|
import os |
|
from typing import List |
|
|
|
import numpy as np |
|
import onnxruntime as ort |
|
import pooch |
|
from PIL import Image |
|
from PIL.Image import Image as PILImage |
|
|
|
from .base import BaseSession |
|
|
|
|
|
class U2netCustomSession(BaseSession): |
|
"""This is a class representing a custom session for the U2net model.""" |
|
|
|
def __init__( |
|
self, |
|
model_name: str, |
|
sess_opts: ort.SessionOptions, |
|
providers=None, |
|
*args, |
|
**kwargs |
|
): |
|
""" |
|
Initialize a new U2netCustomSession object. |
|
|
|
Parameters: |
|
model_name (str): The name of the model. |
|
sess_opts (ort.SessionOptions): The session options. |
|
providers: The providers. |
|
*args: Additional positional arguments. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Raises: |
|
ValueError: If model_path is None. |
|
""" |
|
model_path = kwargs.get("model_path") |
|
if model_path is None: |
|
raise ValueError("model_path is required") |
|
|
|
super().__init__(model_name, sess_opts, providers, *args, **kwargs) |
|
|
|
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: |
|
""" |
|
Predict the segmentation mask for the input image. |
|
|
|
Parameters: |
|
img (PILImage): The input image. |
|
*args: Additional positional arguments. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
List[PILImage]: A list of PILImage objects representing the segmentation mask. |
|
""" |
|
ort_outs = self.inner_session.run( |
|
None, |
|
self.normalize( |
|
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320) |
|
), |
|
) |
|
|
|
pred = ort_outs[0][:, 0, :, :] |
|
|
|
ma = np.max(pred) |
|
mi = np.min(pred) |
|
|
|
pred = (pred - mi) / (ma - mi) |
|
pred = np.squeeze(pred) |
|
|
|
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") |
|
mask = mask.resize(img.size, Image.Resampling.LANCZOS) |
|
|
|
return [mask] |
|
|
|
@classmethod |
|
def download_models(cls, *args, **kwargs): |
|
""" |
|
Download the model files. |
|
|
|
Parameters: |
|
*args: Additional positional arguments. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
str: The absolute path to the model files. |
|
""" |
|
model_path = kwargs.get("model_path") |
|
if model_path is None: |
|
return |
|
|
|
return os.path.abspath(os.path.expanduser(model_path)) |
|
|
|
@classmethod |
|
def name(cls, *args, **kwargs): |
|
""" |
|
Get the name of the model. |
|
|
|
Parameters: |
|
*args: Additional positional arguments. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
str: The name of the model. |
|
""" |
|
return "u2net_custom" |
|
|