File size: 1,337 Bytes
4159dc2
8f10b0b
4159dc2
a0ace0f
 
 
8f10b0b
4159dc2
415b5df
 
 
 
4159dc2
 
8f10b0b
 
 
 
 
 
 
 
360e8ae
415b5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd48e0
360e8ae
 
 
6cd48e0
 
 
 
360e8ae
4159dc2
 
d80f9fb
9e32d29
d80f9fb
4159dc2
360e8ae
17b5440
a577bf8
 
4745a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
from fastapi import FastAPI, Request
import uvicorn
# from sentence_transformers import SentenceTransformer
# from sentence_transformers.util import cos_sim
# from sentence_transformers.quantization import quantize_embeddings


import spaces



app = FastAPI()


@spaces.GPU
def embed(text):
        
    query_embedding = Embedder.encode(text)
    return query_embedding.tolist();
    
    
    
#@app.post("/v1/embeddings")
#async def openai_embeddings(request: Request):
#    body = await request.json();
#    print(body);
#    
#    model = body['model']
#    text = body['input'];
#    embeddings = embed(text)
#    return {
#		'object': "list"
#		,'data': [{
#			'object': "embeddings"
#			,'embedding': embeddings
#			,'index':0
#		}]
#		,'model':model
#		,'usage':{
#			 'prompt_tokens': 0
#			,'total_tokens': 0
#		}
#	}

def fn(text):
    embed(text);

with gr.Blocks(fill_height=True) as demo:
    text = gr.Textbox();
    embeddings = gr.Textbox()
    
    text.submit(fn, [text], [embeddings]);
    

print("Loading embedding model");
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")


GradioApp = gr.mount_gradio_app(app, demo, path="/", ssr_mode=False);  
 

uvicorn.run(GradioApp, port=7860, host="0.0.0.0")