Spaces:
Runtime error
Runtime error
Commit
Β·
211e953
1
Parent(s):
a436eb7
longer calibration
Browse files- second.png β 10o.png +2 -2
- first.png β 1o.png +0 -0
- fifth.png β 2o.png +0 -0
- sixth.png β 3o.png +0 -0
- third.png β 4o.png +0 -0
- fourth.png β 5o.png +0 -0
- 6o.png +3 -0
- 7o.png +3 -0
- 8o.png +3 -0
- 9o.png +3 -0
- app.py +24 -13
second.png β 10o.png
RENAMED
|
File without changes
|
first.png β 1o.png
RENAMED
|
File without changes
|
fifth.png β 2o.png
RENAMED
|
File without changes
|
sixth.png β 3o.png
RENAMED
|
File without changes
|
third.png β 4o.png
RENAMED
|
File without changes
|
fourth.png β 5o.png
RENAMED
|
File without changes
|
6o.png
ADDED
|
Git LFS Details
|
7o.png
ADDED
|
Git LFS Details
|
8o.png
ADDED
|
Git LFS Details
|
9o.png
ADDED
|
Git LFS Details
|
app.py
CHANGED
|
@@ -194,7 +194,7 @@ def get_user_emb(embs, ys):
|
|
| 194 |
print('Dropping at 20')
|
| 195 |
|
| 196 |
if mini < 1:
|
| 197 |
-
feature_embs = torch.stack([torch.randn(
|
| 198 |
ys_t = [0, 1]
|
| 199 |
print('Not enough ratings.')
|
| 200 |
else:
|
|
@@ -386,8 +386,9 @@ def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
|
|
| 386 |
# if it's still in the dataframe, add the choice
|
| 387 |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
|
| 388 |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
|
|
|
| 389 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
| 390 |
-
img, calibrate_prompts
|
| 391 |
return img, calibrate_prompts
|
| 392 |
|
| 393 |
css = '''.gradio-container{max-width: 700px !important}
|
|
@@ -451,11 +452,16 @@ Explore the latent space without text prompts based on your preferences. Learn m
|
|
| 451 |
user_id = gr.State()
|
| 452 |
# calibration videos -- this is a misnomer now :D
|
| 453 |
calibrate_prompts = gr.State([
|
| 454 |
-
'./
|
| 455 |
-
'./
|
| 456 |
-
'./
|
| 457 |
-
'./
|
| 458 |
-
'./
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
])
|
| 460 |
def l():
|
| 461 |
return None
|
|
@@ -543,12 +549,17 @@ def encode_space(x):
|
|
| 543 |
return im_emb.detach().to('cpu').to(torch.float32)
|
| 544 |
|
| 545 |
# prep our calibration videos
|
| 546 |
-
for im, txt in [ #
|
| 547 |
-
('./
|
| 548 |
-
('./
|
| 549 |
-
('./
|
| 550 |
-
('./
|
| 551 |
-
('./
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
]:
|
| 553 |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'text', 'gemb'])
|
| 554 |
tmp_df['paths'] = [im]
|
|
|
|
| 194 |
print('Dropping at 20')
|
| 195 |
|
| 196 |
if mini < 1:
|
| 197 |
+
feature_embs = torch.stack([torch.randn(1024), torch.randn(1024)])
|
| 198 |
ys_t = [0, 1]
|
| 199 |
print('Not enough ratings.')
|
| 200 |
else:
|
|
|
|
| 386 |
# if it's still in the dataframe, add the choice
|
| 387 |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
|
| 388 |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
| 389 |
+
print(row_mask, prevs_df.loc[row_mask, 'latest_user_to_rate'], [user_id])
|
| 390 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
| 391 |
+
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
| 392 |
return img, calibrate_prompts
|
| 393 |
|
| 394 |
css = '''.gradio-container{max-width: 700px !important}
|
|
|
|
| 452 |
user_id = gr.State()
|
| 453 |
# calibration videos -- this is a misnomer now :D
|
| 454 |
calibrate_prompts = gr.State([
|
| 455 |
+
'./5o.png',
|
| 456 |
+
'./2o.png',
|
| 457 |
+
'./6o.png',
|
| 458 |
+
'./7o.png',
|
| 459 |
+
'./1o.png',
|
| 460 |
+
'./8o.png',
|
| 461 |
+
'./3o.png',
|
| 462 |
+
'./4o.png',
|
| 463 |
+
'./10o.png',
|
| 464 |
+
'./9o.png',
|
| 465 |
])
|
| 466 |
def l():
|
| 467 |
return None
|
|
|
|
| 549 |
return im_emb.detach().to('cpu').to(torch.float32)
|
| 550 |
|
| 551 |
# prep our calibration videos
|
| 552 |
+
for im, txt in [ # DO NOT NAME THESE PNGs JUST NUMBERS! apparently we assign images by number
|
| 553 |
+
('./1o.png', 'describe the scene: omens in the suburbs'),
|
| 554 |
+
('./2o.png', 'describe the scene: geometric abstract art of a windmill'),
|
| 555 |
+
('./3o.png', 'describe the scene: memento mori'),
|
| 556 |
+
('./4o.png', 'describe the scene: a green plate with anespresso'),
|
| 557 |
+
('./5o.png', '5 '),
|
| 558 |
+
('./6o.png', '6 '),
|
| 559 |
+
('./7o.png', '7 '),
|
| 560 |
+
('./8o.png', '8 '),
|
| 561 |
+
('./9o.png', '9 '),
|
| 562 |
+
('./10o.png', '10 '),
|
| 563 |
]:
|
| 564 |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'text', 'gemb'])
|
| 565 |
tmp_df['paths'] = [im]
|