saksh-d commited on
Commit
bd41e89
·
verified ·
1 Parent(s): 8561165

Added model to app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -63
app.py CHANGED
@@ -1,63 +1,63 @@
1
- import gradio as gr
2
- import torch
3
- from transformers import AutoModelForCausalLM, GPT2TokenizerFast
4
-
5
- # Load fine-tuned model
6
- model_path = "../models/recipe-gpt"
7
- tokenizer = GPT2TokenizerFast.from_pretrained(model_path)
8
- model = AutoModelForCausalLM.from_pretrained(model_path)
9
- model.eval()
10
-
11
- # Device setup
12
- device = "cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
13
- model.to(device)
14
-
15
- def generate(ingredient_text, temperature, top_k, top_p, max_length):
16
- # Format ingredients into a list
17
- ingredients = [line.strip("- ").strip() for line in ingredient_text.strip().splitlines() if line.strip()]
18
-
19
- prompt = "<start>\nIngredients:\n"
20
- for ing in ingredients:
21
- prompt += f"- {ing}\n"
22
- prompt += "Directions:\n"
23
-
24
- inputs = tokenizer(prompt, return_tensors="pt")
25
- input_ids = inputs.input_ids.to(device)
26
- attention_mask = inputs.attention_mask.to(device)
27
-
28
- with torch.no_grad():
29
- output_ids = model.generate(
30
- input_ids,
31
- attention_mask=attention_mask,
32
- do_sample=True,
33
- temperature=temperature,
34
- top_k=top_k,
35
- top_p=top_p,
36
- max_length=max_length,
37
- eos_token_id=tokenizer.convert_tokens_to_ids("<end>")
38
- )
39
-
40
- generated = tokenizer.decode(output_ids[0], skip_special_tokens=False)
41
-
42
- if "Directions:" in generated:
43
- generated = generated.split("Directions:")[1]
44
- if "<end>" in generated:
45
- generated = generated.split("<end>")[0]
46
-
47
- return generated.strip()
48
-
49
- iface = gr.Interface(
50
- fn=generate,
51
- inputs=[
52
- gr.Textbox(lines=8, label="Ingredients (one per line)"),
53
- gr.Slider(minimum=0.5, maximum=1.5, value=0.7, step=0.1, label="Temperature"),
54
- gr.Slider(minimum=0, maximum=100, value=40, step=5, label="Top-k"),
55
- gr.Slider(minimum=0.5, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
56
- gr.Slider(minimum=50, maximum=150, value=120, step=10, label="Recipe Length"),
57
- ],
58
- outputs=gr.Textbox(lines=12, label="Generated Recipe Directions"),
59
- title="Recipe-GPT",
60
- description="Enter a list of ingredients to generate step-by-step cooking directions. Adjust the sliders for more or less creativity."
61
- )
62
-
63
- iface.launch()
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, GPT2TokenizerFast
4
+
5
+ # Load fine-tuned model
6
+ model_path = "saksh-d/recipe-gpt"
7
+ tokenizer = GPT2TokenizerFast.from_pretrained(model_path)
8
+ model = AutoModelForCausalLM.from_pretrained(model_path)
9
+ model.eval()
10
+
11
+ # Device setup
12
+ device = "cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
13
+ model.to(device)
14
+
15
+ def generate(ingredient_text, temperature, top_k, top_p, max_length):
16
+ # Format ingredients into a list
17
+ ingredients = [line.strip("- ").strip() for line in ingredient_text.strip().splitlines() if line.strip()]
18
+
19
+ prompt = "<start>\nIngredients:\n"
20
+ for ing in ingredients:
21
+ prompt += f"- {ing}\n"
22
+ prompt += "Directions:\n"
23
+
24
+ inputs = tokenizer(prompt, return_tensors="pt")
25
+ input_ids = inputs.input_ids.to(device)
26
+ attention_mask = inputs.attention_mask.to(device)
27
+
28
+ with torch.no_grad():
29
+ output_ids = model.generate(
30
+ input_ids,
31
+ attention_mask=attention_mask,
32
+ do_sample=True,
33
+ temperature=temperature,
34
+ top_k=top_k,
35
+ top_p=top_p,
36
+ max_length=max_length,
37
+ eos_token_id=tokenizer.convert_tokens_to_ids("<end>")
38
+ )
39
+
40
+ generated = tokenizer.decode(output_ids[0], skip_special_tokens=False)
41
+
42
+ if "Directions:" in generated:
43
+ generated = generated.split("Directions:")[1]
44
+ if "<end>" in generated:
45
+ generated = generated.split("<end>")[0]
46
+
47
+ return generated.strip()
48
+
49
+ iface = gr.Interface(
50
+ fn=generate,
51
+ inputs=[
52
+ gr.Textbox(lines=8, label="Ingredients (one per line)"),
53
+ gr.Slider(minimum=0.5, maximum=1.5, value=0.7, step=0.1, label="Temperature"),
54
+ gr.Slider(minimum=0, maximum=100, value=40, step=5, label="Top-k"),
55
+ gr.Slider(minimum=0.5, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
56
+ gr.Slider(minimum=50, maximum=150, value=120, step=10, label="Recipe Length"),
57
+ ],
58
+ outputs=gr.Textbox(lines=12, label="Generated Recipe Directions"),
59
+ title="Recipe-GPT",
60
+ description="Enter a list of ingredients to generate step-by-step cooking directions. Adjust the sliders for more or less creativity."
61
+ )
62
+
63
+ iface.launch()