File size: 1,660 Bytes
4159dc2
8f10b0b
4159dc2
a0ace0f
 
 
8f10b0b
4159dc2
415b5df
 
 
 
4159dc2
 
8f10b0b
a4575d8
8f10b0b
 
 
 
 
 
360e8ae
415b5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd48e0
360e8ae
 
 
6cd48e0
 
 
 
360e8ae
4159dc2
 
d80f9fb
9e32d29
d80f9fb
65e404a
4ca165d
17b5440
a4575d8
 
 
 
 
 
 
 
4ca165d
 
 
 
 
a4575d8
 
2b25048
a4575d8
 
 
 
4745a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
from fastapi import FastAPI, Request
import uvicorn
# from sentence_transformers import SentenceTransformer
# from sentence_transformers.util import cos_sim
# from sentence_transformers.quantization import quantize_embeddings


import spaces



app = FastAPI()


@spaces.GPU
def embed(text):
        
    query_embedding = Embedder.encode(text)
    return query_embedding.tolist();
    
    
    
#@app.post("/v1/embeddings")
#async def openai_embeddings(request: Request):
#    body = await request.json();
#    print(body);
#    
#    model = body['model']
#    text = body['input'];
#    embeddings = embed(text)
#    return {
#		'object': "list"
#		,'data': [{
#			'object': "embeddings"
#			,'embedding': embeddings
#			,'index':0
#		}]
#		,'model':model
#		,'usage':{
#			 'prompt_tokens': 0
#			,'total_tokens': 0
#		}
#	}

def fn(text):
    embed(text);

with gr.Blocks(fill_height=True) as demo:
    text = gr.Textbox();
    embeddings = gr.Textbox()
    
    text.submit(fn, [text], [embeddings]);
    

print("Loading embedding model");
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")

# demo.run_startup_events() 
 
 
#demo.launch(
#    share=False,
#    debug=False,
#    server_port=7860,
#    server_name="0.0.0.0",
#    allowed_paths=[]
#)

print("Demo run...");
(app,url,other) = demo.launch(prevent_thread_lock=False);

print("Mounting app...");  
GradioApp = gr.mount_gradio_app(app, demo, path="/", ssr_mode=False); 

if __name__ == '__main__':
    print("Running uviconr...");
    uvicorn.run(GradioApp)