File size: 17,878 Bytes
7fc3ad4 4bd4500 011b368 4bd4500 7fc3ad4 4bd4500 7fc3ad4 8f66d4d 7fc3ad4 4bd4500 7fc3ad4 656168e 7fc3ad4 65c43d8 656168e 65c43d8 7fc3ad4 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 011b368 65c43d8 0139f78 e1ae8b1 0139f78 e1ae8b1 0139f78 e1ae8b1 0139f78 011b368 7fc3ad4 656168e 7fc3ad4 65c43d8 656168e 65c43d8 7fc3ad4 4bd4500 a30ffa6 656168e 7fc3ad4 159c6c1 8f7873a 159c6c1 7fc3ad4 65c43d8 656168e 65c43d8 7fc3ad4 656168e 65c43d8 656168e 65c43d8 656168e 65c43d8 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 656168e 7fc3ad4 4bd4500 7fc3ad4 4bd4500 f9b1ac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF
import io
import json # For parsing extra_options_json
from tempfile import TemporaryDirectory # For offload_folder
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from pydantic import BaseModel
from typing import List, Tuple # Tuple for stream_chat return type hint
# FastAPI App Initialization
app = FastAPI()
# Pydantic model for API response
class CaptionResponse(BaseModel):
prompt_that_was_used: str
caption: str
CLIP_PATH = "google/siglip-so400m-patch14-384"
CHECKPOINT_PATH = Path("cgrkzexw-599808")
# TITLE is not used for API
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
# HF_TOKEN is not used in the API version
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# Determine device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
assert (CHECKPOINT_PATH / "clip_model.pt").exists()
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to(device) # Move to device first
if device.type == 'cuda':
clip_model = clip_model.to(dtype=torch.bfloat16)
elif device.type == 'cpu':
clip_model = clip_model.to(dtype=torch.float32)
# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM")
print("Loading VLM's custom text model")
if device.type == 'cuda':
# Attempt to load with bfloat16 on CUDA, with fallback for offloading if necessary
try:
print("Attempting to load LLM on CUDA with bfloat16...")
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto", # Should prioritize GPU
torch_dtype=torch.bfloat16
)
except ValueError as ve:
if "offload_dir" in str(ve):
print(f"CUDA bfloat16 loading failed, needing offload_dir: {ve}")
print("Attempting to load LLM on CUDA with disk offloading...")
model_offload_dir = TemporaryDirectory().name
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto",
torch_dtype=torch.bfloat16,
offload_folder=model_offload_dir,
offload_state_dict=True
)
print(f"LLM loaded on CUDA with offloading to {model_offload_dir}. WARNING: This may be slow.")
else:
raise # Re-raise other ValueErrors
except Exception as e:
print(f"Failed to load LLM on CUDA: {e}")
raise
else:
# CPU-only loading: Directly attempt to load with disk offloading.
print("Attempting to load LLM on CPU directly with disk offloading (float32)...")
try:
model_offload_dir_cpu = TemporaryDirectory().name
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto", # Allow accelerate to use CPU and disk
torch_dtype=torch.float32,
offload_folder=model_offload_dir_cpu,
offload_state_dict=True
)
print(f"LLM loaded on CPU with offloading to {model_offload_dir_cpu}. WARNING: This will be very slow.")
except Exception as e_cpu_offload:
print(f"CPU loading with disk offloading failed: {e_cpu_offload}")
raise # Re-raise the exception if CPU loading with offloading fails
text_model.eval()
# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) # Load to CPU first
image_adapter.eval()
image_adapter.to(device) # Move to device first
if device.type == 'cuda':
image_adapter = image_adapter.to(dtype=torch.bfloat16)
elif device.type == 'cpu':
image_adapter = image_adapter.to(dtype=torch.float32)
# torch.no_grad() will be applied by FastAPI for endpoint or can be kept if function is called elsewhere
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_length: str, extra_options: list[str], name_input: str, custom_prompt: str) -> tuple[str, str]:
if device.type == "cuda":
torch.cuda.empty_cache()
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra options
if len(extra_options) > 0:
prompt_str += " " + " ".join(extra_options)
# Add name, length, word_count
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
# For debugging
print(f"Prompt: {prompt_str}")
# Preprocess image
# NOTE: I found the default processor for so400M to have worse results than just using PIL directly
#image = clip_processor(images=input_image, return_tensors='pt').pixel_values
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) # Output is float32
if device.type == 'cuda':
pixel_values = pixel_values.to(device, dtype=torch.bfloat16)
else: # CPU
pixel_values = pixel_values.to(device, dtype=torch.float32) # Explicitly float32 for CPU
# Embed image
# This results in Batch x Image Tokens x Features
# For CPU, autocast can use bfloat16 if available and beneficial, or can be disabled.
# For simplicity here, we'll enable it for CPU with bfloat16 if PyTorch supports it, else float32.
# Note: True CPU mixed precision benefits depend on CPU architecture and PyTorch version.
autocast_enabled_on_cpu = False # Disable autocast on CPU since we are explicitly using float32
autocast_device_type = device.type
autocast_kwargs = {'enabled': True}
if autocast_device_type == 'cpu':
autocast_kwargs['enabled'] = autocast_enabled_on_cpu
if autocast_enabled_on_cpu: # Only set dtype if enabled, though it's false here
autocast_kwargs['dtype'] = torch.float32
with torch.amp.autocast_mode.autocast(autocast_device_type, **autocast_kwargs):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = image_adapter(vision_outputs.hidden_states)
# embedded_images are already on the correct device due to image_adapter.to(device)
# and operations within adapter should respect input tensor's device.
# Explicitly moving again to be safe, though may be redundant.
embedded_images = embedded_images.to(device)
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
# prompt_str is tokenized separately so we can do the calculations below
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False).to(device)
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False).to(device)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
# Ensure convo_tokens is on the CPU for this kind of operation if it involves list conversion or complex indexing not ideal for GPU
eot_id_indices = (convo_tokens.cpu() == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt
# Embed the tokens
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(text_model.device)) # Ensure tokens are on same device as text_model
# Construct the input
# Ensure all parts are on the same device before concatenation
input_embeds = torch.cat([
convo_embeds[:, :preamble_len], # Part before the prompt
embedded_images.to(dtype=convo_embeds.dtype, device=convo_embeds.device), # Image, ensure same dtype and device
convo_embeds[:, preamble_len:], # The prompt and anything after it
], dim=1)
# input_embeds will be on the device of convo_embeds (i.e. text_model.device)
input_ids = torch.cat([
convo_tokens[:preamble_len].unsqueeze(0),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long, device=convo_tokens.device), # Dummy tokens for the image
convo_tokens[preamble_len:].unsqueeze(0),
], dim=1)
# input_ids will be on the device of convo_tokens
attention_mask = torch.ones_like(input_ids) # Will be on the same device as input_ids
# Debugging
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return prompt_str, caption.strip()
@app.post("/caption_image/", response_model=CaptionResponse)
async def caption_image_endpoint(
image_file: UploadFile = File(...),
caption_type: str = Form(...),
caption_length: str = Form(...),
extra_options_json: str = Form("[]"), # Expect a JSON string for list of options
name_input: str = Form(""),
custom_prompt: str = Form("")
):
try:
# Read image file
image_bytes = await image_file.read()
input_image = Image.open(io.BytesIO(image_bytes))
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid image file: {e}")
try:
# Parse extra_options from JSON string
extra_options = json.loads(extra_options_json)
if not isinstance(extra_options, list):
raise ValueError("extra_options_json must be a JSON list")
except ValueError as e:
raise HTTPException(status_code=400, detail=f"Invalid extra_options_json: {e}")
# Call the existing stream_chat function
# Ensure stream_chat is compatible with these inputs
try:
prompt_used, generated_caption = stream_chat(
input_image=input_image,
caption_type=caption_type,
caption_length=caption_length,
extra_options=extra_options,
name_input=name_input,
custom_prompt=custom_prompt
)
return CaptionResponse(prompt_that_was_used=prompt_used, caption=generated_caption)
except ValueError as e: # Catch specific errors from stream_chat like invalid caption_length
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
# General error catch for unexpected issues during model processing
print(f"Error during caption generation: {e}") # Log for server visibility
raise HTTPException(status_code=500, detail="Internal server error during caption generation.")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|