Initial clone with modifications
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .ipynb_checkpoints/Gen_llm_eval_output-checkpoint.py +0 -0
- .ipynb_checkpoints/get_model_info-checkpoint.py +129 -0
- .ipynb_checkpoints/preprocess_models_output-checkpoint.py +250 -0
- Gen_llm_eval_output.py +117 -0
- csv_files/llm_scores_p1.xlsx +0 -0
- csv_files/llm_scores_p2.xlsx +0 -0
- csv_files/llm_scores_p3.xlsx +0 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__10shot.txt +10 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__10shot.txt +10 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__10shot.txt +10 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__10shot.txt +10 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__10shot.txt +10 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__0shot.txt +11 -0
- csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__en__0shot.txt +11 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__en__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__gr__0shot.txt +11 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__gr__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__it__0shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__it__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__pl__0shot.txt +11 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__pl__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__sk__0shot.txt +11 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__sk__10shot.txt +10 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__sl__0shot.txt +11 -0
- csv_files/outputs/HiTZ__Medical-mT5-large__sl__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__0shot.txt +11 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__10shot.txt +10 -0
- csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__pl__0shot.txt +11 -0
.ipynb_checkpoints/Gen_llm_eval_output-checkpoint.py
ADDED
|
File without changes
|
.ipynb_checkpoints/get_model_info-checkpoint.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MODEL METADATA EXTRACTOR
|
| 3 |
+
|
| 4 |
+
This script processes model evaluation output files (input_folder) from the lm-eval-harness library,
|
| 5 |
+
extracts model identifiers, retrieves detailed metadata from HuggingFace
|
| 6 |
+
and saves the information as structured JSON files (output_folder).
|
| 7 |
+
|
| 8 |
+
Input: Directory containing .out files from lm-eval-harness
|
| 9 |
+
Output: Directory with JSON files containing model metadata
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
# Example input file format (lm-eval-harness output):
|
| 13 |
+
'''
|
| 14 |
+
hf (pretrained=swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 1
|
| 15 |
+
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|
| 16 |
+
|------------------------|------:|------|-----:|--------|---|-----:|---|------|
|
| 17 |
+
|evalita-mp | 1|none | |acc |↑ |0.5605|± |0.0052|
|
| 18 |
+
...
|
| 19 |
+
Job completed
|
| 20 |
+
'''
|
| 21 |
+
|
| 22 |
+
# Example output JSON format:
|
| 23 |
+
'''
|
| 24 |
+
{
|
| 25 |
+
"model": "swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA",
|
| 26 |
+
"base_model": "LlamaForCausalLM",
|
| 27 |
+
"revision": "2b6e46e4c9d341dc8bf8350a167492c880116b66",
|
| 28 |
+
"submitted_time": "2024-04-29 09:34:12+00:00",
|
| 29 |
+
"num_params_billion": 8.030261248,
|
| 30 |
+
"language": "en_it"
|
| 31 |
+
}
|
| 32 |
+
'''
|
| 33 |
+
|
| 34 |
+
import os
|
| 35 |
+
import re
|
| 36 |
+
import json
|
| 37 |
+
from huggingface_hub import HfApi
|
| 38 |
+
|
| 39 |
+
# Configures the Hugging Face token (if needed)
|
| 40 |
+
# TOKEN = "YOUR_HUGGINGFACE_API_TOKEN"
|
| 41 |
+
api = HfApi()
|
| 42 |
+
|
| 43 |
+
# Directory paths
|
| 44 |
+
# input_folder: Directory containing the output files of the lm-eval-harness library, including model accuracy metrics.
|
| 45 |
+
#input_folder = "../evalita_llm_models_output/"
|
| 46 |
+
input_folder = "/home/sfarzi/leaderboard/evalita_llm_leaderboard/task_result/"
|
| 47 |
+
# output_folder: Directory where JSON files with model characteristics will be saved.
|
| 48 |
+
output_folder = "/home/sfarzi/leaderboard/evalita_llm_leaderboard/e3c_llm_requests/"
|
| 49 |
+
|
| 50 |
+
# Creates the output folder if it doesn't exist
|
| 51 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 52 |
+
|
| 53 |
+
# Regular expression to find the model name
|
| 54 |
+
model_pattern = re.compile(r"pretrained=([\w\-./]+)")
|
| 55 |
+
|
| 56 |
+
# Scans files in the input folder
|
| 57 |
+
for filename in os.listdir(input_folder):
|
| 58 |
+
if filename.endswith('.out'):
|
| 59 |
+
file_path = os.path.join(input_folder, filename)
|
| 60 |
+
|
| 61 |
+
# Reads the file content
|
| 62 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 63 |
+
content = f.read()
|
| 64 |
+
|
| 65 |
+
# Extracts the model name
|
| 66 |
+
match = model_pattern.search(content)
|
| 67 |
+
if match:
|
| 68 |
+
model_name = match.group(1)
|
| 69 |
+
print(f"Processing model: {model_name}")
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
# Retrieves model information from HuggingFace
|
| 73 |
+
model_info = api.model_info(model_name)
|
| 74 |
+
|
| 75 |
+
# Calculates the number of parameters in billions, if available
|
| 76 |
+
num_params = None
|
| 77 |
+
if model_info.safetensors and "BF16" in model_info.safetensors.parameters:
|
| 78 |
+
num_params = model_info.safetensors.parameters["BF16"] / 1e9 # Convert to billions
|
| 79 |
+
|
| 80 |
+
# Extracts and concatenates languages
|
| 81 |
+
language = "_".join(model_info.card_data.get("language", [])) if model_info.card_data else ""
|
| 82 |
+
|
| 83 |
+
#print(model_info)
|
| 84 |
+
|
| 85 |
+
# Builds the dictionary with required metadata
|
| 86 |
+
model_data = {
|
| 87 |
+
"model": model_name,
|
| 88 |
+
"base_model": model_info.config.get("architectures", [""])[0] if model_info.config else "",
|
| 89 |
+
"revision": model_info.sha,
|
| 90 |
+
# "precision": "bfloat16", # If available, replace with real value
|
| 91 |
+
# "weight_type": "Original",
|
| 92 |
+
# "status": "FINISHED",
|
| 93 |
+
"submitted_time": str(model_info.created_at),
|
| 94 |
+
# "model_type": "pretrained",
|
| 95 |
+
# "likes": model_info.likes,
|
| 96 |
+
# "params": model_info.safetensors_size_in_bytes / 1e9 if model_info.safetensors_size_in_bytes else None,
|
| 97 |
+
# "license": model_info.license,
|
| 98 |
+
# "private": model_info.private,
|
| 99 |
+
"num_params_billion": num_params, # Number of parameters in billions
|
| 100 |
+
"language": language, # Extracted language
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
# Separates the model_name into two parts: directory name and file name
|
| 104 |
+
if "/" in model_name:
|
| 105 |
+
dir_name, file_name = model_name.split("/", 1)
|
| 106 |
+
else:
|
| 107 |
+
dir_name, file_name = model_name, model_name # If no "/", use the same name
|
| 108 |
+
|
| 109 |
+
# Creates the folder for saving the produced json files
|
| 110 |
+
model_output_folder = os.path.join(output_folder, dir_name)
|
| 111 |
+
os.makedirs(model_output_folder, exist_ok=True)
|
| 112 |
+
|
| 113 |
+
# Saves the JSON file in the appropriate folder
|
| 114 |
+
output_file = os.path.join(model_output_folder, f"{file_name}.json")
|
| 115 |
+
|
| 116 |
+
# Check if the file already exists
|
| 117 |
+
if os.path.exists(output_file):
|
| 118 |
+
print(f"File {output_file} already exists. Skipping...")
|
| 119 |
+
continue
|
| 120 |
+
|
| 121 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 122 |
+
json.dump(model_data, f, indent=4)
|
| 123 |
+
|
| 124 |
+
print(f"Saved metadata for {model_name} in {output_file}")
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"Error retrieving info for {model_name}: {e}")
|
| 128 |
+
|
| 129 |
+
print("Process finished!")
|
.ipynb_checkpoints/preprocess_models_output-checkpoint.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
EVALITA LLM EVALUATION PROCESSOR
|
| 3 |
+
|
| 4 |
+
Transforms raw model evaluation outputs into structured performance reports for leaderboard integration.
|
| 5 |
+
|
| 6 |
+
DATA PIPELINE OVERVIEW:
|
| 7 |
+
|
| 8 |
+
1. Inputs:
|
| 9 |
+
- Evaluation Results: Raw .out files from lm-eval-harness
|
| 10 |
+
- Model Metadata: Pre-collected .json files from HuggingFace
|
| 11 |
+
|
| 12 |
+
2. Output:
|
| 13 |
+
- Comprehensive evaluation reports in JSON format
|
| 14 |
+
- Ready for ingestion into the evaluation leaderboard
|
| 15 |
+
|
| 16 |
+
--------------------------------------------------------------------
|
| 17 |
+
INPUT SPECIFICATION
|
| 18 |
+
|
| 19 |
+
Evaluation Results (.out format):
|
| 20 |
+
hf (pretrained=model-org/model-name), num_fewshot: 5, batch_size: 1
|
| 21 |
+
| Task | Metric | Value | Stderr |
|
| 22 |
+
|---------------|--------|--------|--------|
|
| 23 |
+
| main-task | acc | 0.5605 | 0.0052 |
|
| 24 |
+
| - sub-task | acc | 0.4640 | 0.0088 |
|
| 25 |
+
| - prompt-1 | acc | 0.3720 | 0.0216 |
|
| 26 |
+
|
| 27 |
+
Model Metadata (.json format):
|
| 28 |
+
{
|
| 29 |
+
"model": "model-org/model-name",
|
| 30 |
+
"base_model": "ModelArchitecture",
|
| 31 |
+
"revision": "git_commit_hash",
|
| 32 |
+
"parameters": 8.03,
|
| 33 |
+
"language": "en_it"
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
--------------------------------------------------------------------
|
| 37 |
+
OUTPUT SPECIFICATION
|
| 38 |
+
|
| 39 |
+
Evaluation Report (.json format):
|
| 40 |
+
{
|
| 41 |
+
"summary_metrics": {
|
| 42 |
+
"average_CPS": 41.74,
|
| 43 |
+
"num_tasks": 12
|
| 44 |
+
},
|
| 45 |
+
"model_config": {
|
| 46 |
+
"identifier": "model-org/model-name",
|
| 47 |
+
"architecture": "ModelArchitecture",
|
| 48 |
+
"parameters": 8.03,
|
| 49 |
+
"evaluation_settings": {
|
| 50 |
+
"fewshot": 5,
|
| 51 |
+
"batch_size": 1
|
| 52 |
+
}
|
| 53 |
+
},
|
| 54 |
+
"task_results": {
|
| 55 |
+
"task-name": {
|
| 56 |
+
"average_score": 52.60,
|
| 57 |
+
"best_prompt": {
|
| 58 |
+
"id": "prompt-6",
|
| 59 |
+
"score": 66.57
|
| 60 |
+
},
|
| 61 |
+
"prompt_analysis": [
|
| 62 |
+
{
|
| 63 |
+
"prompt_id": "prompt-1",
|
| 64 |
+
"score": 37.20,
|
| 65 |
+
"stderr": 0.0216
|
| 66 |
+
}
|
| 67 |
+
]
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
import json
|
| 74 |
+
import os
|
| 75 |
+
import re
|
| 76 |
+
|
| 77 |
+
def safe_float(value):
|
| 78 |
+
"""Safely converts a value to float, returning None if the conversion fails."""
|
| 79 |
+
try:
|
| 80 |
+
return float(value)
|
| 81 |
+
except ValueError:
|
| 82 |
+
return None
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def calculate_task_metrics(task_info):
|
| 86 |
+
"""Calculates average accuracy, best prompt accuracy, and CPS for a given task."""
|
| 87 |
+
accuracies = [prompt['value'] for prompt in task_info['prompts'] if prompt['value'] is not None]
|
| 88 |
+
|
| 89 |
+
if not accuracies:
|
| 90 |
+
return None
|
| 91 |
+
|
| 92 |
+
task_info['average_accuracy'] = sum(accuracies) / len(accuracies)
|
| 93 |
+
best_prompt_data = max(task_info['prompts'], key=lambda x: x['value'])
|
| 94 |
+
task_info['best_prompt'] = best_prompt_data['value']
|
| 95 |
+
task_info['prompt_id'] = best_prompt_data['prompt']
|
| 96 |
+
|
| 97 |
+
# Calculate CPS
|
| 98 |
+
avg_acc = task_info['average_accuracy']
|
| 99 |
+
best_acc = task_info['best_prompt']
|
| 100 |
+
task_info['CPS'] = (1 - (best_acc - avg_acc) / 100) * best_acc
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def extract_data_from_file(file_path):
|
| 104 |
+
"""Extracts task and prompt data from a specified file."""
|
| 105 |
+
with open(file_path, 'r') as file:
|
| 106 |
+
lines = file.readlines()
|
| 107 |
+
|
| 108 |
+
tasks_data = {}
|
| 109 |
+
current_task = None
|
| 110 |
+
|
| 111 |
+
for line in lines:
|
| 112 |
+
line = line.strip()
|
| 113 |
+
|
| 114 |
+
# Skips empty lines
|
| 115 |
+
if not line:
|
| 116 |
+
continue
|
| 117 |
+
|
| 118 |
+
# Skips header lines
|
| 119 |
+
if line.startswith("| Tasks"):
|
| 120 |
+
continue
|
| 121 |
+
|
| 122 |
+
# Extracts model configuration details
|
| 123 |
+
if line.startswith("hf (pretrained="):
|
| 124 |
+
start = line.find("pretrained=") + len("pretrained=")
|
| 125 |
+
end = line.find(",", start)
|
| 126 |
+
pretrained_model = line[start:end]
|
| 127 |
+
|
| 128 |
+
num_fewshot_match = re.search(r"num_fewshot:\s*([\w\d]+)", line)
|
| 129 |
+
num_fewshot = num_fewshot_match.group(1) if num_fewshot_match else None
|
| 130 |
+
|
| 131 |
+
batch_size_match = re.search(r"batch_size:\s*(\d+)", line)
|
| 132 |
+
batch_size = int(batch_size_match.group(1)) if batch_size_match else None
|
| 133 |
+
|
| 134 |
+
continue
|
| 135 |
+
|
| 136 |
+
columns = line.split('|')
|
| 137 |
+
if len(columns) != 11:
|
| 138 |
+
continue
|
| 139 |
+
|
| 140 |
+
task_name = columns[1]
|
| 141 |
+
metric = columns[5].strip()
|
| 142 |
+
value = safe_float(columns[7])
|
| 143 |
+
stderr = safe_float(columns[9])
|
| 144 |
+
print (value)
|
| 145 |
+
# Skips normalized accuracy metrics
|
| 146 |
+
if metric == "acc_norm":
|
| 147 |
+
continue
|
| 148 |
+
|
| 149 |
+
# Identifies task and prompt sections in the file
|
| 150 |
+
if task_name.startswith(" - "):
|
| 151 |
+
task_name = task_name[3:].strip()
|
| 152 |
+
current_task = task_name
|
| 153 |
+
tasks_data.setdefault(current_task,
|
| 154 |
+
{'prompts': [], 'average_accuracy': 0, 'best_prompt': None, 'prompt_id': None,
|
| 155 |
+
'CPS': None})
|
| 156 |
+
|
| 157 |
+
elif task_name.startswith(" - ") and current_task:
|
| 158 |
+
prompt_name = task_name[4:].strip()
|
| 159 |
+
prompt_data = {'prompt': prompt_name, 'metric': metric, 'value': value * 100,
|
| 160 |
+
'stderr': stderr}
|
| 161 |
+
tasks_data[current_task]['prompts'].append(prompt_data)
|
| 162 |
+
|
| 163 |
+
# Special handling for evalita NER task to calculate weighted prompt averages
|
| 164 |
+
if "evalita NER" in tasks_data:
|
| 165 |
+
task_info = tasks_data["evalita NER"]
|
| 166 |
+
weight_map = {"ADG prompt-1": 521, "ADG prompt-2": 521, "FIC prompt-1": 1517, "FIC prompt-2": 1517,
|
| 167 |
+
"WN prompt-1": 2088, "WN prompt-2": 2088}
|
| 168 |
+
|
| 169 |
+
weighted_values = {"prompt-1": 0, "prompt-2": 0}
|
| 170 |
+
total_weights = sum(weight_map.values())
|
| 171 |
+
|
| 172 |
+
for prompt in task_info['prompts']:
|
| 173 |
+
if prompt['prompt'] in weight_map:
|
| 174 |
+
if "prompt-1" in prompt['prompt']:
|
| 175 |
+
weighted_values["prompt-1"] += weight_map[prompt['prompt']] * prompt['value']
|
| 176 |
+
elif "prompt-2" in prompt['prompt']:
|
| 177 |
+
weighted_values["prompt-2"] += weight_map[prompt['prompt']] * prompt['value']
|
| 178 |
+
|
| 179 |
+
task_info['prompts'] = [
|
| 180 |
+
{"prompt": "prompt-1", "metric": "acc", "value": weighted_values["prompt-1"] / total_weights,
|
| 181 |
+
'stderr': None},
|
| 182 |
+
{"prompt": "prompt-2", "metric": "acc", "value": weighted_values["prompt-2"] / total_weights,
|
| 183 |
+
'stderr': None}]
|
| 184 |
+
|
| 185 |
+
# Calculates task metrics for each task
|
| 186 |
+
for task_info in tasks_data.values():
|
| 187 |
+
calculate_task_metrics(task_info)
|
| 188 |
+
|
| 189 |
+
# Calculates the average CPS across all tasks
|
| 190 |
+
tasks_with_cps = [task['CPS'] for task in tasks_data.values() if task['CPS'] is not None]
|
| 191 |
+
average_CPS = sum(tasks_with_cps) / len(tasks_with_cps) if tasks_with_cps else 0
|
| 192 |
+
|
| 193 |
+
config = {
|
| 194 |
+
"model_name": pretrained_model,
|
| 195 |
+
"num_fewshot": num_fewshot,
|
| 196 |
+
"batch_size": batch_size
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
return {'average_CPS': average_CPS, 'config': config, 'tasks': tasks_data}
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
"""
|
| 203 |
+
MAIN PROCESSING PIPELINE
|
| 204 |
+
|
| 205 |
+
This script executes the complete evaluation data processing workflow:
|
| 206 |
+
|
| 207 |
+
1. Input Sources:
|
| 208 |
+
- Raw evaluation results (.out files) from: ../evalita_llm_models_output/
|
| 209 |
+
- Model metadata JSON files from: ../evalita_llm_requests/
|
| 210 |
+
|
| 211 |
+
2. Processing Steps:
|
| 212 |
+
- Parses evaluation metrics from .out files
|
| 213 |
+
- Combines with model metadata
|
| 214 |
+
- Calculates aggregated performance statistics
|
| 215 |
+
|
| 216 |
+
3. Output:
|
| 217 |
+
- Structured JSON results saved to: ../evalita_llm_results/
|
| 218 |
+
- Organized by model organization/name
|
| 219 |
+
- Contains complete evaluation results with metadata
|
| 220 |
+
"""
|
| 221 |
+
directory_in_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/task_result/'
|
| 222 |
+
directory_in_requests_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/evalita_llm_requests/'
|
| 223 |
+
directory_out_results_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/evalita_llm_results/'
|
| 224 |
+
|
| 225 |
+
for filename in os.listdir(directory_in_path):
|
| 226 |
+
if filename.endswith('.out'):
|
| 227 |
+
file_path = os.path.join(directory_in_path, filename)
|
| 228 |
+
json_output = extract_data_from_file(file_path)
|
| 229 |
+
|
| 230 |
+
model_org_name, model_name = json_output['config']['model_name'].split('/')
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
config_file_path = os.path.join(directory_in_requests_path, model_org_name, f"{model_name}.json")
|
| 234 |
+
|
| 235 |
+
if os.path.exists(config_file_path):
|
| 236 |
+
with open(config_file_path, 'r', encoding='utf-8') as config_file:
|
| 237 |
+
additional_config = json.load(config_file)
|
| 238 |
+
json_output['config'].update(additional_config)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
org_folder_path = os.path.join(directory_out_results_path, model_org_name)
|
| 242 |
+
os.makedirs(org_folder_path, exist_ok=True)
|
| 243 |
+
|
| 244 |
+
file_suffix = f"{json_output['config']['num_fewshot']}"
|
| 245 |
+
output_file_path = os.path.join(org_folder_path, f"{model_name}_{file_suffix}.json")
|
| 246 |
+
|
| 247 |
+
with open(output_file_path, 'w', newline="\n") as outfile:
|
| 248 |
+
json.dump(json_output, outfile, indent=4)
|
| 249 |
+
|
| 250 |
+
print(f"File {filename} processed and saved to {output_file_path}")
|
Gen_llm_eval_output.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
#python Gen_llm_eval_output.py --p1 csv_files/llm_scores_p1.xlsx --p2 csv_files/llm_scores_p2.xlsx --p3 csv_files/llm_scores_p3.xlsx --output-dir csv_files/outputs
|
| 4 |
+
import argparse
|
| 5 |
+
import os
|
| 6 |
+
import re
|
| 7 |
+
import math
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
REQUIRED_COLS = ["model", "task", "language", "configuration", "prompts", "f1"]
|
| 12 |
+
|
| 13 |
+
def read_scores(path: str) -> pd.DataFrame:
|
| 14 |
+
df = pd.read_excel(path)
|
| 15 |
+
# normalize columns
|
| 16 |
+
df.columns = [c.strip().lower() for c in df.columns]
|
| 17 |
+
if "prompts" not in df.columns and "prompt" in df.columns:
|
| 18 |
+
df["prompts"] = df["prompt"]
|
| 19 |
+
missing = [c for c in REQUIRED_COLS if c not in df.columns]
|
| 20 |
+
if missing:
|
| 21 |
+
raise ValueError(f"{path} is missing required columns: {missing}")
|
| 22 |
+
# keep only required, coerce f1 to numeric
|
| 23 |
+
df = df[REQUIRED_COLS].copy()
|
| 24 |
+
df["f1"] = pd.to_numeric(df["f1"], errors="coerce")
|
| 25 |
+
df = df.dropna(subset=["f1"])
|
| 26 |
+
return df
|
| 27 |
+
|
| 28 |
+
def sanitize_filename(s: str) -> str:
|
| 29 |
+
return re.sub(r"[^0-9A-Za-z._\-+]+", "_", str(s).strip())
|
| 30 |
+
|
| 31 |
+
def format_float(x):
|
| 32 |
+
if x is None or (isinstance(x, float) and (math.isnan(x) or math.isinf(x))):
|
| 33 |
+
return "nan"
|
| 34 |
+
return f"{x:.4f}"
|
| 35 |
+
|
| 36 |
+
def prompt_order_key(label: str):
|
| 37 |
+
# Sort by the number in "prompt-<n>" if present; fallback to string
|
| 38 |
+
m = re.search(r"(\d+)", str(label))
|
| 39 |
+
return (0, int(m.group(1))) if m else (1, str(label))
|
| 40 |
+
|
| 41 |
+
def render_group_table(g: pd.DataFrame, model: str, language: str, configuration: str) -> str:
|
| 42 |
+
# Collect all prompt-level f1 values (across tasks and prompts)
|
| 43 |
+
prompt_values = g["f1"].to_numpy(dtype=float)
|
| 44 |
+
if prompt_values.size > 0:
|
| 45 |
+
gen_value = float(np.mean(prompt_values))
|
| 46 |
+
gen_stderr = float(np.std(prompt_values, ddof=1) / math.sqrt(len(prompt_values))) if len(prompt_values) > 1 else 0.0
|
| 47 |
+
else:
|
| 48 |
+
gen_value, gen_stderr = float("nan"), 0.0
|
| 49 |
+
|
| 50 |
+
# Build table text
|
| 51 |
+
if configuration=="0shot" : configuration='0'
|
| 52 |
+
if configuration=="10shot" : configuration='10'
|
| 53 |
+
model = model.split("__")[0]+'/'+model.split("__")[1]
|
| 54 |
+
#if model =='Henrychur__MMed-Llama-3-8B' : model='Henrychur/MMed-Llama-3-8B'
|
| 55 |
+
#if model =='HiTZ__Medical-mT5-large' : model=''
|
| 56 |
+
#if model =='Qwen__Qwen2.5-14B-Instruct-1M' : model='Qwen/'+model
|
| 57 |
+
#if model =='Qwen__Qwen2.5-32B-Instruct' : model='Qwen/'+model
|
| 58 |
+
#if model =='Qwen__Qwen3-30B-A3B-Instruct-2507' : model='Qwen/'+model
|
| 59 |
+
#if model =='deepseek-ai__DeepSeek-R1-Distill-Qwen-32B' : model=''
|
| 60 |
+
#if model =='epfl-llm__meditron-7b' : model=''
|
| 61 |
+
#if model =='google__gemma-2-9b-it' : model=''
|
| 62 |
+
#if model =='google__gemma-3-27b-it' : model=''
|
| 63 |
+
#if model =='google__medgemma-27b-text-it' : model=''
|
| 64 |
+
#if model =='google__medgemma-4b-it' : model=''
|
| 65 |
+
#if model =='microsoft__MediPhi-Clinical' : model=''
|
| 66 |
+
#if model =='microsoft__MediPhi-Instruct' : model=''
|
| 67 |
+
#if model =='mistralai__Mistral-7B-Instruct-v0.2' : model=''
|
| 68 |
+
#if model =='mistralai__Mistral-Nemo-Instruct-2407' : model=''
|
| 69 |
+
#if model =='tiiuae__Falcon3-10B-Instruct' : model=''
|
| 70 |
+
#if model =='unsloth__phi-4' : model=''
|
| 71 |
+
#if model =='Henrychur__MMed-Llama-3-8B' : model=''
|
| 72 |
+
|
| 73 |
+
header = f"hf (pretrained={model} ), num_fewshot: {configuration}, batch_size: 1"
|
| 74 |
+
lines = [
|
| 75 |
+
"|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|",
|
| 76 |
+
"|-------|-------|------|------|------|----|------|---|------|",
|
| 77 |
+
#f"|Gen | | | |f1 | |{format_float(gen_value)} |---| {format_float(gen_stderr)} |",
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# For each task, add task row (mean over prompts) then prompt rows
|
| 81 |
+
for task, df_task in g.groupby("task", sort=False):
|
| 82 |
+
f1s = df_task["f1"].to_numpy(dtype=float)
|
| 83 |
+
task_mean = float(np.mean(f1s)) if f1s.size else float("nan")
|
| 84 |
+
lines.append(f"| - {task} | | | |f1 | | {format_float(task_mean)} | |0 |")
|
| 85 |
+
|
| 86 |
+
# Prompt-level rows, sorted by prompt number if available
|
| 87 |
+
df_task = df_task.copy()
|
| 88 |
+
df_task["_order"] = df_task["prompts"].map(prompt_order_key)
|
| 89 |
+
df_task = df_task.sort_values("_order")
|
| 90 |
+
for _, r in df_task.iterrows():
|
| 91 |
+
prompt_label = str(r["prompts"])
|
| 92 |
+
lines.append(f"| - {prompt_label} | | | |f1 | | {format_float(r['f1'])} | | 0 |")
|
| 93 |
+
|
| 94 |
+
return header + "\n" + "\n".join(lines) + "\n"
|
| 95 |
+
|
| 96 |
+
def main():
|
| 97 |
+
ap = argparse.ArgumentParser(description="Build per-(model,language,configuration) summaries from three prompt Excel files.")
|
| 98 |
+
ap.add_argument("--p1", required=True, help="Path to llm_scores_p1.xlsx")
|
| 99 |
+
ap.add_argument("--p2", required=True, help="Path to llm_scores_p2.xlsx")
|
| 100 |
+
ap.add_argument("--p3", required=True, help="Path to llm_scores_p3.xlsx")
|
| 101 |
+
ap.add_argument("--output-dir", required=True, help="Directory to write output files")
|
| 102 |
+
args = ap.parse_args()
|
| 103 |
+
|
| 104 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 105 |
+
|
| 106 |
+
df = pd.concat([read_scores(args.p1), read_scores(args.p2), read_scores(args.p3)], ignore_index=True)
|
| 107 |
+
|
| 108 |
+
# One file per (model, language, configuration)
|
| 109 |
+
for (model, language, config), g in df.groupby(["model", "language", "configuration"], sort=False):
|
| 110 |
+
content = render_group_table(g, model, language, config)
|
| 111 |
+
fname = f"{sanitize_filename(model)}__{sanitize_filename(language)}__{sanitize_filename(config)}.txt"
|
| 112 |
+
out_path = os.path.join(args.output_dir, fname)
|
| 113 |
+
with open(out_path, "w", encoding="utf-8") as f:
|
| 114 |
+
f.write(content)
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
main()
|
csv_files/llm_scores_p1.xlsx
ADDED
|
Binary file (28.9 kB). View file
|
|
|
csv_files/llm_scores_p2.xlsx
ADDED
|
Binary file (26.3 kB). View file
|
|
|
csv_files/llm_scores_p3.xlsx
ADDED
|
Binary file (23.1 kB). View file
|
|
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0918 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0629 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1041 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1083 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.2604 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.1287 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.3394 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3131 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.2142 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.2189 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.2243 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1994 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.1429 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.1189 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1668 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0611 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0620 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0592 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0620 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0863 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.1017 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0506 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.1065 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1474 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1667 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1089 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1667 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0937 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0821 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1053 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0416 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0435 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0429 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0384 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.1413 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0672 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.2266 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.1300 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3753 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3299 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.4023 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.3938 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.1102 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0977 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1226 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0379 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0379 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0378 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0379 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0891 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0602 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1293 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0778 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3966 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3992 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.3916 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.3992 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.1026 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0998 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1055 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0385 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0387 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0380 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0387 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0174 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0121 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0280 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0121 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3507 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3444 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.3632 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.3444 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0889 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0734 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1045 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0438 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0429 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0456 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0429 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.1278 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0967 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.1900 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0967 | | 0 |
|
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3720 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3558 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.4045 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.3558 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0784 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0787 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0781 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__en__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0578 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0940 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0331 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0464 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__en__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1317 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1215 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1415 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1322 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0022 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0028 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0016 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__gr__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0769 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0859 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0591 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0859 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__gr__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1448 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1455 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1434 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1455 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0015 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0024 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0007 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__it__0shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0812 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0770 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0920 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0747 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__it__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1694 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1616 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1774 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1690 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0050 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0035 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0064 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__pl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0308 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0244 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0436 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0244 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__pl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1516 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1500 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1548 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1500 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0031 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0040 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0023 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__sk__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0712 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0880 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0375 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0880 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__sk__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1444 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1485 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1360 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1485 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0031 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0038 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0024 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__sl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0711 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0777 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0579 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0777 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0000 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0000 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0000 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.0000 | | 0 |
|
csv_files/outputs/HiTZ__Medical-mT5-large__sl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1422 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1470 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1325 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1470 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.0073 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.0073 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.0074 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.2500 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3425 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1181 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.2893 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4075 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4135 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.3917 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.4172 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.5993 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6091 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.5646 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6243 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.6179 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.6332 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.6025 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.1290 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1339 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1191 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1339 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.3957 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.3796 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4266 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3810 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6028 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6119 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.5847 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6119 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5993 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5962 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.6024 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.2137 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.2467 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1709 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.2234 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4016 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4173 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.3770 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.4106 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6569 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6719 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.6327 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6661 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5882 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5767 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5998 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0586 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.0697 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0364 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.0697 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4022 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.3803 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4464 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3800 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6092 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6226 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.5824 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6226 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5729 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5991 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5466 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.0955 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.1220 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.0426 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.1220 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4116 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4027 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4294 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.4027 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6419 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6386 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.6486 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6386 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5869 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5894 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5845 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3398 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3910 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.2375 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.3910 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.3777 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.3775 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.3783 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3775 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6371 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6467 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.6178 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6467 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5865 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5949 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5782 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.3279 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3804 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.3068 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.2964 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4658 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4734 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4649 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.4591 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.5895 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.5970 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.5602 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6113 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.6475 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.6482 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.6469 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.4506 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.5976 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1568 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.5976 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4104 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4393 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4083 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3834 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.6175 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6196 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.6131 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6196 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5905 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5913 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5896 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.2734 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.3758 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.1647 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.2796 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4370 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.4505 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4159 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.4447 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__10shot.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.7005 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.6934 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.7152 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.6930 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.5698 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.5801 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.5595 | | 0 |
|
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__pl__0shot.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
|
| 2 |
+
|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
| 3 |
+
|-------|-------|------|------|------|----|------|---|------|
|
| 4 |
+
| - ner | | | |f1 | | 0.2428 | |0 |
|
| 5 |
+
| - p1 | | | |f1 | | 0.2486 | | 0 |
|
| 6 |
+
| - p2 | | | |f1 | | 0.2311 | | 0 |
|
| 7 |
+
| - p3 | | | |f1 | | 0.2486 | | 0 |
|
| 8 |
+
| - re | | | |f1 | | 0.4074 | |0 |
|
| 9 |
+
| - p1 | | | |f1 | | 0.3865 | | 0 |
|
| 10 |
+
| - p2 | | | |f1 | | 0.4569 | | 0 |
|
| 11 |
+
| - p3 | | | |f1 | | 0.3788 | | 0 |
|