Sfarzi's picture
Initial clone with modifications
16ce187
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
# === NEW: helper for prompt sensitivity (simple: only NER/REL and 3 prompts) ===
def calculate_prompt_sensitivity(dataframe, tasks, prompt_ids):
"""
Computes a simple Prompt Sensitivity Index (PSI) over the tasks
using the distribution of 'Best Prompt Id' across the provided prompt_ids.
"""
cv_per_task = []
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
task_accuracies = []
for pid in prompt_ids:
total = len(dataframe[prompt_col].dropna()) if prompt_col in dataframe.columns else 0
count = (dataframe[prompt_col] == pid).sum() if prompt_col in dataframe.columns else 0
acc = (count / total * 100) if total > 0 else 0
task_accuracies.append(acc)
if task_accuracies:
mean_acc = np.mean(task_accuracies)
std_acc = np.std(task_accuracies)
cv_per_task.append((std_acc / mean_acc) if mean_acc > 0 else 0)
else:
cv_per_task.append(0)
mean_cv = np.mean(cv_per_task) if cv_per_task else 0
psi = 1.0 if mean_cv >= 0.5 else (mean_cv / 0.5)
return psi, mean_cv, cv_per_task
def create_best_model_comparison_table(dataframe, lang: str | None = None, shot: str | None = None):
"""
Table with best overall model per task and the model with the best prompt score.
Applies optional filters:
- lang in {EN, IT, SL, SK, GR, PL} or None/"All"
- shot in {"0","10"} or None/"All" (mapped to IS_FS False/True)
"""
tasks = ["NER", "REL", "RML-CRF", "HIS-CRF", "DIA-CRF", "NER-PHARMAER"]
df = dataframe.copy()
if lang and lang != "All" and "LANG" in df.columns:
df = df[df["LANG"] == lang]
if shot and shot != "All" and "IS_FS" in df.columns:
df = df[df["IS_FS"] == (shot == "10")]
table_data = {'Task': [], 'Best Overall Model': [], 'CPS': [], 'Best Prompt Model': [], 'Acc.': []}
for task in tasks:
if task not in df.columns or df.empty:
continue
# Best overall on task
#max_idx = df[task].idxmax()
max_idx = pd.to_numeric(df[task], errors='coerce').idxmax()
try:
model_raw = df.loc[max_idx, 'Model']
except Exception as e:
break
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
comb_perf_value = df.loc[max_idx, task]
# Best prompt row for task
best_prompt_column = f"{task} Best Prompt"
if best_prompt_column in df.columns and df[best_prompt_column].notna().any():
best_prompt_idx= pd.to_numeric(df[best_prompt_column],errors='coerce').idxmax()
try:
best_prompt_model_raw = df.loc[best_prompt_idx, 'Model']
except Exception as e:
break
if isinstance(best_prompt_model_raw, str) and '<' in best_prompt_model_raw:
match = re.search(r'>([^<]+)<', best_prompt_model_raw)
best_prompt_model = match.group(1) if match else best_prompt_model_raw
else:
best_prompt_model = str(best_prompt_model_raw)
best_prompt_accuracy = df.loc[best_prompt_idx, best_prompt_column]
else:
best_prompt_model = "n/a"
best_prompt_accuracy = float('nan')
table_data['Task'].append(task)
table_data['Best Overall Model'].append(model_name)
table_data['CPS'].append(f"{comb_perf_value:.2f}")
table_data['Best Prompt Model'].append(best_prompt_model)
table_data['Acc.'].append(f"{best_prompt_accuracy:.2f}" if isinstance(best_prompt_accuracy, (int, float)) else "n/a")
fig = go.Figure(data=[go.Table(
columnwidth=[60, 220, 60, 220, 60],
header=dict(
values=[f'<b>{col}</b>' for col in table_data.keys()],
fill_color=['#2171b5', '#2171b5', '#2171b5', '#4292c6', '#4292c6'],
font=dict(color='white', size=12, family='Arial'),
align='center', height=30
),
cells=dict(
values=list(table_data.values()),
fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]],
font=dict(color='#2c3e50', size=11, family='Arial'),
align=['center', 'left', 'center', 'left', 'center'],
height=30
)
)])
subtitle = []
subtitle.append(lang if (lang and lang != "All") else "All languages")
subtitle.append(f"{shot}-shot" if (shot and shot != "All") else "All shots")
fig.update_layout(
title={'text': f"Top Model per Task: CPS & Best Prompt β€” {', '.join(subtitle)}",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
font=dict(family="Arial", size=11),
height=420, margin=dict(l=20, r=20, t=50, b=80)
)
return fig
# === NEW: Best-model comparison table (only NER, REL) ===
def create_best_model_comparison_table_without_lang(dataframe):
"""
Table with the best overall model per task (NER, REL,) and the model that
achieves the best score with its own best prompt.
"""
tasks = ["NER", "REL", "RML-CRF", "HIS-CRF", "DIA-CRF", "NER-PHARMAER"]
table_data = {'Task': [], 'Best Overall Model': [], 'CPS': [], 'Best Prompt Model': [], 'Acc.': []}
for task in tasks:
if task not in dataframe.columns:
continue
# Best overall on the task's combined performance
max_idx = dataframe[task].idxmax()
model_raw = dataframe.loc[max_idx, 'Model']
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
comb_perf_value = dataframe.loc[max_idx, task]
# Model with the best prompt for this task
best_prompt_column = f"{task} Best Prompt"
if best_prompt_column in dataframe.columns:
best_prompt_idx = dataframe[best_prompt_column].idxmax()
best_prompt_model_raw = dataframe.loc[best_prompt_idx, 'Model']
if isinstance(best_prompt_model_raw, str) and '<' in best_prompt_model_raw:
match = re.search(r'>([^<]+)<', best_prompt_model_raw)
best_prompt_model = match.group(1) if match else best_prompt_model_raw
else:
best_prompt_model = str(best_prompt_model_raw)
best_prompt_accuracy = dataframe.loc[best_prompt_idx, best_prompt_column]
else:
best_prompt_model = "n/a"
best_prompt_accuracy = float('nan')
table_data['Task'].append(task)
table_data['Best Overall Model'].append(model_name)
table_data['CPS'].append(f"{comb_perf_value:.2f}")
table_data['Best Prompt Model'].append(best_prompt_model)
table_data['Acc.'].append(f"{best_prompt_accuracy:.2f}" if isinstance(best_prompt_accuracy, (int, float)) else "n/a")
fig = go.Figure(data=[go.Table(
columnwidth=[60, 220, 60, 220, 60],
header=dict(
values=[f'<b>{col}</b>' for col in table_data.keys()],
fill_color=['#2171b5', '#2171b5', '#2171b5', '#4292c6', '#4292c6'],
font=dict(color='white', size=12, family='Arial'),
align='center', height=30
),
cells=dict(
values=list(table_data.values()),
fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]],
font=dict(color='#2c3e50', size=11, family='Arial'),
align=['center', 'left', 'center', 'left', 'center'],
height=30
)
)])
fig.update_layout(
title={'text': "Top Model per Task: CPS & Best Prompt (NER/REL)",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
font=dict(family="Arial", size=11),
height=420, margin=dict(l=20, r=20, t=50, b=80)
)
fig.add_annotation(
text=("Best Overall Model uses the task's primary metric (CPS). "
"Best Prompt Model is the one whose own best prompt yields the highest score."),
xref="paper", yref="paper", x=0.5, y=-0.20, showarrow=False,
font=dict(size=11, color="gray", family="Arial"), align="center", xanchor="center"
)
return fig
def create_prompt_heatmap(dataframe, lang: str | None = None, shot: str | None = None):
"""
Heatmap of share (%) of models whose BEST prompt is each pid, for NER/REL with prompts p1..p3.
Optional filters:
- lang: None or one of EN/IT/SL/SK/GR/PL (None means All)
- shot: None or "0"/"10" (None means All) mapped to IS_FS False/True
"""
tasks = ["NER", "REL", "RML-CRF", "HIS-CRF", "DIA-CRF", "NER-PHARMAER"]
df = dataframe.copy()
# Language filter
if lang and lang != "All" and "LANG" in df.columns:
df = df[df["LANG"] == lang]
# Shot filter -> IS_FS (10-shot=True, 0-shot=False)
if shot and shot != "All" and "IS_FS" in df.columns:
df = df[df["IS_FS"] == (shot == "10")]
# Collect prompt ids present, normalize labels to p1..p3
def label_for(pid):
if isinstance(pid, str): return pid
try: return f"p{int(pid)}"
except Exception: return str(pid)
all_ids = set()
for task in tasks:
col = f"{task} Best Prompt Id"
if col in df.columns:
#print (col)
#print(df[col])
all_ids.update(df[col].dropna().unique())
prompt_ids_raw = sorted(list(all_ids), key=lambda x: int(re.sub(r'[^0-9]', '', str(x)) or 0))
prompt_ids_raw = [pid for pid in prompt_ids_raw if label_for(pid) in {"p1", "p2", "p3"}] or [1, 2, 3]
y_tick_labels = [label_for(pid) for pid in prompt_ids_raw]
matrix, hovers = [], []
for pid in prompt_ids_raw:
row, hover_row = [], []
for task in tasks:
col = f"{task} Best Prompt Id"
if col in df.columns and len(df[col].dropna()) > 0:
series = df[col].dropna()
def same_pid(v):
a = re.sub(r'[^0-9]', '', str(v))
b = re.sub(r'[^0-9]', '', str(pid))
return a == b and a != ""
total = len(series)
count = sum(same_pid(v) for v in series)
pct = (count / total * 100) if total > 0 else 0
row.append(pct)
hover_row.append(f"<b>{task} β€” {label_for(pid)}</b><br>Models: {count}/{total}<br>Percentage: {pct:.1f}%")
else:
row.append(0); hover_row.append(f"<b>{task} β€” {label_for(pid)}</b><br>No data")
matrix.append(row); hovers.append(hover_row)
fig = go.Figure(data=go.Heatmap(
z=matrix, x=tasks, y=y_tick_labels,
colorscale=[[0,'#f7fbff'],[0.2,'#deebf7'],[0.4,'#9ecae1'],[0.6,'#4292c6'],[0.8,'#2171b5'],[1,'#08519c']],
text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix],
texttemplate="%{text}", textfont={"size": 11, "family": "Arial"},
hovertemplate='%{customdata}<extra></extra>', customdata=hovers,
colorbar=dict(title="% Models", ticksuffix="%"),
zmin=0, zmax=100
))
title_parts = []
title_parts.append(lang if (lang and lang != "All") else "All languages")
title_parts.append(f"{shot}-shot" if (shot and shot != "All") else "All shots")
fig.update_layout(
title={'text': f"Most Effective Prompts β€” {', '.join(title_parts)}",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
xaxis_title="Task", yaxis_title="Prompt",
font=dict(family="Arial", size=11), margin=dict(b=100),
template="plotly_white", dragmode=False, height=420
)
fig.update_xaxes(fixedrange=True); fig.update_yaxes(fixedrange=True)
return fig
# === NEW: Prompt heatmap (only NER, REL; 3 prompts p1, p2, p3) ===
def create_prompt_heatmap_without_lang(dataframe):
"""
Heatmap of the share of models (in %) whose BEST prompt for the task is each prompt id,
for tasks NER and REL, with exactly 3 prompts (p1, p2, p3). It supports columns storing
ids as integers (1/2/3) or strings ('p1'/'p2'/'p3').
"""
tasks = ["NER", "REL", "RML-CRF", "HIS-CRF", "DIA-CRF", "NER-PHARMAER"]
# Collect unique prompt ids as they appear (int or 'pX'); restrict to 3 prompts
all_ids = set()
for task in tasks:
col = f"{task} Best Prompt Id"
if col in dataframe.columns:
all_ids.update(dataframe[col].dropna().unique())
# Normalize to display labels and preserve the original values as keys
def label_for(pid):
if isinstance(pid, str):
return pid # e.g., 'p1'
try:
return f"p{int(pid)}"
except Exception:
return str(pid)
prompt_ids_raw = sorted(list(all_ids), key=lambda x: int(re.sub(r'[^0-9]', '', str(x)) or 0))
# Optional: hard-limit to p1/p2/p3 if extra noise exists
prompt_ids_raw = [pid for pid in prompt_ids_raw if label_for(pid) in {"p1", "p2", "p3"}]
if not prompt_ids_raw:
# Fallback to p1..p3
prompt_ids_raw = [1, 2, 3]
y_tick_labels = [label_for(pid) for pid in prompt_ids_raw]
matrix, hovers = [], []
for pid in prompt_ids_raw:
row, hover_row = [], []
for task in tasks:
col = f"{task} Best Prompt Id"
if col in dataframe.columns:
series = dataframe[col].dropna()
# match values regardless of 'p1' vs 1 vs '1'
def same_pid(v):
a = re.sub(r'[^0-9]', '', str(v))
b = re.sub(r'[^0-9]', '', str(pid))
return a == b and a != ""
total = len(series)
count = sum(same_pid(v) for v in series)
pct = (count / total * 100) if total > 0 else 0
row.append(pct)
hover_row.append(
f"<b>{task} β€” {label_for(pid)}</b><br>Models: {count}/{total}<br>Percentage: {pct:.1f}%"
)
else:
row.append(0); hover_row.append(f"<b>{task} β€” {label_for(pid)}</b><br>No data")
matrix.append(row)
hovers.append(hover_row)
fig = go.Figure(data=go.Heatmap(
z=matrix, x=tasks, y=y_tick_labels,
colorscale=[[0,'#f7fbff'],[0.2,'#deebf7'],[0.4,'#9ecae1'],[0.6,'#4292c6'],[0.8,'#2171b5'],[1,'#08519c']],
text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix],
texttemplate="%{text}",
textfont={"size": 11, "family": "Arial"},
hovertemplate='%{customdata}<extra></extra>',
customdata=hovers,
colorbar=dict(title="% Models", ticksuffix="%"),
zmin=0, zmax=100
))
fig.update_layout(
title={'text': "Most Effective Prompts Across Models (NER/REL)",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
xaxis_title="Task", yaxis_title="Prompt",
font=dict(family="Arial", size=11),
margin=dict(b=120), template="plotly_white", dragmode=False, height=420
)
# PSI (optional info line)
psi, mean_cv, _ = calculate_prompt_sensitivity(
dataframe, tasks, prompt_ids_raw
)
fig.add_annotation(
text=f"Prompt Sensitivity (mean CV): {mean_cv:.2f}",
xref="paper", yref="paper", x=0.3, y=1.12, showarrow=False,
font=dict(size=11, color="#2c3e50", family="Arial")
)
fig.update_xaxes(fixedrange=True); fig.update_yaxes(fixedrange=True)
return fig
def mean_of_max_per_field(df):
"""
Calcola il massimo per ciascun campo e poi la media dei massimi.
Args:
df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL, RML, DIA, HIS
Returns:
float: media dei valori massimi dei campi
"""
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
fields = ["NER", "REL", "RML-CRF", "DIA-CRF", "HIS-CRF", "NER-PHARMAER"]
#print(df.columns)
# Controlla che tutte le colonne esistano nel DataFrame
print(df.columns)
missing = [f for f in fields if f not in df.columns]
if missing:
raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
# Calcola il massimo per ciascun campo
max_values = df[fields].apply(pd.to_numeric, errors='coerce').max(skipna=True)
# Calcola la media dei massimi
mean_max = max_values.mean()
return mean_max
def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
if tasks is None:
tasks = [ "NER", "REL", "RML-CRF", "DIA-CRF", "HIS-CRF","NER-PHARMAER"]
task_means = {}
for task in tasks:
if task not in dataframe.columns:
continue
# Separa few-shot e zero-shot
few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]
# Allinea i modelli
merged = pd.merge(few_shot, zero_shot, on="Model", suffixes=("_few", "_zero"))
# Rimuovi righe con valori mancanti
merged = merged.dropna(subset=[f"{task}_few", f"{task}_zero"])
if merged.empty:
continue
# Calcola differenza few - zero
diff = merged[f"{task}_few"] - merged[f"{task}_zero"]
# Calcola la media
task_means[task] = diff.mean()
# Crea barplot
fig = go.Figure([go.Bar(
x=list(task_means.keys()),
y=list(task_means.values()),
marker_color="#ff7f0e",
text=[f"{v:.2f}" for v in task_means.values()],
textposition="outside",
hovertemplate="<b>%{x}</b><br>Mean Delta Accuracy: %{y:.2f}%<extra></extra>"
)])
# Linea di riferimento a 0
'''
fig.add_shape(
type="line",
x0=-0.5, x1=len(task_means) - 0.5,
y0=0, y1=0,
line=dict(color="black", width=2, dash="dash"),
xref="x", yref="y"
)
'''
fig.update_layout(
title="Mean Accuracy Difference (Few-shot βˆ’ Zero-shot) per Task",
xaxis_title="",
yaxis_title="Mean Delta Combined Performance",
template="plotly_white",
font=dict(family="Arial", size=13),
#margin=dict(b=100)
)
fig.add_annotation(
text="10-shot learning generally outperforms zero-shot. <br>"
"",
xref="paper", yref="paper",
x=0, y=-0.2,
showarrow=False,
font=dict(size=11, color="gray"),
align="left"
)
return fig
def boxplot_per_task(dataframe=None, baselines=None, references=None):
#print(dataframe.columns)
#tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
tasks =["NER", "REL", "RML-CRF", "HIS-CRF", "DIA-CRF" , "NER-PHARMAER"]
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({
task: np.random.uniform(0.4, 0.9, 20) * 100
for task in tasks
})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
fig = go.Figure()
for i, task in enumerate(tasks):
if task in dataframe.columns:
y_data = dataframe[task].dropna().tolist()
# boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# baseline
#if task in baselines and baselines[task] is not None:
#fig.add_shape(
# type="line",
# x0=i - 0.3, x1=i + 0.3,
# y0=baselines[task], y1=baselines[task],
# line=dict(color="black", width=2, dash="dot"), # piΓΉ visibile
# xref="x", yref="y"
#)
#'''
#fig.add_annotation(
#x=i, y=baselines[task],
#text=f"{baselines[task]}%",
#showarrow=False,
#yshift=10,
#font=dict(size=10, color="black")
#)
#'''
# reference GPT-4o
# if task in references and references[task] is not None:
# fig.add_shape(
# type="line",
# x0=i - 0.3, x1=i + 0.3,
# y0=references[task], y1=references[task],
# line=dict(color="red", width=2, dash="dashdot"),
# xref="x", yref="y"
# )
fig.update_layout(
title="Distribution of Model Accuracy by Task",
xaxis_title="Task",
yaxis_title="Combined Performance",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=10),
margin=dict(b=80),
)
fig.add_annotation(
text=(""
#"In tasks like TE and SA, models approach the accuracy of supervised <br>"
#"models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
# "Dashed red lines show GPT-4o reference results for generative tasks."
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray"),
align="left"
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
return fig
# EVALITA results
BASELINES = {
"TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
}
# GPT-4o
REFERENCES = {
"NER": 79.11,
"REL": 63.32,
"LS": 59.25,
"SU": 33.04
}
def boxplot_prompts_per_task(dataframe, tasks=None):
if tasks is None:
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
# Lista delle colonne da aggiornare
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
# Applichiamo la trasformazione
for col in cols_to_update:
dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
fig = go.Figure()
# Liste per creare una sola voce in legenda per Average e Best
avg_x, avg_y = [], []
best_x, best_y, best_text = [], [], []
for task in tasks:
avg_col = f"{task} Prompt Average"
best_col = f"{task} Best Prompt"
best_id_col = f"{task} Best Prompt Id"
if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
avg_value = dataframe[avg_col].mean()
avg_x.append(task)
avg_y.append(avg_value)
best_value = dataframe[best_col].mean()
best_x.append(task)
best_y.append(best_value)
best_id = dataframe[best_id_col].mode()[0] # Most frequent best prompt id
best_text.append(f"P:{best_id}")
# Barre Average Accuracy (azzurro)
fig.add_trace(go.Bar(
x=avg_x,
y=avg_y,
name="Avg. Accuracy",
marker_color="#1f77b4",
))
# Barre Best Prompt (rosso)
fig.add_trace(go.Bar(
x=best_x,
y=best_y,
name="Best Prompt",
marker_color="#d62728",
))
# Testo sopra barre Best Prompt con ID
for x, y, text in zip(best_x, best_y, best_text):
fig.add_annotation(
x=x,
y=y + 3, # leggermente sopra la barra
text=text,
showarrow=False,
font=dict(size=12, color="black")
)
fig.update_layout(
title= "Prompt Accuracy: Avg vs Best",
xaxis_title="Task",
yaxis_title="Combined Performance",
barmode='group',
template="plotly_white",
font=dict(family="Arial", size=10),
yaxis=dict(range=[0, 100], fixedrange=True)
)
# caption come annotazione separata
fig.add_annotation(
text="There is no single prompt that performs best across all tasks.<br>"
"Different prompts achieve the highest accuracy on different tasks.",
xref="paper", yref="paper",
x=0.5, y=-0.3,
showarrow=False,
font=dict(size=11, color="gray"),
align="center",
xanchor="center"
)
return fig
def line_chart(dataframe):
# Normalizza le dimensioni per avere marker non troppo piccoli nΓ© enormi
def scale_sizes(values, min_size=8, max_size=30):
vmin, vmax = min(values), max(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
for val in values
]
# dati in base a IS_FS
df_true = dataframe[dataframe['IS_FS'] == True]
df_false = dataframe[dataframe['IS_FS'] == False]
# Estrai valori x, y e labels
x_true = df_true['#Params (B)'].tolist()
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
x_false = df_false['#Params (B)'].tolist()
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
fig = go.Figure()
# Punti IS_FS=True
fig.add_trace(go.Scatter(
x=x_true,
y=y_true,
mode='markers',
name='10-Shot',
marker=dict(
color='blue',
size=scale_sizes(x_true)
),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_true
))
# Punti IS_FS=False
fig.add_trace(go.Scatter(
x=x_false,
y=y_false,
mode='markers',
name='0-Shot',
marker=dict(
color='red',
size=scale_sizes(x_false)
),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_false
))
# Trova il massimo tra tutti i modelli
all_y = y_true + y_false
all_x = x_true + x_false
all_labels = labels_true + labels_false
max_idx = all_y.index(max(all_y))
max_x = all_x[max_idx]
max_y = all_y[max_idx]
max_label = all_labels[max_idx]
# Aggiungi annotazione visibile per il modello migliore
fig.add_annotation(
x=max_x,
y=max_y,
#text=f"Top: {max_label} ({max_y:.1f}%)",
text=f"{max_label}",
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="black",
font=dict(size=11, color="black"),
xshift=10,
yshift=10,
ax = -30, ay = -20, # sposta la label a sinistra e sopra il punto
xanchor = "right" # allinea la label a destra rispetto al punto
)
fig.update_layout(
title="Avg. Combined Performance vs #Params",
xaxis_title="#Params (B)",
yaxis_title="Avg. Combined Performance",
template="plotly_white",
hovermode="closest",
font=dict(family="Arial", size=10),
dragmode=False,
xaxis=dict(
tickvals=[0, 25, 50, 75, 100, 125],
ticktext=["0", "25", "50", "75", "100"]
),
yaxis=dict(
tickvals=[0, 20, 40, 60, 80, 100], # πŸ‘ˆ tick fissi
range=[0, 100] # πŸ‘ˆ range bloccato
)
)
# Caption
fig.add_annotation(
text="Accuracy generally rises with #Params, but smaller models <br>"
"with 10-shot can outperform larger zero-shot models.",
xref="paper", yref="paper",
x=0.5, y=-0.3, # πŸ‘ˆ centrata
showarrow=False,
font=dict(size=11, color="gray"),
align="center",
xanchor="center" # πŸ‘ˆ ancora centrata rispetto al testo
)
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
#"TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
#"SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
#"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
#"AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
#"WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
#"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}
# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
"RML-CRF": {"icon": "πŸ˜ƒ", "name": "CRF RML", "tooltip": "CRF RML"},
"DIA-CRF": {"icon": "πŸ₯", "name": "CRF Diagnosis", "tooltip": "CRF Diagnosis"},
"HIS-CRF": {"icon": "πŸ“", "name": "CRF History", "tooltip": "CRF History"},
"NER-PHARMAER": {"icon": "🏷️", "name": "Named Entity Recognition over PharmaER.It Datasets", "tooltip": ""},
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
The table is sorted based on the "Avg. Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Flag per sapere se la medaglia Γ¨ giΓ  stata assegnata per categoria e tipo
large_medal_fs_assigned = False
medium_medal_fs_assigned = False
small_medal_fs_assigned = False
large_medal_0shot_assigned = False
medium_medal_0shot_assigned = False
small_medal_0shot_assigned = False
# Lista temporanea per salvare i nuovi valori della colonna Model
new_model_column = []
for _, row in sorted_dataframe.iterrows():
if row['IS_FS']: # 10-Few-Shot
if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸ†")
large_medal_fs_assigned = True
elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ†")
medium_medal_fs_assigned = True
elif row["Size"] == "πŸ”΅" and not small_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ†")
small_medal_fs_assigned = True
else:
new_model_column.append(row["Model"])
else: # 0-Shot
if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ")
large_medal_0shot_assigned = True
elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸŽ–οΈ")
medium_medal_0shot_assigned = True
elif row["Size"] == "πŸ”΅" and not small_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸŽ–οΈ")
small_medal_0shot_assigned = True
else:
new_model_column.append(row["Model"])
# Lista delle colonne da aggiornare
#cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
# Applichiamo la trasformazione
#for col in cols_to_update:
# dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
# Aggiorna la colonna Model
sorted_dataframe["Model"] = new_model_column
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS): "),
ColumnFilter(AutoEvalColumn.LANG.name, type="checkboxgroup", label="Languges: "),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Update and return the leaderboard when a specific task is selected.
The table is sorted based on the "Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
#sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
clean_df = dataframe.assign( **{"Combined Performance": pd.to_numeric(dataframe["Combined Performance"], errors="coerce")}).loc[lambda df: df["Combined Performance"].notna() & (df["Combined Performance"] != 0)]
sorted_dataframe = clean_df.sort_values(by="Combined Performance", ascending=False)
# aggiungo la colonna rank in base alla posizione
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Flag per sapere se la medaglia Γ¨ giΓ  stata assegnata per categoria e tipo
large_medal_fs_assigned = False
medium_medal_fs_assigned = False
small_medal_fs_assigned = False
large_medal_0shot_assigned = False
medium_medal_0shot_assigned = False
small_medal_0shot_assigned = False
# Lista temporanea per salvare i nuovi valori della colonna Model
new_model_column = []
for _, row in sorted_dataframe.iterrows():
if row['IS_FS']: # 5-Few-Shot
if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸ†")
large_medal_fs_assigned = True
elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ†")
medium_medal_fs_assigned = True
elif row["Size"] == "πŸ”΅" and not small_medal_fs_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ†")
small_medal_fs_assigned = True
else:
new_model_column.append(row["Model"])
else: # 0-Shot
if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ")
large_medal_0shot_assigned = True
elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸŽ–οΈ")
medium_medal_0shot_assigned = True
elif row["Size"] == "πŸ”΅" and not small_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} πŸ”΅πŸŽ–οΈ")
small_medal_0shot_assigned = True
else:
new_model_column.append(row["Model"])
# Aggiorna la colonna Model
sorted_dataframe["Model"] = new_model_column
pd.set_option('display.max_colwidth', None)
#print("========================", dataframe['Model'])
#print(sorted_dataframe['Combined Performance'])
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
#datatype=[c.type for c in field_list],
datatype=[c.type for c in field_list] + [int],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS): "),
ColumnFilter(AutoEvalColumn.LANG.name, type="checkboxgroup", label="Languges: "),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from Hugging Face Hub."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#print(LEADERBOARD_DF.columns.tolist())
theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
#gr.HTML(TITLE)
gr.HTML(
"""
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
<h1 style="
margin: 0 auto;
font-weight: 900;
font-size: 5.5em;
letter-spacing: 2px;
text-transform: uppercase;
color: red;
background: linear-gradient(90deg, #1f77b4, #00c6ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: 2px 2px 8px rgba(0.2,0,0,0);
">
ECREAM-LLM Leaderboard
</h1>
</div>
"""
)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
with gr.Row():
gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
# === NEW: second row with the 2 extra plots (NER/REL + p1..p3) ===
#with gr.Row():
#gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF), elem_id="prompt-heatmap")
#gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF), elem_id="best-model-table")
# === NEW: gray background wrapper for combos ===
with gr.Row(elem_id="filters-wrap"):
lang_dd = gr.Dropdown(
choices=["All", "EN", "IT", "SL", "SK", "GR", "PL"],
value="All", label="Language: ", scale=1
)
shot_dd = gr.Dropdown(
choices=["All", "0", "10"],
value="All", label="N-Shot: ", scale=1
)
with gr.Row():
heatmap_plot = gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF, None, None), elem_id="prompt-heatmap")
table_plot = gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF, None, None), elem_id="best-model-table")
def _update_both(lang, shot):
return (
create_prompt_heatmap(LEADERBOARD_DF, None if lang == "All" else lang, None if shot == "All" else shot),
create_best_model_comparison_table(LEADERBOARD_DF, None if lang == "All" else lang, None if shot == "All" else shot)
)
lang_dd.change(_update_both, inputs=[lang_dd, shot_dd], outputs=[heatmap_plot, table_plot])
shot_dd.change(_update_both, inputs=[lang_dd, shot_dd], outputs=[heatmap_plot, table_plot])
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("πŸ… Benchmark"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['Rank', 'Size', 'LANG', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "RML-CRF", "DIA-CRF", "HIS-CRF", "NER-PHARMAER"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'LANG', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "RML-CRF", "DIA-CRF", "HIS-CRF", "NER-PHARMAER"]]
)
# About tab
with gr.TabItem("πŸ“ About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
default_selection=['Rank', 'Size','LANG', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size','LANG', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
)
# About tab
with gr.TabItem("β”‚", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text1")
print (task)
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"}),
default_selection=['Rank', 'Size', 'LANG', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size','LANG', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("πŸ“™ Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
with gr.Accordion("πŸ“™ Credits", open=False):
gr.Markdown(
"""
***This project has been funded by the European Union under:
Horizon Europe eCREAM Project (Grant Agreement No.101057726)
"""
)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
show_error=True)