Sfarzi commited on
Commit
2de47c9
·
1 Parent(s): a3d9c20

Initial clone with modifications

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .ipynb_checkpoints/Gen_llm_eval_output-checkpoint.py +0 -0
  2. .ipynb_checkpoints/get_model_info-checkpoint.py +129 -0
  3. .ipynb_checkpoints/preprocess_models_output-checkpoint.py +250 -0
  4. Gen_llm_eval_output.py +117 -0
  5. csv_files/llm_scores_p1.xlsx +0 -0
  6. csv_files/llm_scores_p2.xlsx +0 -0
  7. csv_files/llm_scores_p3.xlsx +0 -0
  8. csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__0shot.txt +11 -0
  9. csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__10shot.txt +10 -0
  10. csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__0shot.txt +11 -0
  11. csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__10shot.txt +10 -0
  12. csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__0shot.txt +11 -0
  13. csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__10shot.txt +10 -0
  14. csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__0shot.txt +11 -0
  15. csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__10shot.txt +10 -0
  16. csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__0shot.txt +11 -0
  17. csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__10shot.txt +10 -0
  18. csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__0shot.txt +11 -0
  19. csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__10shot.txt +10 -0
  20. csv_files/outputs/HiTZ__Medical-mT5-large__en__0shot.txt +11 -0
  21. csv_files/outputs/HiTZ__Medical-mT5-large__en__10shot.txt +10 -0
  22. csv_files/outputs/HiTZ__Medical-mT5-large__gr__0shot.txt +11 -0
  23. csv_files/outputs/HiTZ__Medical-mT5-large__gr__10shot.txt +10 -0
  24. csv_files/outputs/HiTZ__Medical-mT5-large__it__0shot.txt +10 -0
  25. csv_files/outputs/HiTZ__Medical-mT5-large__it__10shot.txt +10 -0
  26. csv_files/outputs/HiTZ__Medical-mT5-large__pl__0shot.txt +11 -0
  27. csv_files/outputs/HiTZ__Medical-mT5-large__pl__10shot.txt +10 -0
  28. csv_files/outputs/HiTZ__Medical-mT5-large__sk__0shot.txt +11 -0
  29. csv_files/outputs/HiTZ__Medical-mT5-large__sk__10shot.txt +10 -0
  30. csv_files/outputs/HiTZ__Medical-mT5-large__sl__0shot.txt +11 -0
  31. csv_files/outputs/HiTZ__Medical-mT5-large__sl__10shot.txt +10 -0
  32. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__0shot.txt +11 -0
  33. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__10shot.txt +10 -0
  34. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__0shot.txt +11 -0
  35. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__10shot.txt +10 -0
  36. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__0shot.txt +11 -0
  37. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__10shot.txt +10 -0
  38. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__0shot.txt +11 -0
  39. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__10shot.txt +10 -0
  40. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__0shot.txt +11 -0
  41. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__10shot.txt +10 -0
  42. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__0shot.txt +11 -0
  43. csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__10shot.txt +10 -0
  44. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__0shot.txt +11 -0
  45. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__10shot.txt +10 -0
  46. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__0shot.txt +11 -0
  47. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__10shot.txt +10 -0
  48. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__0shot.txt +11 -0
  49. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__10shot.txt +10 -0
  50. csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__pl__0shot.txt +11 -0
.ipynb_checkpoints/Gen_llm_eval_output-checkpoint.py ADDED
File without changes
.ipynb_checkpoints/get_model_info-checkpoint.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ MODEL METADATA EXTRACTOR
3
+
4
+ This script processes model evaluation output files (input_folder) from the lm-eval-harness library,
5
+ extracts model identifiers, retrieves detailed metadata from HuggingFace
6
+ and saves the information as structured JSON files (output_folder).
7
+
8
+ Input: Directory containing .out files from lm-eval-harness
9
+ Output: Directory with JSON files containing model metadata
10
+ """
11
+
12
+ # Example input file format (lm-eval-harness output):
13
+ '''
14
+ hf (pretrained=swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 1
15
+ | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
16
+ |------------------------|------:|------|-----:|--------|---|-----:|---|------|
17
+ |evalita-mp | 1|none | |acc |↑ |0.5605|± |0.0052|
18
+ ...
19
+ Job completed
20
+ '''
21
+
22
+ # Example output JSON format:
23
+ '''
24
+ {
25
+ "model": "swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA",
26
+ "base_model": "LlamaForCausalLM",
27
+ "revision": "2b6e46e4c9d341dc8bf8350a167492c880116b66",
28
+ "submitted_time": "2024-04-29 09:34:12+00:00",
29
+ "num_params_billion": 8.030261248,
30
+ "language": "en_it"
31
+ }
32
+ '''
33
+
34
+ import os
35
+ import re
36
+ import json
37
+ from huggingface_hub import HfApi
38
+
39
+ # Configures the Hugging Face token (if needed)
40
+ # TOKEN = "YOUR_HUGGINGFACE_API_TOKEN"
41
+ api = HfApi()
42
+
43
+ # Directory paths
44
+ # input_folder: Directory containing the output files of the lm-eval-harness library, including model accuracy metrics.
45
+ #input_folder = "../evalita_llm_models_output/"
46
+ input_folder = "/home/sfarzi/leaderboard/evalita_llm_leaderboard/task_result/"
47
+ # output_folder: Directory where JSON files with model characteristics will be saved.
48
+ output_folder = "/home/sfarzi/leaderboard/evalita_llm_leaderboard/e3c_llm_requests/"
49
+
50
+ # Creates the output folder if it doesn't exist
51
+ os.makedirs(output_folder, exist_ok=True)
52
+
53
+ # Regular expression to find the model name
54
+ model_pattern = re.compile(r"pretrained=([\w\-./]+)")
55
+
56
+ # Scans files in the input folder
57
+ for filename in os.listdir(input_folder):
58
+ if filename.endswith('.out'):
59
+ file_path = os.path.join(input_folder, filename)
60
+
61
+ # Reads the file content
62
+ with open(file_path, "r", encoding="utf-8") as f:
63
+ content = f.read()
64
+
65
+ # Extracts the model name
66
+ match = model_pattern.search(content)
67
+ if match:
68
+ model_name = match.group(1)
69
+ print(f"Processing model: {model_name}")
70
+
71
+ try:
72
+ # Retrieves model information from HuggingFace
73
+ model_info = api.model_info(model_name)
74
+
75
+ # Calculates the number of parameters in billions, if available
76
+ num_params = None
77
+ if model_info.safetensors and "BF16" in model_info.safetensors.parameters:
78
+ num_params = model_info.safetensors.parameters["BF16"] / 1e9 # Convert to billions
79
+
80
+ # Extracts and concatenates languages
81
+ language = "_".join(model_info.card_data.get("language", [])) if model_info.card_data else ""
82
+
83
+ #print(model_info)
84
+
85
+ # Builds the dictionary with required metadata
86
+ model_data = {
87
+ "model": model_name,
88
+ "base_model": model_info.config.get("architectures", [""])[0] if model_info.config else "",
89
+ "revision": model_info.sha,
90
+ # "precision": "bfloat16", # If available, replace with real value
91
+ # "weight_type": "Original",
92
+ # "status": "FINISHED",
93
+ "submitted_time": str(model_info.created_at),
94
+ # "model_type": "pretrained",
95
+ # "likes": model_info.likes,
96
+ # "params": model_info.safetensors_size_in_bytes / 1e9 if model_info.safetensors_size_in_bytes else None,
97
+ # "license": model_info.license,
98
+ # "private": model_info.private,
99
+ "num_params_billion": num_params, # Number of parameters in billions
100
+ "language": language, # Extracted language
101
+ }
102
+
103
+ # Separates the model_name into two parts: directory name and file name
104
+ if "/" in model_name:
105
+ dir_name, file_name = model_name.split("/", 1)
106
+ else:
107
+ dir_name, file_name = model_name, model_name # If no "/", use the same name
108
+
109
+ # Creates the folder for saving the produced json files
110
+ model_output_folder = os.path.join(output_folder, dir_name)
111
+ os.makedirs(model_output_folder, exist_ok=True)
112
+
113
+ # Saves the JSON file in the appropriate folder
114
+ output_file = os.path.join(model_output_folder, f"{file_name}.json")
115
+
116
+ # Check if the file already exists
117
+ if os.path.exists(output_file):
118
+ print(f"File {output_file} already exists. Skipping...")
119
+ continue
120
+
121
+ with open(output_file, "w", encoding="utf-8") as f:
122
+ json.dump(model_data, f, indent=4)
123
+
124
+ print(f"Saved metadata for {model_name} in {output_file}")
125
+
126
+ except Exception as e:
127
+ print(f"Error retrieving info for {model_name}: {e}")
128
+
129
+ print("Process finished!")
.ipynb_checkpoints/preprocess_models_output-checkpoint.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ EVALITA LLM EVALUATION PROCESSOR
3
+
4
+ Transforms raw model evaluation outputs into structured performance reports for leaderboard integration.
5
+
6
+ DATA PIPELINE OVERVIEW:
7
+
8
+ 1. Inputs:
9
+ - Evaluation Results: Raw .out files from lm-eval-harness
10
+ - Model Metadata: Pre-collected .json files from HuggingFace
11
+
12
+ 2. Output:
13
+ - Comprehensive evaluation reports in JSON format
14
+ - Ready for ingestion into the evaluation leaderboard
15
+
16
+ --------------------------------------------------------------------
17
+ INPUT SPECIFICATION
18
+
19
+ Evaluation Results (.out format):
20
+ hf (pretrained=model-org/model-name), num_fewshot: 5, batch_size: 1
21
+ | Task | Metric | Value | Stderr |
22
+ |---------------|--------|--------|--------|
23
+ | main-task | acc | 0.5605 | 0.0052 |
24
+ | - sub-task | acc | 0.4640 | 0.0088 |
25
+ | - prompt-1 | acc | 0.3720 | 0.0216 |
26
+
27
+ Model Metadata (.json format):
28
+ {
29
+ "model": "model-org/model-name",
30
+ "base_model": "ModelArchitecture",
31
+ "revision": "git_commit_hash",
32
+ "parameters": 8.03,
33
+ "language": "en_it"
34
+ }
35
+
36
+ --------------------------------------------------------------------
37
+ OUTPUT SPECIFICATION
38
+
39
+ Evaluation Report (.json format):
40
+ {
41
+ "summary_metrics": {
42
+ "average_CPS": 41.74,
43
+ "num_tasks": 12
44
+ },
45
+ "model_config": {
46
+ "identifier": "model-org/model-name",
47
+ "architecture": "ModelArchitecture",
48
+ "parameters": 8.03,
49
+ "evaluation_settings": {
50
+ "fewshot": 5,
51
+ "batch_size": 1
52
+ }
53
+ },
54
+ "task_results": {
55
+ "task-name": {
56
+ "average_score": 52.60,
57
+ "best_prompt": {
58
+ "id": "prompt-6",
59
+ "score": 66.57
60
+ },
61
+ "prompt_analysis": [
62
+ {
63
+ "prompt_id": "prompt-1",
64
+ "score": 37.20,
65
+ "stderr": 0.0216
66
+ }
67
+ ]
68
+ }
69
+ }
70
+ }
71
+ """
72
+
73
+ import json
74
+ import os
75
+ import re
76
+
77
+ def safe_float(value):
78
+ """Safely converts a value to float, returning None if the conversion fails."""
79
+ try:
80
+ return float(value)
81
+ except ValueError:
82
+ return None
83
+
84
+
85
+ def calculate_task_metrics(task_info):
86
+ """Calculates average accuracy, best prompt accuracy, and CPS for a given task."""
87
+ accuracies = [prompt['value'] for prompt in task_info['prompts'] if prompt['value'] is not None]
88
+
89
+ if not accuracies:
90
+ return None
91
+
92
+ task_info['average_accuracy'] = sum(accuracies) / len(accuracies)
93
+ best_prompt_data = max(task_info['prompts'], key=lambda x: x['value'])
94
+ task_info['best_prompt'] = best_prompt_data['value']
95
+ task_info['prompt_id'] = best_prompt_data['prompt']
96
+
97
+ # Calculate CPS
98
+ avg_acc = task_info['average_accuracy']
99
+ best_acc = task_info['best_prompt']
100
+ task_info['CPS'] = (1 - (best_acc - avg_acc) / 100) * best_acc
101
+
102
+
103
+ def extract_data_from_file(file_path):
104
+ """Extracts task and prompt data from a specified file."""
105
+ with open(file_path, 'r') as file:
106
+ lines = file.readlines()
107
+
108
+ tasks_data = {}
109
+ current_task = None
110
+
111
+ for line in lines:
112
+ line = line.strip()
113
+
114
+ # Skips empty lines
115
+ if not line:
116
+ continue
117
+
118
+ # Skips header lines
119
+ if line.startswith("| Tasks"):
120
+ continue
121
+
122
+ # Extracts model configuration details
123
+ if line.startswith("hf (pretrained="):
124
+ start = line.find("pretrained=") + len("pretrained=")
125
+ end = line.find(",", start)
126
+ pretrained_model = line[start:end]
127
+
128
+ num_fewshot_match = re.search(r"num_fewshot:\s*([\w\d]+)", line)
129
+ num_fewshot = num_fewshot_match.group(1) if num_fewshot_match else None
130
+
131
+ batch_size_match = re.search(r"batch_size:\s*(\d+)", line)
132
+ batch_size = int(batch_size_match.group(1)) if batch_size_match else None
133
+
134
+ continue
135
+
136
+ columns = line.split('|')
137
+ if len(columns) != 11:
138
+ continue
139
+
140
+ task_name = columns[1]
141
+ metric = columns[5].strip()
142
+ value = safe_float(columns[7])
143
+ stderr = safe_float(columns[9])
144
+ print (value)
145
+ # Skips normalized accuracy metrics
146
+ if metric == "acc_norm":
147
+ continue
148
+
149
+ # Identifies task and prompt sections in the file
150
+ if task_name.startswith(" - "):
151
+ task_name = task_name[3:].strip()
152
+ current_task = task_name
153
+ tasks_data.setdefault(current_task,
154
+ {'prompts': [], 'average_accuracy': 0, 'best_prompt': None, 'prompt_id': None,
155
+ 'CPS': None})
156
+
157
+ elif task_name.startswith(" - ") and current_task:
158
+ prompt_name = task_name[4:].strip()
159
+ prompt_data = {'prompt': prompt_name, 'metric': metric, 'value': value * 100,
160
+ 'stderr': stderr}
161
+ tasks_data[current_task]['prompts'].append(prompt_data)
162
+
163
+ # Special handling for evalita NER task to calculate weighted prompt averages
164
+ if "evalita NER" in tasks_data:
165
+ task_info = tasks_data["evalita NER"]
166
+ weight_map = {"ADG prompt-1": 521, "ADG prompt-2": 521, "FIC prompt-1": 1517, "FIC prompt-2": 1517,
167
+ "WN prompt-1": 2088, "WN prompt-2": 2088}
168
+
169
+ weighted_values = {"prompt-1": 0, "prompt-2": 0}
170
+ total_weights = sum(weight_map.values())
171
+
172
+ for prompt in task_info['prompts']:
173
+ if prompt['prompt'] in weight_map:
174
+ if "prompt-1" in prompt['prompt']:
175
+ weighted_values["prompt-1"] += weight_map[prompt['prompt']] * prompt['value']
176
+ elif "prompt-2" in prompt['prompt']:
177
+ weighted_values["prompt-2"] += weight_map[prompt['prompt']] * prompt['value']
178
+
179
+ task_info['prompts'] = [
180
+ {"prompt": "prompt-1", "metric": "acc", "value": weighted_values["prompt-1"] / total_weights,
181
+ 'stderr': None},
182
+ {"prompt": "prompt-2", "metric": "acc", "value": weighted_values["prompt-2"] / total_weights,
183
+ 'stderr': None}]
184
+
185
+ # Calculates task metrics for each task
186
+ for task_info in tasks_data.values():
187
+ calculate_task_metrics(task_info)
188
+
189
+ # Calculates the average CPS across all tasks
190
+ tasks_with_cps = [task['CPS'] for task in tasks_data.values() if task['CPS'] is not None]
191
+ average_CPS = sum(tasks_with_cps) / len(tasks_with_cps) if tasks_with_cps else 0
192
+
193
+ config = {
194
+ "model_name": pretrained_model,
195
+ "num_fewshot": num_fewshot,
196
+ "batch_size": batch_size
197
+ }
198
+
199
+ return {'average_CPS': average_CPS, 'config': config, 'tasks': tasks_data}
200
+
201
+
202
+ """
203
+ MAIN PROCESSING PIPELINE
204
+
205
+ This script executes the complete evaluation data processing workflow:
206
+
207
+ 1. Input Sources:
208
+ - Raw evaluation results (.out files) from: ../evalita_llm_models_output/
209
+ - Model metadata JSON files from: ../evalita_llm_requests/
210
+
211
+ 2. Processing Steps:
212
+ - Parses evaluation metrics from .out files
213
+ - Combines with model metadata
214
+ - Calculates aggregated performance statistics
215
+
216
+ 3. Output:
217
+ - Structured JSON results saved to: ../evalita_llm_results/
218
+ - Organized by model organization/name
219
+ - Contains complete evaluation results with metadata
220
+ """
221
+ directory_in_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/task_result/'
222
+ directory_in_requests_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/evalita_llm_requests/'
223
+ directory_out_results_path = '/home/sfarzi/leaderboard/evalita_llm_leaderboard/evalita_llm_results/'
224
+
225
+ for filename in os.listdir(directory_in_path):
226
+ if filename.endswith('.out'):
227
+ file_path = os.path.join(directory_in_path, filename)
228
+ json_output = extract_data_from_file(file_path)
229
+
230
+ model_org_name, model_name = json_output['config']['model_name'].split('/')
231
+
232
+
233
+ config_file_path = os.path.join(directory_in_requests_path, model_org_name, f"{model_name}.json")
234
+
235
+ if os.path.exists(config_file_path):
236
+ with open(config_file_path, 'r', encoding='utf-8') as config_file:
237
+ additional_config = json.load(config_file)
238
+ json_output['config'].update(additional_config)
239
+
240
+
241
+ org_folder_path = os.path.join(directory_out_results_path, model_org_name)
242
+ os.makedirs(org_folder_path, exist_ok=True)
243
+
244
+ file_suffix = f"{json_output['config']['num_fewshot']}"
245
+ output_file_path = os.path.join(org_folder_path, f"{model_name}_{file_suffix}.json")
246
+
247
+ with open(output_file_path, 'w', newline="\n") as outfile:
248
+ json.dump(json_output, outfile, indent=4)
249
+
250
+ print(f"File {filename} processed and saved to {output_file_path}")
Gen_llm_eval_output.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ #python Gen_llm_eval_output.py --p1 csv_files/llm_scores_p1.xlsx --p2 csv_files/llm_scores_p2.xlsx --p3 csv_files/llm_scores_p3.xlsx --output-dir csv_files/outputs
4
+ import argparse
5
+ import os
6
+ import re
7
+ import math
8
+ import pandas as pd
9
+ import numpy as np
10
+
11
+ REQUIRED_COLS = ["model", "task", "language", "configuration", "prompts", "f1"]
12
+
13
+ def read_scores(path: str) -> pd.DataFrame:
14
+ df = pd.read_excel(path)
15
+ # normalize columns
16
+ df.columns = [c.strip().lower() for c in df.columns]
17
+ if "prompts" not in df.columns and "prompt" in df.columns:
18
+ df["prompts"] = df["prompt"]
19
+ missing = [c for c in REQUIRED_COLS if c not in df.columns]
20
+ if missing:
21
+ raise ValueError(f"{path} is missing required columns: {missing}")
22
+ # keep only required, coerce f1 to numeric
23
+ df = df[REQUIRED_COLS].copy()
24
+ df["f1"] = pd.to_numeric(df["f1"], errors="coerce")
25
+ df = df.dropna(subset=["f1"])
26
+ return df
27
+
28
+ def sanitize_filename(s: str) -> str:
29
+ return re.sub(r"[^0-9A-Za-z._\-+]+", "_", str(s).strip())
30
+
31
+ def format_float(x):
32
+ if x is None or (isinstance(x, float) and (math.isnan(x) or math.isinf(x))):
33
+ return "nan"
34
+ return f"{x:.4f}"
35
+
36
+ def prompt_order_key(label: str):
37
+ # Sort by the number in "prompt-<n>" if present; fallback to string
38
+ m = re.search(r"(\d+)", str(label))
39
+ return (0, int(m.group(1))) if m else (1, str(label))
40
+
41
+ def render_group_table(g: pd.DataFrame, model: str, language: str, configuration: str) -> str:
42
+ # Collect all prompt-level f1 values (across tasks and prompts)
43
+ prompt_values = g["f1"].to_numpy(dtype=float)
44
+ if prompt_values.size > 0:
45
+ gen_value = float(np.mean(prompt_values))
46
+ gen_stderr = float(np.std(prompt_values, ddof=1) / math.sqrt(len(prompt_values))) if len(prompt_values) > 1 else 0.0
47
+ else:
48
+ gen_value, gen_stderr = float("nan"), 0.0
49
+
50
+ # Build table text
51
+ if configuration=="0shot" : configuration='0'
52
+ if configuration=="10shot" : configuration='10'
53
+ model = model.split("__")[0]+'/'+model.split("__")[1]
54
+ #if model =='Henrychur__MMed-Llama-3-8B' : model='Henrychur/MMed-Llama-3-8B'
55
+ #if model =='HiTZ__Medical-mT5-large' : model=''
56
+ #if model =='Qwen__Qwen2.5-14B-Instruct-1M' : model='Qwen/'+model
57
+ #if model =='Qwen__Qwen2.5-32B-Instruct' : model='Qwen/'+model
58
+ #if model =='Qwen__Qwen3-30B-A3B-Instruct-2507' : model='Qwen/'+model
59
+ #if model =='deepseek-ai__DeepSeek-R1-Distill-Qwen-32B' : model=''
60
+ #if model =='epfl-llm__meditron-7b' : model=''
61
+ #if model =='google__gemma-2-9b-it' : model=''
62
+ #if model =='google__gemma-3-27b-it' : model=''
63
+ #if model =='google__medgemma-27b-text-it' : model=''
64
+ #if model =='google__medgemma-4b-it' : model=''
65
+ #if model =='microsoft__MediPhi-Clinical' : model=''
66
+ #if model =='microsoft__MediPhi-Instruct' : model=''
67
+ #if model =='mistralai__Mistral-7B-Instruct-v0.2' : model=''
68
+ #if model =='mistralai__Mistral-Nemo-Instruct-2407' : model=''
69
+ #if model =='tiiuae__Falcon3-10B-Instruct' : model=''
70
+ #if model =='unsloth__phi-4' : model=''
71
+ #if model =='Henrychur__MMed-Llama-3-8B' : model=''
72
+
73
+ header = f"hf (pretrained={model} ), num_fewshot: {configuration}, batch_size: 1"
74
+ lines = [
75
+ "|Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|",
76
+ "|-------|-------|------|------|------|----|------|---|------|",
77
+ #f"|Gen | | | |f1 | |{format_float(gen_value)} |---| {format_float(gen_stderr)} |",
78
+ ]
79
+
80
+ # For each task, add task row (mean over prompts) then prompt rows
81
+ for task, df_task in g.groupby("task", sort=False):
82
+ f1s = df_task["f1"].to_numpy(dtype=float)
83
+ task_mean = float(np.mean(f1s)) if f1s.size else float("nan")
84
+ lines.append(f"| - {task} | | | |f1 | | {format_float(task_mean)} | |0 |")
85
+
86
+ # Prompt-level rows, sorted by prompt number if available
87
+ df_task = df_task.copy()
88
+ df_task["_order"] = df_task["prompts"].map(prompt_order_key)
89
+ df_task = df_task.sort_values("_order")
90
+ for _, r in df_task.iterrows():
91
+ prompt_label = str(r["prompts"])
92
+ lines.append(f"| - {prompt_label} | | | |f1 | | {format_float(r['f1'])} | | 0 |")
93
+
94
+ return header + "\n" + "\n".join(lines) + "\n"
95
+
96
+ def main():
97
+ ap = argparse.ArgumentParser(description="Build per-(model,language,configuration) summaries from three prompt Excel files.")
98
+ ap.add_argument("--p1", required=True, help="Path to llm_scores_p1.xlsx")
99
+ ap.add_argument("--p2", required=True, help="Path to llm_scores_p2.xlsx")
100
+ ap.add_argument("--p3", required=True, help="Path to llm_scores_p3.xlsx")
101
+ ap.add_argument("--output-dir", required=True, help="Directory to write output files")
102
+ args = ap.parse_args()
103
+
104
+ os.makedirs(args.output_dir, exist_ok=True)
105
+
106
+ df = pd.concat([read_scores(args.p1), read_scores(args.p2), read_scores(args.p3)], ignore_index=True)
107
+
108
+ # One file per (model, language, configuration)
109
+ for (model, language, config), g in df.groupby(["model", "language", "configuration"], sort=False):
110
+ content = render_group_table(g, model, language, config)
111
+ fname = f"{sanitize_filename(model)}__{sanitize_filename(language)}__{sanitize_filename(config)}.txt"
112
+ out_path = os.path.join(args.output_dir, fname)
113
+ with open(out_path, "w", encoding="utf-8") as f:
114
+ f.write(content)
115
+
116
+ if __name__ == "__main__":
117
+ main()
csv_files/llm_scores_p1.xlsx ADDED
Binary file (28.9 kB). View file
 
csv_files/llm_scores_p2.xlsx ADDED
Binary file (26.3 kB). View file
 
csv_files/llm_scores_p3.xlsx ADDED
Binary file (23.1 kB). View file
 
csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0918 | |0 |
5
+ | - p1 | | | |f1 | | 0.0629 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1041 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1083 | | 0 |
8
+ | - re | | | |f1 | | 0.2604 | |0 |
9
+ | - p1 | | | |f1 | | 0.1287 | | 0 |
10
+ | - p2 | | | |f1 | | 0.3394 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3131 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__en__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.2142 | |0 |
5
+ | - p1 | | | |f1 | | 0.2189 | | 0 |
6
+ | - p2 | | | |f1 | | 0.2243 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1994 | | 0 |
8
+ | - re | | | |f1 | | 0.1429 | |0 |
9
+ | - p1 | | | |f1 | | 0.1189 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1668 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0611 | |0 |
5
+ | - p1 | | | |f1 | | 0.0620 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0592 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0620 | | 0 |
8
+ | - re | | | |f1 | | 0.0863 | |0 |
9
+ | - p1 | | | |f1 | | 0.1017 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0506 | | 0 |
11
+ | - p3 | | | |f1 | | 0.1065 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__gr__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1474 | |0 |
5
+ | - p1 | | | |f1 | | 0.1667 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1089 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1667 | | 0 |
8
+ | - re | | | |f1 | | 0.0937 | |0 |
9
+ | - p1 | | | |f1 | | 0.0821 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1053 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0416 | |0 |
5
+ | - p1 | | | |f1 | | 0.0435 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0429 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0384 | | 0 |
8
+ | - re | | | |f1 | | 0.1413 | |0 |
9
+ | - p1 | | | |f1 | | 0.0672 | | 0 |
10
+ | - p2 | | | |f1 | | 0.2266 | | 0 |
11
+ | - p3 | | | |f1 | | 0.1300 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__it__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3753 | |0 |
5
+ | - p1 | | | |f1 | | 0.3299 | | 0 |
6
+ | - p2 | | | |f1 | | 0.4023 | | 0 |
7
+ | - p3 | | | |f1 | | 0.3938 | | 0 |
8
+ | - re | | | |f1 | | 0.1102 | |0 |
9
+ | - p1 | | | |f1 | | 0.0977 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1226 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0379 | |0 |
5
+ | - p1 | | | |f1 | | 0.0379 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0378 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0379 | | 0 |
8
+ | - re | | | |f1 | | 0.0891 | |0 |
9
+ | - p1 | | | |f1 | | 0.0602 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1293 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0778 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__pl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3966 | |0 |
5
+ | - p1 | | | |f1 | | 0.3992 | | 0 |
6
+ | - p2 | | | |f1 | | 0.3916 | | 0 |
7
+ | - p3 | | | |f1 | | 0.3992 | | 0 |
8
+ | - re | | | |f1 | | 0.1026 | |0 |
9
+ | - p1 | | | |f1 | | 0.0998 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1055 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0385 | |0 |
5
+ | - p1 | | | |f1 | | 0.0387 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0380 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0387 | | 0 |
8
+ | - re | | | |f1 | | 0.0174 | |0 |
9
+ | - p1 | | | |f1 | | 0.0121 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0280 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0121 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sk__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3507 | |0 |
5
+ | - p1 | | | |f1 | | 0.3444 | | 0 |
6
+ | - p2 | | | |f1 | | 0.3632 | | 0 |
7
+ | - p3 | | | |f1 | | 0.3444 | | 0 |
8
+ | - re | | | |f1 | | 0.0889 | |0 |
9
+ | - p1 | | | |f1 | | 0.0734 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1045 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0438 | |0 |
5
+ | - p1 | | | |f1 | | 0.0429 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0456 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0429 | | 0 |
8
+ | - re | | | |f1 | | 0.1278 | |0 |
9
+ | - p1 | | | |f1 | | 0.0967 | | 0 |
10
+ | - p2 | | | |f1 | | 0.1900 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0967 | | 0 |
csv_files/outputs/Henrychur__MMed-Llama-3-8B__sl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Henrychur/MMed-Llama-3-8B ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3720 | |0 |
5
+ | - p1 | | | |f1 | | 0.3558 | | 0 |
6
+ | - p2 | | | |f1 | | 0.4045 | | 0 |
7
+ | - p3 | | | |f1 | | 0.3558 | | 0 |
8
+ | - re | | | |f1 | | 0.0784 | |0 |
9
+ | - p1 | | | |f1 | | 0.0787 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0781 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__en__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0578 | |0 |
5
+ | - p1 | | | |f1 | | 0.0940 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0331 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0464 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p1 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__en__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1317 | |0 |
5
+ | - p1 | | | |f1 | | 0.1215 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1415 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1322 | | 0 |
8
+ | - re | | | |f1 | | 0.0022 | |0 |
9
+ | - p1 | | | |f1 | | 0.0028 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0016 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__gr__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0769 | |0 |
5
+ | - p1 | | | |f1 | | 0.0859 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0591 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0859 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p1 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__gr__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1448 | |0 |
5
+ | - p1 | | | |f1 | | 0.1455 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1434 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1455 | | 0 |
8
+ | - re | | | |f1 | | 0.0015 | |0 |
9
+ | - p1 | | | |f1 | | 0.0024 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0007 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__it__0shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0812 | |0 |
5
+ | - p1 | | | |f1 | | 0.0770 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0920 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0747 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__it__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1694 | |0 |
5
+ | - p1 | | | |f1 | | 0.1616 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1774 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1690 | | 0 |
8
+ | - re | | | |f1 | | 0.0050 | |0 |
9
+ | - p1 | | | |f1 | | 0.0035 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0064 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__pl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0308 | |0 |
5
+ | - p1 | | | |f1 | | 0.0244 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0436 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0244 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p1 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__pl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1516 | |0 |
5
+ | - p1 | | | |f1 | | 0.1500 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1548 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1500 | | 0 |
8
+ | - re | | | |f1 | | 0.0031 | |0 |
9
+ | - p1 | | | |f1 | | 0.0040 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0023 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__sk__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0712 | |0 |
5
+ | - p1 | | | |f1 | | 0.0880 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0375 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0880 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p1 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__sk__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1444 | |0 |
5
+ | - p1 | | | |f1 | | 0.1485 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1360 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1485 | | 0 |
8
+ | - re | | | |f1 | | 0.0031 | |0 |
9
+ | - p1 | | | |f1 | | 0.0038 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0024 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__sl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0711 | |0 |
5
+ | - p1 | | | |f1 | | 0.0777 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0579 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0777 | | 0 |
8
+ | - re | | | |f1 | | 0.0000 | |0 |
9
+ | - p1 | | | |f1 | | 0.0000 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0000 | | 0 |
11
+ | - p3 | | | |f1 | | 0.0000 | | 0 |
csv_files/outputs/HiTZ__Medical-mT5-large__sl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=HiTZ/Medical-mT5-large ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1422 | |0 |
5
+ | - p1 | | | |f1 | | 0.1470 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1325 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1470 | | 0 |
8
+ | - re | | | |f1 | | 0.0073 | |0 |
9
+ | - p1 | | | |f1 | | 0.0073 | | 0 |
10
+ | - p2 | | | |f1 | | 0.0074 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.2500 | |0 |
5
+ | - p1 | | | |f1 | | 0.3425 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1181 | | 0 |
7
+ | - p3 | | | |f1 | | 0.2893 | | 0 |
8
+ | - re | | | |f1 | | 0.4075 | |0 |
9
+ | - p1 | | | |f1 | | 0.4135 | | 0 |
10
+ | - p2 | | | |f1 | | 0.3917 | | 0 |
11
+ | - p3 | | | |f1 | | 0.4172 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__en__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.5993 | |0 |
5
+ | - p1 | | | |f1 | | 0.6091 | | 0 |
6
+ | - p2 | | | |f1 | | 0.5646 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6243 | | 0 |
8
+ | - re | | | |f1 | | 0.6179 | |0 |
9
+ | - p1 | | | |f1 | | 0.6332 | | 0 |
10
+ | - p2 | | | |f1 | | 0.6025 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.1290 | |0 |
5
+ | - p1 | | | |f1 | | 0.1339 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1191 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1339 | | 0 |
8
+ | - re | | | |f1 | | 0.3957 | |0 |
9
+ | - p1 | | | |f1 | | 0.3796 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4266 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3810 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__gr__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6028 | |0 |
5
+ | - p1 | | | |f1 | | 0.6119 | | 0 |
6
+ | - p2 | | | |f1 | | 0.5847 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6119 | | 0 |
8
+ | - re | | | |f1 | | 0.5993 | |0 |
9
+ | - p1 | | | |f1 | | 0.5962 | | 0 |
10
+ | - p2 | | | |f1 | | 0.6024 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.2137 | |0 |
5
+ | - p1 | | | |f1 | | 0.2467 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1709 | | 0 |
7
+ | - p3 | | | |f1 | | 0.2234 | | 0 |
8
+ | - re | | | |f1 | | 0.4016 | |0 |
9
+ | - p1 | | | |f1 | | 0.4173 | | 0 |
10
+ | - p2 | | | |f1 | | 0.3770 | | 0 |
11
+ | - p3 | | | |f1 | | 0.4106 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__it__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6569 | |0 |
5
+ | - p1 | | | |f1 | | 0.6719 | | 0 |
6
+ | - p2 | | | |f1 | | 0.6327 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6661 | | 0 |
8
+ | - re | | | |f1 | | 0.5882 | |0 |
9
+ | - p1 | | | |f1 | | 0.5767 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5998 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0586 | |0 |
5
+ | - p1 | | | |f1 | | 0.0697 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0364 | | 0 |
7
+ | - p3 | | | |f1 | | 0.0697 | | 0 |
8
+ | - re | | | |f1 | | 0.4022 | |0 |
9
+ | - p1 | | | |f1 | | 0.3803 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4464 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3800 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__pl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6092 | |0 |
5
+ | - p1 | | | |f1 | | 0.6226 | | 0 |
6
+ | - p2 | | | |f1 | | 0.5824 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6226 | | 0 |
8
+ | - re | | | |f1 | | 0.5729 | |0 |
9
+ | - p1 | | | |f1 | | 0.5991 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5466 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.0955 | |0 |
5
+ | - p1 | | | |f1 | | 0.1220 | | 0 |
6
+ | - p2 | | | |f1 | | 0.0426 | | 0 |
7
+ | - p3 | | | |f1 | | 0.1220 | | 0 |
8
+ | - re | | | |f1 | | 0.4116 | |0 |
9
+ | - p1 | | | |f1 | | 0.4027 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4294 | | 0 |
11
+ | - p3 | | | |f1 | | 0.4027 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sk__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6419 | |0 |
5
+ | - p1 | | | |f1 | | 0.6386 | | 0 |
6
+ | - p2 | | | |f1 | | 0.6486 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6386 | | 0 |
8
+ | - re | | | |f1 | | 0.5869 | |0 |
9
+ | - p1 | | | |f1 | | 0.5894 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5845 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3398 | |0 |
5
+ | - p1 | | | |f1 | | 0.3910 | | 0 |
6
+ | - p2 | | | |f1 | | 0.2375 | | 0 |
7
+ | - p3 | | | |f1 | | 0.3910 | | 0 |
8
+ | - re | | | |f1 | | 0.3777 | |0 |
9
+ | - p1 | | | |f1 | | 0.3775 | | 0 |
10
+ | - p2 | | | |f1 | | 0.3783 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3775 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-14B-Instruct-1M__sl__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-14B-Instruct-1M ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6371 | |0 |
5
+ | - p1 | | | |f1 | | 0.6467 | | 0 |
6
+ | - p2 | | | |f1 | | 0.6178 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6467 | | 0 |
8
+ | - re | | | |f1 | | 0.5865 | |0 |
9
+ | - p1 | | | |f1 | | 0.5949 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5782 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.3279 | |0 |
5
+ | - p1 | | | |f1 | | 0.3804 | | 0 |
6
+ | - p2 | | | |f1 | | 0.3068 | | 0 |
7
+ | - p3 | | | |f1 | | 0.2964 | | 0 |
8
+ | - re | | | |f1 | | 0.4658 | |0 |
9
+ | - p1 | | | |f1 | | 0.4734 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4649 | | 0 |
11
+ | - p3 | | | |f1 | | 0.4591 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__en__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.5895 | |0 |
5
+ | - p1 | | | |f1 | | 0.5970 | | 0 |
6
+ | - p2 | | | |f1 | | 0.5602 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6113 | | 0 |
8
+ | - re | | | |f1 | | 0.6475 | |0 |
9
+ | - p1 | | | |f1 | | 0.6482 | | 0 |
10
+ | - p2 | | | |f1 | | 0.6469 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.4506 | |0 |
5
+ | - p1 | | | |f1 | | 0.5976 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1568 | | 0 |
7
+ | - p3 | | | |f1 | | 0.5976 | | 0 |
8
+ | - re | | | |f1 | | 0.4104 | |0 |
9
+ | - p1 | | | |f1 | | 0.4393 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4083 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3834 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__gr__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.6175 | |0 |
5
+ | - p1 | | | |f1 | | 0.6196 | | 0 |
6
+ | - p2 | | | |f1 | | 0.6131 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6196 | | 0 |
8
+ | - re | | | |f1 | | 0.5905 | |0 |
9
+ | - p1 | | | |f1 | | 0.5913 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5896 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.2734 | |0 |
5
+ | - p1 | | | |f1 | | 0.3758 | | 0 |
6
+ | - p2 | | | |f1 | | 0.1647 | | 0 |
7
+ | - p3 | | | |f1 | | 0.2796 | | 0 |
8
+ | - re | | | |f1 | | 0.4370 | |0 |
9
+ | - p1 | | | |f1 | | 0.4505 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4159 | | 0 |
11
+ | - p3 | | | |f1 | | 0.4447 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__it__10shot.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 10, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.7005 | |0 |
5
+ | - p1 | | | |f1 | | 0.6934 | | 0 |
6
+ | - p2 | | | |f1 | | 0.7152 | | 0 |
7
+ | - p3 | | | |f1 | | 0.6930 | | 0 |
8
+ | - re | | | |f1 | | 0.5698 | |0 |
9
+ | - p1 | | | |f1 | | 0.5801 | | 0 |
10
+ | - p2 | | | |f1 | | 0.5595 | | 0 |
csv_files/outputs/Qwen__Qwen2.5-32B-Instruct__pl__0shot.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hf (pretrained=Qwen/Qwen2.5-32B-Instruct ), num_fewshot: 0, batch_size: 1
2
+ |Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
3
+ |-------|-------|------|------|------|----|------|---|------|
4
+ | - ner | | | |f1 | | 0.2428 | |0 |
5
+ | - p1 | | | |f1 | | 0.2486 | | 0 |
6
+ | - p2 | | | |f1 | | 0.2311 | | 0 |
7
+ | - p3 | | | |f1 | | 0.2486 | | 0 |
8
+ | - re | | | |f1 | | 0.4074 | |0 |
9
+ | - p1 | | | |f1 | | 0.3865 | | 0 |
10
+ | - p2 | | | |f1 | | 0.4569 | | 0 |
11
+ | - p3 | | | |f1 | | 0.3788 | | 0 |