File size: 1,694 Bytes
4159dc2
8f10b0b
4159dc2
b45b188
 
 
8f10b0b
4159dc2
415b5df
 
 
 
4159dc2
 
8f10b0b
a4575d8
8f10b0b
96338c0
 
 
8f10b0b
 
360e8ae
b45b188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd48e0
360e8ae
 
 
6cd48e0
 
 
 
360e8ae
4159dc2
 
d80f9fb
96338c0
d80f9fb
65e404a
4ca165d
17b5440
a4575d8
 
 
 
 
 
 
 
4ca165d
7e1210e
4ca165d
 
 
a4575d8
7e1210e
a4575d8
2b25048
7e1210e
a4575d8
 
 
4745a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from fastapi import FastAPI, Request
import uvicorn
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from sentence_transformers.quantization import quantize_embeddings


import spaces



app = FastAPI()


@spaces.GPU
def embed(text):
    return [0,1]
    #query_embedding = Embedder.encode(text)
    #return query_embedding.tolist();
    
    
    
@app.post("/v1/embeddings")
async def openai_embeddings(request: Request):
    body = await request.json();
    print(body);
    
    model = body['model']
    text = body['input'];
    embeddings = embed(text)
    return {
		'object': "list"
		,'data': [{
			'object': "embeddings"
			,'embedding': embeddings
			,'index':0
		}]
		,'model':model
		,'usage':{
			 'prompt_tokens': 0
			,'total_tokens': 0
		}
	}

def fn(text):
    embed(text);

with gr.Blocks(fill_height=True) as demo:
    text = gr.Textbox();
    embeddings = gr.Textbox()
    
    text.submit(fn, [text], [embeddings]);
    

print("Loading embedding model");
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")

# demo.run_startup_events() 
 
 
#demo.launch(
#    share=False,
#    debug=False,
#    server_port=7860,
#    server_name="0.0.0.0",
#    allowed_paths=[]
#)

print("Demo run...");
(app2,url,other) = demo.launch(prevent_thread_lock=True, server="127.0.0.1");

print("Mounting app...");  
GradioApp = gr.mount_gradio_app(app, demo, path="/", ssr_mode=False); 


if __name__ == '__main__':
    print("Running uviconr...");
    uvicorn.run(GradioApp, server="0.0.0.0", port=7860)