229 |
+
</button>
|
230 |
+
|
231 |
+
<button
|
232 |
+
onClick={clearResults}
|
233 |
+
className="px-6 py-2 bg-gray-500 text-white rounded-md hover:bg-gray-600
|
234 |
+
font-medium transition-colors"
|
235 |
+
>
|
236 |
+
Clear
|
237 |
+
</button>
|
238 |
+
</div>
|
239 |
+
</div>
|
240 |
+
|
241 |
+
{/* Results Section */}
|
242 |
+
{results && (
|
243 |
+
<div className="bg-white rounded-lg shadow-lg p-6">
|
244 |
+
<h2 className="text-2xl font-semibold text-gray-800 mb-4">Analysis Results</h2>
|
245 |
+
|
246 |
+
{/* Original Text */}
|
247 |
+
<div className="mb-6">
|
248 |
+
<h3 className="text-lg font-medium text-gray-700 mb-2">Original Text:</h3>
|
249 |
+
<div className="p-3 bg-gray-50 rounded-md border">
|
250 |
+
{results.text}
|
251 |
+
</div>
|
252 |
+
</div>
|
253 |
+
|
254 |
+
{/* Predictions */}
|
255 |
+
<div>
|
256 |
+
<h3 className="text-lg font-medium text-gray-700 mb-4">
|
257 |
+
Detected Aspects & Sentiments:
|
258 |
+
</h3>
|
259 |
+
|
260 |
+
{results.predictions && results.predictions.length > 0 ? (
|
261 |
+
<div className="space-y-3">
|
262 |
+
{results.predictions.map((prediction, index) => (
|
263 |
+
<div key={index} className="border border-gray-200 rounded-md p-4">
|
264 |
+
<div className="flex items-center justify-between mb-2">
|
265 |
+
<span className="text-sm font-medium text-gray-600">
|
266 |
+
Aspect Span:
|
267 |
+
</span>
|
268 |
+
<span className="font-semibold text-gray-800">
|
269 |
+
"{prediction.span}"
|
270 |
+
</span>
|
271 |
+
</div>
|
272 |
+
<div className="flex items-center justify-between">
|
273 |
+
<span className="text-sm font-medium text-gray-600">
|
274 |
+
Sentiment:
|
275 |
+
</span>
|
276 |
+
<span className={`px-3 py-1 rounded-full text-sm font-medium ${getSentimentColor(prediction.polarity)}`}>
|
277 |
+
{prediction.polarity}
|
278 |
+
</span>
|
279 |
+
</div>
|
280 |
+
</div>
|
281 |
+
))}
|
282 |
+
</div>
|
283 |
+
) : (
|
284 |
+
<div className="text-gray-500 text-center py-4">
|
285 |
+
No aspects detected in the text.
|
286 |
+
</div>
|
287 |
+
)}
|
288 |
+
</div>
|
289 |
+
</div>
|
290 |
+
)}
|
291 |
+
</div>
|
292 |
+
</div>
|
293 |
+
</div>
|
294 |
+
);
|
295 |
+
};
|
296 |
+
|
297 |
+
ReactDOM.render(<App />, document.getElementById('root'));
|
298 |
+
</script>
|
299 |
+
</body>
|
300 |
+
</html>
|
301 |
+
"""
|
302 |
+
return html_content
|
303 |
+
|
304 |
+
@app.post("/analyze", response_model=ABSAResponse)
|
305 |
+
async def analyze_text(input_data: TextInput):
|
306 |
+
"""Analyze text for aspects and sentiment"""
|
307 |
+
global absa_model
|
308 |
+
|
309 |
+
if absa_model is None:
|
310 |
+
raise HTTPException(status_code=503, detail="Model not loaded yet. Please try again later.")
|
311 |
+
|
312 |
+
try:
|
313 |
+
text = input_data.text.strip()
|
314 |
+
if not text:
|
315 |
+
return ABSAResponse(
|
316 |
+
text=text,
|
317 |
+
predictions=[],
|
318 |
+
success=False,
|
319 |
+
message="Empty text provided"
|
320 |
+
)
|
321 |
+
|
322 |
+
logger.info(f"Analyzing text: {text[:100]}...")
|
323 |
+
|
324 |
+
# Run ABSA analysis
|
325 |
+
predictions = absa_model(text)
|
326 |
+
|
327 |
+
# Format predictions for response
|
328 |
+
formatted_predictions = []
|
329 |
+
if predictions:
|
330 |
+
for pred in predictions:
|
331 |
+
formatted_predictions.append({
|
332 |
+
"span": pred.get("span", ""),
|
333 |
+
"polarity": pred.get("polarity", "neutral")
|
334 |
+
})
|
335 |
+
|
336 |
+
return ABSAResponse(
|
337 |
+
text=text,
|
338 |
+
predictions=formatted_predictions,
|
339 |
+
success=True,
|
340 |
+
message="Analysis completed successfully"
|
341 |
+
)
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
logger.error(f"Error during analysis: {str(e)}")
|
345 |
+
return ABSAResponse(
|
346 |
+
text=input_data.text,
|
347 |
+
predictions=[],
|
348 |
+
success=False,
|
349 |
+
message=f"Analysis failed: {str(e)}"
|
350 |
+
)
|
351 |
+
|
352 |
+
@app.get("/health")
|
353 |
+
async def health_check():
|
354 |
+
"""Health check endpoint"""
|
355 |
+
return {
|
356 |
+
"status": "healthy",
|
357 |
+
"model_loaded": absa_model is not None,
|
358 |
+
"message": "ABSA service is running"
|
359 |
+
}
|
360 |
+
|
361 |
+
if __name__ == "__main__":
|
362 |
+
uvicorn.run(
|
363 |
+
"app:app",
|
364 |
+
host="0.0.0.0",
|
365 |
+
port=8000,
|
366 |
+
reload=True,
|
367 |
+
log_level="info"
|
368 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.104.1
|
2 |
+
uvicorn[standard]==0.24.0
|
3 |
+
setfit==1.1.2
|
4 |
+
sentence-transformers==4.1.0
|
5 |
+
spacy==3.8.7
|
6 |
+
transformers==4.52.4
|
7 |
+
torch==2.6.0
|
8 |
+
python-multipart==0.0.6
|
9 |
+
pydantic==2.5.0
|
sample_reviews.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The food was absolutely delicious, but the service was quite slow and the staff seemed overwhelmed.
|
2 |
+
|
3 |
+
Amazing atmosphere with great music and lighting. However, the prices are way too expensive for the portion sizes.
|
4 |
+
|
5 |
+
The restaurant has a beautiful interior design and the food quality is outstanding. Highly recommend the pasta dishes!
|
6 |
+
|
7 |
+
Terrible experience overall. The food was cold, the service was rude, and the place was very noisy. Will not come back.
|
8 |
+
|
9 |
+
Great location downtown with easy parking. The food was okay, nothing special, but the staff was very friendly and accommodating.
|
10 |
+
|
11 |
+
The pizza was fantastic and the wine selection is impressive. The only downside was the long wait time for a table.
|
12 |
+
|
13 |
+
Cozy little place with excellent customer service. The menu has good variety but some dishes were a bit bland.
|
14 |
+
|
15 |
+
Outstanding food quality and presentation. The chef really knows what they're doing. The only issue is the cramped seating area.
|
16 |
+
|
17 |
+
Perfect for a romantic dinner. The ambiance is lovely, food is excellent, and the service is attentive. Definitely worth the price.
|
18 |
+
|
19 |
+
Mixed feelings about this place. Great cocktails and appetizers, but the main courses were disappointing and overpriced.
|