import torch | |
import torch.nn as nn | |
from torchvision import models | |
class EfficientNetB4Classifier(nn.Module): | |
def __init__(self, train_base=False): | |
super().__init__() | |
self.base_model = models.efficientnet_b4(weights=models.EfficientNet_B4_Weights.DEFAULT) | |
for param in self.base_model.features.parameters(): | |
param.requires_grad = train_base | |
self.classifier = nn.Sequential( | |
nn.BatchNorm1d(1792), | |
nn.Dropout(0.5), | |
nn.Linear(1792, 256), | |
nn.ReLU(), | |
nn.BatchNorm1d(256), | |
nn.Dropout(0.5), | |
nn.Linear(256, 1), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
x = self.base_model.features(x) | |
x = self.base_model.avgpool(x) | |
x = torch.flatten(x, 1) | |
return self.classifier(x) | |