File size: 5,139 Bytes
c17bef1 873ea67 c17bef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import gradio as gr
import numpy as np
import cv2
# Load the model class definition
from models.efficientnet_b0 import EfficientNetB0Classifier
# Constants
MODEL_PATH = "efficientnet_best9912.pth"
CLASS_NAMES = ["Fresh", "Not Fresh"]
INPUT_SIZE = 380
MODEL_ACCURACY = "99.12%" # Your model's validation accuracy
# Define preprocessing pipeline
preprocess = transforms.Compose([
transforms.Resize((INPUT_SIZE, INPUT_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Load model
def load_model():
model = EfficientNetB0Classifier(train_base=False)
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')))
model.eval()
return model
model = load_model()
def process_prediction(confidence_score):
"""Convert model output to detailed prediction information"""
fresh_prob = float(confidence_score)
not_fresh_prob = float(1.0 - confidence_score)
prediction = "Fresh" if fresh_prob > 0.5 else "Not Fresh"
confidence = fresh_prob if fresh_prob > 0.5 else not_fresh_prob
return {
"Fresh": fresh_prob,
"Not Fresh": not_fresh_prob
}, prediction, confidence
def analyze_image(image):
"""Analyze the image and return detailed results"""
if image is None:
return None, None, None, None
# Convert to RGB if needed
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 4: # RGBA
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
# Prepare image for model
pil_image = Image.fromarray(image).convert('RGB')
input_tensor = preprocess(pil_image).unsqueeze(0)
# Get prediction
with torch.no_grad():
output = model(input_tensor)
confidence_score = output.item()
# Process results
probabilities, prediction, confidence = process_prediction(confidence_score)
# Create result message
confidence_percentage = f"{confidence * 100:.2f}%"
message = f"Prediction: {prediction} (Confidence: {confidence_percentage})"
# Prepare visualization
display_image = cv2.resize(image, (INPUT_SIZE, INPUT_SIZE))
return probabilities, message, display_image, confidence_percentage
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-radius: 8px;
background: linear-gradient(45deg, #4CAF50, #45a049);
border: none;
font-size: 1.2em;
padding: 10px 20px;
}
.gr-button:hover {
background: linear-gradient(45deg, #45a049, #4CAF50);
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.footer {
margin-top: 20px;
text-align: center;
font-size: 0.8em;
}
.confidence {
font-size: 1.2em;
font-weight: bold;
margin-top: 10px;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.result-box {
background: #f8f9fa;
border-radius: 10px;
padding: 20px;
margin-top: 20px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown(
"""
# π Fish Freshness Classifier
Upload a fish image and get instant freshness analysis using our advanced AI model.
### Model Performance
- Architecture: EfficientNet-B0
- Validation Accuracy: """ + MODEL_ACCURACY + """
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Fish Image",
type="numpy",
height=400,
sources=["upload", "webcam", "clipboard"]
)
upload_button = gr.Button("πΈ Analyze Freshness", variant="primary", size="lg")
with gr.Column(scale=1):
with gr.Group(elem_classes="result-box"):
output_label = gr.Label(
num_top_classes=2,
label="Freshness Analysis",
show_label=True
)
result_message = gr.Textbox(
label="Detailed Result",
show_copy_button=True
)
confidence_indicator = gr.Textbox(
label="Confidence Level",
show_copy_button=True
)
gr.Markdown(
"""
### π Best Practices
- Use clear, well-lit images
- Ensure the fish is clearly visible
- Include key features (eyes, gills, skin)
- Avoid blurry or dark photos
"""
)
# Set up the prediction flow
upload_button.click(
fn=analyze_image,
inputs=input_image,
outputs=[output_label, result_message, input_image, confidence_indicator]
)
if __name__ == "__main__":
demo.launch(share=True)
|