File size: 1,525 Bytes
05753e4
 
 
 
 
9e32d29
05753e4
4159dc2
8f10b0b
4159dc2
8f10b0b
 
 
 
 
4159dc2
 
 
8f10b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd48e0
 
 
 
 
 
4159dc2
 
d80f9fb
9e32d29
d80f9fb
4159dc2
9e32d29
17b5440
 
 
4159dc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os

# If you want Gradio to run on a particular host/port, you can do this:
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
os.environ["GRADIO_ROOT_PATH"] = "/_app/immutable"

import gradio as gr
from fastapi import FastAPI, Request
import uvicorn
import spaces
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from sentence_transformers.quantization import quantize_embeddings


app = FastAPI()


@spaces.GPU
def embed(text):
        
    query_embedding = Embedder.encode(text)
    return query_embedding.tolist();
    
    
@app.post("/v1/embeddings")
async def openai_embeddings(request: Request):
    body = await request.json();
    print(body);
    
    model = body['model']
    text = body['input'];
    embeddings = embed(text)
    return {
		'object': "list"
		,'data': [{
			'object': "embeddings"
			,'embedding': embeddings
			,'index':0
		}]
		,'model':model
		,'usage':{
			 'prompt_tokens': 0
			,'total_tokens': 0
		}
	}

with gr.Blocks(fill_height=True) as demo:
    text = gr.Textbox();
    embeddings = gr.Textbox()
    
    text.submit(embed, [text], [embeddings]);
    

print("Loading embedding model");
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")


GradioApp = gr.mount_gradio_app(app, demo, path="/", ssr_mode=False);  
 
if __name__ == "__main__":
    uvicorn.run(GradioApp, port=7860, host="0.0.0.0")