File size: 5,384 Bytes
20a070f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO

import uvicorn
from fastapi import FastAPI, BackgroundTasks, File, Body, UploadFile, Request
from fastapi.responses import StreamingResponse
# from faster_whisper import WhisperModel
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
from sentence_transformers import SentenceTransformer
# from zhconv import convert

# from utils.data_utils import remove_punctuation
# from utils.utils import add_arguments, print_arguments


import hashlib
import os
import tarfile
import urllib.request

# from tqdm import tqdm


def print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in vars(args).items():
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def strtobool(val):
    val = val.lower()
    if val in ('y', 'yes', 't', 'true', 'on', '1'):
        return True
    elif val in ('n', 'no', 'f', 'false', 'off', '0'):
        return False
    else:
        raise ValueError("invalid truth value %r" % (val,))


def str_none(val):
    if val == 'None':
        return None
    else:
        return val


def add_arguments(argname, type, default, help, argparser, **kwargs):
    type = strtobool if type == bool else type
    type = str_none if type == str else type
    argparser.add_argument("--" + argname,
                           default=default,
                           type=type,
                           help=help + ' Default: %(default)s.',
                           **kwargs)

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

add_arg("host",        type=str,  default="0.0.0.0", help="")
add_arg("port",        type=int,  default=5000,        help="")
add_arg("model_path",  type=str,  default="BAAI/bge-small-en-v1.5", help="")
add_arg("use_gpu",     type=bool, default=False,   help="")
# add_arg("use_int8",    type=bool, default=True,  help="")
add_arg("beam_size",   type=int,  default=10,     help="")
add_arg("num_workers", type=int,  default=2,      help="")
add_arg("vad_filter",  type=bool, default=True,  help="")
add_arg("local_files_only", type=bool, default=True, help="")
args = parser.parse_args()
print_arguments(args)

# 
# assert os.path.exists(args.model_path), f"{args.model_path}"
# 
if args.use_gpu:
    model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16")
else:
    model = SentenceTransformer(args.model_path, device='cpu')


# 
# _, _ = model.transcribe("dataset/test.wav", beam_size=5)

app = FastAPI(title="embedding Inference")
# app.mount('/static', StaticFiles(directory='static'), name='static')
# templates = Jinja2Templates(directory="templates")
# model_semaphore = None


# def release_model_semaphore():
#     model_semaphore.release()


# def recognition(file: File, to_simple: int,
#                 remove_pun: int, language: str = "bn",
#                 task: str = "transcribe"
#     ):

#     segments, info = model.transcribe(file, beam_size=10, task=task, language=language, vad_filter=args.vad_filter)
#     for segment in segments:
#         text = segment.text
#         if to_simple == 1:
#             # text = convert(text, '')
#             pass
#         if remove_pun == 1:
#             # text = remove_punctuation(text)
#             pass
#         ret = {"result": text, "start": round(segment.start, 2), "end": round(segment.end, 2)}
#         # 
#         yield json.dumps(ret).encode() + b"\0"


# @app.post("/recognition_stream")
# async def api_recognition_stream(
#         to_simple: int = Body(1, description="", embed=True),
#         remove_pun: int = Body(0, description="", embed=True),
#         language: str = Body("bn", description="", embed=True),
#         task: str = Body("transcribe", description="", embed=True),
#         audio: UploadFile = File(..., description="")
#         ):

#     global model_semaphore
#     if language == "None": language = None
#     if model_semaphore is None:
#         model_semaphore = asyncio.Semaphore(5)
#     await model_semaphore.acquire()
#     contents = await audio.read()
#     data = BytesIO(contents)
#     generator = recognition(
#         file=data, to_simple=to_simple,
#         remove_pun=remove_pun, language=language,
#         task=task
#         )
#     background_tasks = BackgroundTasks()
#     background_tasks.add_task(release_model_semaphore)
#     return StreamingResponse(generator, background=background_tasks)


@app.post("/embed")
async def api_embed(
            textA: str = Body("text1", description="", embed=True),
            textB: str = Body("text2", description="", embed=True),
        ):

    q_embeddings = model.encode(textA, normalize_embeddings=True)
    p_embeddings = model.encode(textB, normalize_embeddings=True)

    scores = q_embeddings @ p_embeddings.T
    print(scores)
    scores = scores.tolist()

    ret = {"similarity score": scores, "status_code": 200}
    return ret


# @app.get("/")
# async def index(request: Request):
#     return templates.TemplateResponse(
#         "index.html", {"request": request, "id": id}
#         )


if __name__ == '__main__':
    uvicorn.run(app, host=args.host, port=args.port)